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Abstract

Water resource management in ungauged catchments is complex due to the uncertainties 

around the hydrological parameters that dominate the streamflow behaviour. These 

parameters are usually defined by regionalization approaches in which hydrological response 

patterns are transferred from gauged to ungauged basins. Regression-based methods using 

physical properties derived from cartographic data sources are widely used. The current 

remote sensing techniques offer us new standpoints in regionalisation processing since the 

hydrological response depends on the physical attributes related to the spectral responses of 

the territory. Moreover, machine learning approaches have not been specifically applied to 

the regionalization of hydrologic parameters. This work studies the capability of a 

catchment’s spectral response based on Sentinel-1 and Sentinel-2 data to address a 

regression-based regionalization of hydrological parameters using a machine learning 

approach. Hydrological modelling was conducted by the HBV-light model. We tested the 

random forest algorithm in several regionalization scenarios: the new approach using the 

catchments’ spectral signature, the traditional method using physical properties and a fusion 

of them. The calibration results were excellent (median KGE = 0.83), and the regionalized 

parameters obtained with the random forest algorithm achieved good performance in which 

the three scenarios showed almost the same goodness of fit (median KGE = 0.45 to 0.50). We

found that the effectiveness depends on the climatic environment and that predictions in 

humid catchments exhibited better performance than those in the driest catchments. The 

physical approach (median KGE= 0.71) exhibited better performance than the spectral 

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1
2
3

4



approach (median KGE= 0.64) in humid catchments, whereas spectral regionalization 

(median KGE= 0.33) outperformed the physical scenario in the driest catchments (median 

KGE= 0.25). Herein, our results confirm that regionalization is still challenging in 

Mediterranean climate variants where the new spectral approach showed promising results 

and time series of satellite data could improve seasonal regionalization methodologies.

Keywords: HBV, hydrology, random forest, runoff, SAR, Sentinel.

1. INTRODUCTION

Water resource management requires accurate estimations of all hydrological processes 

involved in water supply, flood and drought evaluations and eco-hydrology (Cui et al., 2020; 

Hrachowitz et al., 2013). The complexity of hydrological modelling relies on the availability 

of input data and on the uncertainties of the parameters that must be calibrated to obtain good

accuracy in streamflow simulations (Beck et al., 2020). Moreover, calibration can lead to 

non-unique combinations of best parameters (Bárdossy, 2007). Therefore, the uncertainty is 

even greater in ungauged catchments where calibration of model parameters is not feasible, 

thus becoming a challenge for hydrologists.

For ungauged catchments, the parameter regionalization approach is used for transferring 

hydrological response patterns from gauged to ungauged (Hrachowitz et al., 2013), and there 

are several regionalization methods (spatial proximity, similarity-based, regression-based, 

and hydrological signatures-based) that have been proven to be effective, alone or in 

combination, in previous studies (see reviews by Hrachowitz et al. (2013), by J Parajka et al. 

(2013) and updated review by Guo, Zhang, Zhang, and Wang (2021). Although there are 

several worldwide studies, there is no optimal regionalization model; furthermore, the 

effectiveness of the regionalization will depend on the environment and the particular 

hydroclimatic attributes of an area (J Parajka et al., 2013).

Specifically, for regression-based parameter regionalization, the widest models used are 

linear or multiple regression (Merz & Blöschl, 2004; Jan Seibert, 1999) or transfer functions 

(Beck et al., 2020; Götzinger & Bárdossy, 2007; Hundecha & Bárdossy, 2004).

Nevertheless, the transferability of parameters does not always lead to satisfactory simulation

results due to nonlinear functions between the heterogeneous catchments and their flow 

regimen (Bárdossy, 2007). In the last decade, machine learning methods have been proven to 

be effective in analysing nonlinear relationships in many geosciences areas, particularly in 
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water science areas (see review by Tyralis, Papacharalampous, and Langousis (2019)), but 

only a few studies have used machine learning for the regionalization approach of streamflow

simulations (Buzacott, Tran, van Ogtrop, & Vervoort, 2019; Kult, Fry, Gronewold, & Choi, 

2014; Prieto Sierra, Le Vine, Kavetski, García Alonso, & Medina Santamaría, 2019; Snelder 

et al., 2009; Zhang, Chiew, Li, & Post, 2018). Consequently, to the best of our knowledge, 

there is a lack of studies applying machine learning algorithms specifically to the 

regionalization of hydrologic parameters.

Related to the physical properties, topographic, land use, soil, and geological data from 

cartographic sources are traditionally the most commonly used for catchment characterization

for parameter regionalization (Booij, 2005; Hundecha & Bárdossy, 2004; Kult, Fry, 

Gronewold, & Choi, 2014; Merz & Blöschl, 2004; Parajuli, Jayakody, & Ouyang, 2018). 

Recent studies have incorporated remote sensing data as predictors, such as those of Choubin 

et al. (2019), who used Moderate Resolution Imaging Spectroradiometer (MODIS) images 

and some derived products, such as vegetation and biophysical indices, to estimate 

streamflow in ungauged catchments. Landsat-8-derived indices have been used for flood 

susceptibility mapping (Bui et al., 2020), and Beck et al. (2020) used the Mean Normalized 

Difference Vegetation Index (NDVI) from the SPOT vegetation program as a predictor in 

their global regionalization of hydrologic parameters. However, apart from the vegetation 

indices, remote sensing data can also add a valuable characterization of the catchments 

because the spectral response will depend on the vegetation (type and the cover factor) and 

on the geological and lithological characteristics of the study area. Moreover, the vegetation 

types are also related to the nature of the soil lithotypes (Costa, Santos, Melo, & Santos, 

2017). Hence, the reflectance captured by the optical sensor is related to the surface 

mineralogy depending on the composition of the soil of the geological formations of the area 

(Rajendran & Nasir, 2021). Moreover, the response of synthetic aperture radar (SAR) 

backscatter intensity is affected by surface roughness, soil moisture content (Purinton & 

Bookhagen, 2020), dielectric constant and grain size (Lu, Yang, & Meng, 2021). 

Consequently, considering that the abovementioned characteristics are directly involved in 

the hydrological response of the territory, the spectral response of a catchment can be related 

to its hydrological response. However, to our knowledge, the capability of the spectral 

signature to study catchment properties and to be used as predictors in regression-based 

regionalization of hydrological parameters has not yet been documented.
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Therefore, the aim of our study was to explore the capability of a catchment’s spectral 

response for a regression-based regionalization of hydrological parameters using a machine 

learning approach. The specific goals were i) to obtain the spectral signatures of the 

catchments based on the Sentinel satellites, ii) to characterize the physical soil properties 

based on the cartographic information of the European Soil Data Centre, iii) to test the 

random forest algorithm for the regression of the hydrological parameters, and iv) to assess 

the accuracy of the regionalization from two standpoints: spectral and physical properties.

2. DATA AND METHODS

2.1 Study area

The study area corresponds to 18 gauged watersheds throughout the Extremadura region in 

Spain (Figure 1). The criteria for the selection of the watersheds were based on the 

availability of gain station data measuring an upstream area below 1000 km² of mainly 

forested cover and not being controlled by the regulation of any dam or reservoir to study the 

natural regimen of the rivers. Table 1 shows the main climatic characteristics of the 

watersheds (Rivas-Martinez & Rivas-Saenz, 1996-2019), where the annual mean temperature

and the mean annual precipitation range from 10 to 17 °C and from 446 to 1323 mm, 

respectively. Precipitation occurs mainly from October to April, while June, July and August 

suffer a significant drought with no or close to zero precipitation amount.

[Insert Figure 1]

[Insert Table 1]

2.2 Data Preprocessing

2.2.1 River discharge

The river discharge data were supplied by the Automatic Hydrological Information Systems 

(SAIH) of the hydrographic regions of Tajo and Guadiana to which the watersheds belong 

and which have had data recorded since they were put into operation in 2008. Therefore, the 

daily discharge from January 2008 to December 2019 was analysed. To ensure the quality of 

discharge observations, the hydrograph was analysed by visual inspection to guarantee the 

lack of gaps and outliers. Since the natural regimen of the rivers studied is intermittent, as 
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recommended in Crochemore et al. (2020), it is important to distinguish between high-flow 

peaks instead of numerical outliers.

2.2.2 Precipitation and temperature

In this work, the daily gridded dataset of temperatures (maximum and minimum) and 24 h 

accumulated precipitation developed by the Spanish Meteorological Agency (AEMET) 

available in AEMET (2019) was used. These grided datasets were obtained through a 

statistical interpolation analysis of ground observation stations, with a spatial resolution of 

0.05° in a rotated grid (CORDEX compliant) based on HIRLAM-AEMET Numerical 

Weather Prediction operational analyses (AEMET, 2017). To obtain the daily series in each 

watershed, we first reprojected the watershed into the rotated grid, and then, the average daily

values in each watershed were processed. Considering that the interpolation of these data 

refers to the location of the ground observation stations, to analyse variations in temperature 

and precipitation with height, the differences in the elevation to the reference ground data and

the mean distance to the nearest stations were analysed for each catchment.

2.2.3 Potential Evapotranspiration

The daily potential evapotranspiration was calculated using the 1985 Hargreaves ETo 

equation since it only requires measured temperature data (see equation 8 in Hargreaves, 

ASCE, and Allen (2003)). The extraterrestrial radiation (Ra) values for the different latitudes 

of the watersheds were estimated following the equations in Allen, Pereira, Raes, and Smith 

(1998). Finally, the long-term monthly mean values were obtained from the daily values of 

potential evapotranspiration from January 2008 to December 2019.

2.2.4 Land Cover and Topographic data

The land cover map used in this work (Figure 1) was developed in a previous study where 

hydrological land cover categories were mapped based on the runoff generation capability of 

the land cover types using remote sensing techniques (Fragoso-Campón, Quirós, & Gutiérrez 

Gallego, 2021) and can be divided into three groups: forested, agricultural and impervious 

cover. Forested land cover categories comprise evergreen forest, deciduous forest, dehesas, 

shrubs, and herbaceous vegetation. The dehesa is a typical cover from Extremadura (Fragoso-

Campón, Quirós, & Gutiérrez Gallego, 2020) defined by Devesa Alcaraz (1995) as 

“pasturelands populated by holm and/or cork oaks, with an understorey of open grassland, 

cereal crops, or Mediterranean scrub”. The agricultural land cover categories are rainfed 

crops (mainly olive trees, vineyards and cold-season annual crops and cherry trees) and 
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irrigated crops (seasonal warm crops). Finally, impervious surfaces such as rocky outcrops, 

bare soil, roads, and urban areas.

Digital elevation models (DEMs) at a spatial resolution of 25 m developed by the Spanish 

National Geographic Institute (IGN, 2021) were used for topographic data. Table 5 shows the

properties considered as predictors in this study.

2.2.5 Soil Data

The spatial distribution of soil characteristics was obtained from the European Soil Data 

Centre (Joint Research Centre, 2020). Here, two different sources were used: we considered 

the information in the European Soil Database v2.0 (Panagos, 2006) for the characterization 

of the deeper groundwater response, whereas the updated topsoil and the physical properties 

for Europe developed in Ballabio, Panagos, and Monatanarella (2016) for the shallow 

groundwater response. Table 5 shows the physical soil properties considered a predictor in 

this study.

2.2.6 Sentinel Data

The spectral response of the catchments was studied using images collected from the 

Sentinel-1 (S1) and Sentinel-2 (S2) missions of the Copernicus Program. S1 is a C-band SAR

sensor with dual VV and VH polarization, and S2 is a multispectral sensor working in the 

visible (VIS), near-infrared (NIR) and shortwave infrared (SWIR) bands. The analysis was 

addressed in multidate format: one S2 image acquired in summer when the soil and 

vegetation shows the best spectral separability in the Mediterranean environment (Fragoso-

Campón, Quirós, Mora, Gutiérrez Gallego, & Durán-Barroso, 2020; Godinho, Guiomar, & 

Gil, 2017) and two S1 images, one acquired in summer close to the S2 acquisition date and 

another S1 image in winter to capture seasonal phenological differences. The satellite images 

were preprocessed using the Sentinel Application Platform (SNAP) software developed by 

the European Space Agency (ESA). S1 scene preprocessing included calibration (radiometric 

normalization), terrain correction and speckle filtering. S2 preprocessing included 

resampling, reprojection and mosaic building (further information described in Fragoso-

Campón et al. (2021)). In addition, for a better characterization of the watersheds, spectral-

derived metrics (vegetation, water and soil indices) and texture metrics derived from the 

grey-level cooccurrence matrix (GLCM) were also used (Haralick & Shanmugam, 1973). 

These metrics have been proven to be very useful in previous works related to land cover 
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(Fragoso-Campón et al., 2021) and lithological analysis (Lu et al., 2021; Radford, Cracknell, 

Roach, & Cumming, 2018). A complete description of these metrics is shown in Table 5.

2.3 Hydrological model

2.3.1 Model description

Herein, hydrological modelling was conducted by a conceptual-continuous rainfall-runoff 

model at the catchment scale using the HBV-light version of the HBV model (Bergström, 

1995) developed in J. Seibert and Vis (2012). The model includes different routines (snow, 

soil, groundwater and routing) and simulates catchment discharge based on time series of 

precipitation, temperature and potential evaporation data (detailed description of the software 

and formulation are included in J. Seibert and Vis (2012)). We studied the discharge at a 

daily time step for 11 years, dividing the time series into two periods: warm-up (January 2008

to September 2014) and simulation (October 2014 to December 2019).

The watersheds were analysed with a semidistributed approach by considering four elevation 

zones (counting quantile distribution of the DEM) and three vegetation classes. The 

vegetation categories were grouped according to their runoff capability (low-medium-high): 

vegetation type 1 (low) comprises evergreen forest, deciduous forest, dehesas, and shrubs; 

vegetation type 2 (medium) comprises herbaceous vegetation and agricultural land cover; and

vegetation type 3 (high) comprises impervious surfaces.

We used a model structure of three groundwater (GW) boxes: storage in the soil top zone 

(STZ), storage in the soil upper zone (SUZ) and storage in the soil lower zone (SLZ). Both 

the STZ and SUZ boxes are distributed using a box for each elevation-vegetation unit (Figure

2). The parameters involved in the model are related to each routine, as shown in Table 2.

[Insert Figure 2]

[Insert Table 2]

2.3.2 Model Accuracy Evaluation

The accuracy evaluation of the models was made following the goodness of fit (GoF) 

functions implemented in HBV light (Table 3).

[Insert Table 3]
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2.3.3 Model Calibration

The calibration of the model was addressed in two stages: the individual catchment approach 

and the cluster of catchments approach.

In the first stage, each catchment was examined individually to obtain the best combination 

of parameters in each catchment using the tools available in the HBV-light software: Monte 

Carlo simulations and genetic algorithm and Powell optimization (GAP). First, a Monte Carlo

simulation of 50 000 runs was calculated. In each run, the parameter values were randomly 

chosen within the given range (Table 2), ensuring the lack of bias in the calibration procedure

(Jan Seibert, 1999). Then, the results were analysed to set the optimum range of PCALT and 

TCALT parameters to minimize the water balance volume error. Then, another 50 000 Monte

Carlo simulations were run again, and the simulation results were analysed considering the 

goodness of fit function results for each parameter, defining the optimum range to maximize 

the accuracy of the model. The last step consisted of the application of the GAP algorithm 

within the optimal boundaries of the parameters obtained in the previous steps, and as a 

result, the parameters were fine-tuned using Powell’s quadratically convergent method as 

described in J. Seibert and Vis (2012). The best parameter value combination was calculated 

for an objective function using Reff, KGE and Reff Peak with weight values of 0.2, 0.6, and 

0.2, respectively.

In the second stage, the best values were analysed from the cluster criteria standpoint. As 

mentioned in previous studies, calibration could lead to a nonunique combination of best 

parameters (Bárdossy, 2007; Hundecha & Bárdossy, 2004); then, if necessary, parameters out

of the cluster trend were revaluated using the GAP algorithm. Cluster analysis was performed

using the Ward hierarchical clustering method (Ward Jr, 1963) with Euclidean distances 

implemented in R Stats Package R Software (R-Core-Team, 2018). This cluster analysis 

grouped the watersheds that were maximally similar with respect to their characteristics 

considering the physical and spectral information proposed in this work. Formerly, for the 

cluster analysis, the parameters were scaled with a centering approach (subtracting the mean 

and dividing by the standard deviation).

As a result, the best combination of the parameters in each catchment was established (Best-

Par). In addition, an evaluation of the parameter sensitivity was assessed in each catchment 

using Monte Carlo simulation of 10 000 runs, one simulation per parameter, using Best-Par 

8

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

29
30
31

32



combination, varying one parameter at a simulation and measuring the decrease in accuracy 

when changing the parameter value within the original range (Table 2). Hence, to analyse 

how well the models fit the best value of the calibration, the objective GoF values were 

calculated in each run and compared to the target objective value. For all the runs, the 

minimum, mean, median and maximum values were calculated in each simulation for each 

parameter.

2.4 Regionalization process

The regionalization process relies on the hypothesis that the hydrological response in 

watersheds with similar characteristics is meant to be similar. Therefore, once the Best-Par 

combination was obtained in each catchment, the next step was to establish the relationship 

of those parameters to the catchment characterization. In this work, we addressed the 

regionalization analysis considering two standpoints: on the one hand, the variables related to

precipitation, temperature and snow routine, which will be named climatic regionalization 

(CR), based on the topographic situation and climatology, and, on the other hand, the 

parameters involved in soil, groundwater and routing routines, which will be named ground 

regionalization (GR), depending on the catchment’s properties in terms of spectral profile, 

morphology, land cover and soil characteristics. In addition, for the GR, we considered three 

scenarios to characterize the catchment properties, as shown in Table 4. The complete 

description of the predictors used for the regression is shown in Table 5.

[Insert Table 4]

The regression analysis between parameters and characteristics in each scenario was 

conducted with the random forest (RF) algorithm (Breiman, 2001), which is a nonparametric 

machine learning method that has been proven effective working with mixed-origin-input 

predictors such as those used in this work. Here, the regressions were performed using the 

RandomForest R package (Liaw & Wiener, 2002) with a number of decision trees (Ntree) of 

5 000. The number of variables to be selected when growing the trees (Mtry) was 

automatically trained by the algorithm for each scenario depending on the number of 

predictors in each scenario.

Due to the limited number of watersheds, we conducted an iterative regression adjustment 

with a one catchment out of bag approach, which consists of leaving out of the algorithm the 
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characteristics of one of the catchments and running the RF algorithm to calculate the 

regionalized parameters (Reg-Par) considering the data of the others. After the 18 RF 

simulations, all the Reg-Pars were compared to the Best-Par, and the RMSE was calculated 

for each parameter. Finally, the accuracy assessment of the regionalization in the different 

scenarios was addressed by running the HBV model using the Reg-Par obtained for each 

catchment analysing the variations in the GoF functions when compared to the results of the 

Best-Par.

[Insert Table 5]

3. RESULTS

3.1 Model calibration

After the calibration process, the Best-Par combination was obtained for each catchment, and 

the main statistics are shown for in each cluster in Table 6. Figure 3 shows the spectral and 

physical density profiles of the catchments categorized into groups that are maximally similar

with respect to their properties based on the dendrogram of the clustering analysis.

[Insert Figure 3]

[Insert Table 6]

The accuracy of the models achieved excellent results, as shown in Table 7, where the global 

median objective GoF function value was 0.73. The best performing clusters are numbers 2, 3

and 4, which perform better than the global mean value, while clusters 1 and 5 are slightly 

lower but still outstanding.

[Insert Table 7]

The sensitivity analysis of the parameters measured how well the models fitted to the 

objective target value in each catchment for the Monte Carlo simulation of 10000 runs. 

Therefore, values of adjustment of approximately 1 imply that the GoF is as good as the 

results achieved by Best-Par, so that the model is less sensitive to the parameter value.
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Evaluating all the catchments together, the results showed that the model accuracy was most 

sensitive to variations in FC, UZL and K0 (Figure 4). In addition, differences in the 

sensitivity among the catchment clusters were observed. In this sense, cluster 1 and cluster 5 

showed the highest sensitivity to BETA, FC and UZL, while cluster 3 showed high sensitivity

to FC and PCALT. In contrast, the lowest sensitivities appeared for cluster 2 and cluster 4, 

which were sensitive to K0, PCALT and TCALT and to FC, UZL and K0, respectively.

[Insert Figure 4]

3.2 Regionalization of parameters

3.2.1 Random forest regressions

The regression analysis was conducted with the RF algorithm in an iterative regression 

adjustment with one catchment out of bag at a time. Table 8 shows the RMSE between Reg-

Par and Best-Par, and Figure 5 shows the correlation in the most sensitive parameters of the 

model. The CR Reg-Par fit well to the Best-Par values, achieving good correlations and 

reasonable RMSE. The GR achieved almost the same performance in the three scenarios, 

where PGR achieved slightly better results in terms of both RMSE (Table 8) and Pearson 

correlation coefficient (Figure 5).

[Insert Table 8]

[Insert Figure 5]

The importance of each predictor in the regression algorithms was analysed in terms of

the increase in the mean squared error when a predictor is randomly permuted (%IncMSE), 

and higher values suggest a more important role of the predictor in the regression (Figure 6). 

In the CR, the most influential predictor is a topographic measurement referring to 

differences in the height of the catchments to the ground-observation digital elevation model 

(Delta_sd) and the climatic variables (T_mean and P_mean). In the SGR, the more valuable 

predictors are mainly related to texture metrics (for both SAR and optical bands) and the blue

and NIR bands, and VIs such as MSAVI2 and SAVI seem to have a high influence on the 

prediction. In the PGR, the topsoil properties are the most valuable predictors together with 
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vegetation coverage. When all the GR predictors are combined in the GGR, the topsoil 

attributes remain valuable predictors, together with the texture-derived metrics from the SAR 

and NIR bands.

[Insert Figure 6]

3.2.2 Accuracy Assessment

Figure 7 shows the accuracy assessment of models in the different regionalization scenarios 

when the Reg-Par were used compared to results for Best-Par in each catchment where the 

value for a perfect fit is 1 and values below 0 indicate poor fit. Figure 8 represents the 

boxplot graphic of the variations in the GoF measurements in the scenarios for all the 

catchments and the behaviours grouped by clusters. The general trend was that the decrease 

in the GoF functions was higher for the GR than for the CR, and the three scenarios in GR 

achieved almost the same performance. The CR&GGR scenario achieved slightly lower 

accuracies. Against the general trend, the efficiency for log(Q) was highly improved in all 

GR scenarios. Regarding the differences among the groups, clusters 2 and 4 showed the best 

performance in the regionalization validation, whereas cluster 5 achieved the lowest 

accuracies. The SGR results were better in clusters 1, 3 and 5, followed by the PGR scenario. 

The GoF function with more differences is ReffPeak, mostly in clusters 1 and 5.

[Insert Figure 7]

[Insert Figure 8].

Finally, an example of observed and simulated streamflows in the scenarios are graphically 

presented in Figure 9 at the Angeles catchment.

[Insert Figure 9].

4. DISCUSSION

In this study, the capability of the catchment’s spectral signature for the regionalization of 

hydrological parameters was analysed using a regression-based machine learning approach. 
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For that purpose, the spectral profiles of the catchments based on the Sentinel-1 and Sentinel-

2 satellites were processed, as well as the physical characterization of land cover and 

morphological and soil properties. Herein, we test the random forest algorithm for addressing

the regression of the hydrological parameters from different standpoints: on the one hand, the

CR where the variables related to precipitation, temperature and snow routine were analysed, 

based on the topographic situation and climatology, and, on the other hand, the GR were the 

hydrological parameters involved in soil, groundwater and routing routines were studied 

considering the new approach using the catchments’ spectral signature (SGR) exclusively, the

classical method using physical properties (PGR), and the mixed using all the spectral and 

physical approach (GGR). The evaluation of the overall efficiency using the most common 

GoF functions showed very good performance in the calibration stage (Table 7) and was still 

outstanding using the regionalization results (Figure 9). The general trend was that the 

decrease in the GoF functions was higher for the GR than for the CR, and the three GR 

scenarios achieved almost the same performance.

It is worth noting that the lack of previous studies at similar latitudes and Mediterranean 

climate variants hinders the comparison of the effectiveness of our work; consequently, we 

compared it with previous studies using any regionalization approach.

Concerning our calibration results, referred to the validation period, which showed a median 

overall KGE value of 0.83 (ranging from 0.78 to 0.86 in the clusters) outperformed previous 

works, such as those reported by Beck et al. (2020) with a median KGE of approximately 0.3 

referred for the arid climate group (visual interpretation of Figure 5 in their work), and our 

results are similar to those reported by Alfieri et al. (2020) for Europe (visual interpretation of

Figure 6 in their work). From another common GoF measurement standpoint, Reff, also 

referred to as Nash-Sutcliffe efficiency (NSE), our results showed a median overall value of 

0.68 (ranging from 0.63 to 0.79 in the clusters), in agreement with those reported by Merz 

and Blöschl (2004) (NSE = 0.63) in Austria and with those reported by Jin, Xu, Zhang, and 

Chen (2009) (Reff =0.78). In addition, our results are better than those reported by Götzinger 

and Bárdossy (2007) (NSE = 0.53) in Germany and similar to those reported by Juraj Parajka,

Blöschl, and Merz (2007) (NSE=0.66-0.69) again in Austria. It is worth noting that our 

calibration was carried out based on the optimization of an objective function where Reff and

KGE were weighted 0.20 and 0.60, respectively. We also considered Reff Peak weighted 

0.20.
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Regarding our regionalized results, the GGR scenario, obtained by the combination of the 

spectral and physical attributes, did not improve the regionalization accuracies in any cluster, 

perhaps because the spectral response of the terrain is conditioned by the physical 

characteristics of the territory and the sum of the predictors does not provide new information

but rather redundant information. Specifically, comparing the effectiveness of SGR versus 

PGR, the median Reff value obtained in the SGR (0.54) was slightly lower than the results of 

the PGR (0.57). These values are in agreement with those reported by Merz and Blöschl 

(2004) (NSE = 0.56) in their best-regression-based scenario and with those reported by 

Götzinger and Bárdossy (2007) (NSE = 0.50) using a combined method (using the Lipschitz 

condition and a monotony condition) and better than those reported by Masih, Uhlenbrook, 

Maskey, and Ahmad (2010) with a median NSE = 0.47 (estimated from Table 7 in their study

using the 7th best ranked) in their flow-duration-curve-based regionalization approach. In 

contrast, our global results are worse than the results reported by Jin et al. (2009) (Reff = 

0.72) in their proxy basin-based regionalization in a subtropical climate catchment. One of 

the main reasons could be the differences in climatic properties discussed below.

The clustering analysis showed different efficiencies depending on the climatic standpoint. In

this sense, the prediction catchment classified as the Tocsm bioclimatic variant (clusters 2 to 

4) exhibited better performance than that classified in the Mpc bioclimatic variant (clusters 1 

and 5) in both calibration and regionalization stages (Figure 10). This is in agreement with 

the findings in the review by J Parajka et al. (2013), who indicated that the performance of 

runoff predictions tends to be lower in arid than in cold and humid regions, and with the 

finding by In Goswami, O’connor, and Bhattarai (2007), where the worst results were 

obtained in the driest catchment of their study. In the Mpc catchments, the median Reff value 

was slightly better for the SGR (0.42) than for the PGR (0.35), whereas in the Tocsm 

catchments, the median Reff values were similar for both scenarios (0.7). Considering this, 

the efficiencies of the SGR and PGR in the Tocsm catchments are in agreement with those 

abovementioned by Jin et al. (2009). Concerning the CR, we found a greater decrease in the 

model efficiency in the Tocsm catchments (median Reff=0.73 to 0.64; median KGE= 0.84 to 

0.67, median Obj=0.79 to 0.62) than in the Mpc catchments (median Reff=0.64 to 0.63; 

median KGE= 0.78 to 0.77, median Obj= 0.69 to 0.69) and showed how the uncertainty in 

precipitation has more influence in wet catchments than in dry catchments, in agreement with

the analysis by Pianosi and Wagener (2016).
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[Insert Figure 10]

We compared our regionalization effectiveness with the performance of the global high-

resolution regionalized parameters (GloH2O) dataset developed by Beck et al. (2020). For 

that, we processed the ten cross-validation folds of available model parameters (BETA, FC, 

K0, K1, K2, LP, PERC, UZL, TT, CFMAX, CFR, and CWH) in the GloH2O dataset, and the

ensemble-mean value was averaged in each catchment. For the parameters not mentioned 

above (PCALT, TCALT, SFCF, MAXBAS and Cet), we assumed the Best-Par obtained in 

our calibration, and after that, the HBV models were run again for each catchment. Figure 

11a shows that our regional approach outperformed the global GloH2O achievements in all 

GoFs analysed, and specifically the GoF reported in their study, our results (in terms of 

median values) SGR (KGE = 0.45), PGR and GGR (both KGE = 0.50) outperformed the 

global GloH2O achievements (KGE = 0.20). Nevertheless, the latter value is in agreement 

with their own results for the arid climate class (where it is classified our study area in Spain 

as shown in Figure 5 in Beck et al. (2020)) for which they informed a median KGE of 

approximately -0.05 for the calibration results (ranging from -0.20 in the 25th percentile to 

0.15 in the 75th percentile). Therefore, given that in their global study, it appears that there are

no study catchments in the Mediterranean area (see Figure 2 in Beck et al. (2020)), this 

finding would confirm that the GloH2O parameters in our study area achieved an 

effectiveness of approximately the same order of magnitude as those reported in the original 

study for arid climate classes. In addition, GloH2O achieved acceptable results in Tocsm and 

showed a median KGE value of approximately 0.28, whereas the results in Mpc were worse 

at approximately -0.14. The main reason for these differences in the model efficiency can be 

due to the differences in the estimation of the most sensitive parameters in the catchments 

under study. It was observed that GloH2O overestimated the FC and UZL values and 

underestimated the K0 values when compared to the Best-Par and Reg-Par obtained in our 

work (Figure 11b).

[Insert Figure 11]
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Regarding the PGR approach, we used the soil information of the European Soil Data Centre 

that exhibited excellent performance. The results showed that soil information has a strong 

influence on the regression of parameters since the topsoil properties are the most valuable 

predictors in the PGR and remain in GGR as valuable predictors, together with the texture-

derived metrics from SAR and NIR bands. The SGR showed better results than the PGR in 

the Mpc catchments, which are driest and characterized by medium to low vegetation 

coverage. This might be because the more valuable predictors in SGR are mainly related to 

texture metrics for both SAR and optical bands. The SAR texture metrics are influenced by 

the grain size of the surface (Lu et al., 2021), and the radar capability for lithological analysis 

is better in sparse coverage than in dense vegetation areas (Radford et al., 2018). In addition, 

the optical information of the blue and NIR bands resulted as valuable predictors, as these 

latter bands were proven to be useful for geological applications in arid regions (Rajendran &

Nasir, 2021).

Therefore, it is worth noting that effectiveness in hydrological models highly depends on the 

climatic environment, and when comparing results with other studies, it seems to be highly 

recommended to analyse the findings from the climatic rather than from the methodological 

standpoint. Herein, our results confirm that regionalization is still challenging in 

Mediterranean bioclimate variants where the new spectral approach SGR showed promising 

results. One of the key issues in the regionalization of hydrological parameters is the 

availability of attributes to be considered predictors (Merz & Blöschl, 2004) and its 

variability in nomenclature across regions or countries. Therefore, having continuous soil 

data throughout Europe, together with Sentinel information, offers us new opportunities in 

the regionalization of parameters at the European scale. As mentioned above, the previously 

studied sites are mainly concentrated in central and northern Europe: Austria (Merz & 

Blöschl, 2004; Juraj Parajka et al., 2007), Germany (Bárdossy, 2007; Götzinger & Bárdossy, 

2007), and Iran (Masih et al., 2010), and there is an absolute lack of studies on catchments in 

the Mediterranean environment. Future work could focus on regionalization in the 

Mediterranean area to complete the range of catchment typologies. Moreover, Sentinel data 

offer continuous coverage throughout almost all over the world, offering new possibilities in 

areas where cartographic information is not available. In addition, time series of satellite data 

could improve seasonal regionalization approaches characterizing the hydrologic response of 
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the catchments and the seasonal variability that characterizes Mediterranean catchment flood 

events.

5. CONCLUSIONS

In this study, the capability of the catchment’s spectral signature for the regionalization of 

hydrological parameters was studied using a regression-based machine learning approach.

The calibration results were excellent (median KGE = 0.83), and regionalized parameters 

with the random forest algorithm achieved good performance. The general trend showed that 

the decrease of the efficiency was lower for the climate regionalization (variables related to 

precipitation, temperature and snow routine) (median KGE = 0.74) than for the ground 

regionalization (hydrological parameters involved in soil, groundwater and routing routines), 

where the three scenarios achieved almost the same performance: the new approach using the

catchments’ spectral signature from the Sentinel-1 and Sentinel-2 satellites (median KGE = 

0.45), the traditional method using physical properties (data provided by the European Soil 

Data Centre) (median KGE = 0.50) and a fusion of spectral and physical properties (median 

KGE = 0.50). We found that effectiveness in the hydrological models highly depends on the 

climatic environment, and the prediction in catchments classified as temperate oceanic sub-

Mediterranean (Tocsm) bioclimatic variants exhibited better performance than that classified 

in the Mediterranean pluviseasonal-continental (Mpc) variant. The physical approach, using 

the soil information of the European Soil Data Centre, exhibited a brilliant performance, and 

the spectral approach showed better results in the driest catchments in the Mpc climatic 

variant. Herein, our results confirm that regionalization is still challenging in Mediterranean 

bioclimate variants where the new spectral approach showed promising results. Therefore, 

having continuous soil data throughout Europe, together with Sentinel information, offers us 

new opportunities in the regionalization of parameters at the European scale, especially to fill

the gap of regionalization studies in the Mediterranean environment. Moreover, the 

continuous coverage of Sentinel data worldwide offers new possibilities in areas where 

cartographic information is unavailable. In addition, time series of satellite data can improve 

seasonal regionalization approaches characterizing the hydrologic response of the catchments

and its seasonal variability.
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