References
Abraham, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010).
Methods for Determination of Proline in Plants. In R. Sunkar (Ed.),Plant Stress Tolerance: Methods and Protocols (Vol. 639, pp.
317-331).
Addington, R. N., Donovan, L. A., Mitchell, R. J., Vose, J. M., Pecot,
S. D., Jack, S. B., . . . Oren, R. (2006). Adjustments in hydraulic
architecture of Pinus palustris maintain similar stomatal conductance in
xeric and mesic habitats. Plant, Cell & Environment, 29 (4),
535-545. doi:10.1111/j.1365-3040.2005.01430.x
Anderegg, W. R. L., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg,
L. D. L., & Field, C. B. (2012). The roles of hydraulic and carbon
stress in a widespread climate-induced forest die-off. Proceedings
of the National Academy of Sciences of the United States of America,
109 (1), 233-237. doi:10.1073/pnas.1107891109
Antunes, C., Chozas, S., West, J., Zunzunegui, M., Diaz Barradas, M. C.,
Vieira, S., & Máguas, C. (2018). Groundwater drawdown drives
ecophysiological adjustments of woody vegetation in a semi-arid coastal
ecosystem. Global Change Biology, 24 (10), 4894-4908.
doi:doi:10.1111/gcb.14403
Antunes, C., Díaz Barradas, M. C., Zunzunegui, M., Vieira, S., Pereira,
Â., Anjos, A., . . . Máguas, C. (2018). Contrasting plant water-use
responses to groundwater depth in coastal dune ecosystems.Functional Ecology, 32 (8), 1931-1943.
doi:doi:10.1111/1365-2435.13110
Arndt, S. K., Irawan, A., & Sanders, G. J. (2015). Apoplastic water
fraction and rehydration techniques introduce significant errors in
measurements of relative water content and osmotic potential in plant
leaves. Physiologia Plantarum, 155 (4), 355-368.
doi:10.1111/ppl.12380
Ashraf, B., AghaKouchak, A., Alizadeh, A., Baygi, M. M., Moftakhari, H.
R., Mirchi, A., . . . Madani, K. (2017). Quantifying Anthropogenic
Stress on Groundwater Resources. Scientific Reports, 7 .
doi:10.1038/s41598-017-12877-4
Awad, H., Barigah, T., Badel, E., Cochard, H., & Herbette, S. (2010).
Poplar vulnerability to xylem cavitation acclimates to drier soil
conditions. Physiologia Plantarum, 139 (3), 280-288.
doi:10.1111/j.1399-3054.2010.01367.x
Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of
leaf turgor loss point and prediction of drought tolerance of species
and biomes: a global meta-analysis. Ecology Letters, 15 (5),
393-405. doi:10.1111/j.1461-0248.2012.01751.x
Bartlett, M. K., Zhang, Y., Kreidler, N., Sun, S., Ardy, R., Cao, K., &
Sack, L. (2014). Global analysis of plasticity in turgor loss point, a
key drought tolerance trait. Ecology Letters, 17 (12), 1580-1590.
doi:10.1111/ele.12374
Bates D., Maechler M., Bolker B., Walker S., Christensen R. H. B.,
Singmann H., et al. (2014). Package ‘lme4’. Vienna: R Foundation for
Statistical Computing
Burgess, S. S. O. (2006). Facing the challenge of seasonally dry
environments. Physiologia Plantarum, 127 (3), 339-342.
doi:10.1111/j.1399-3054.2006.00726.x
Canham, C. A., Froend, R. H., & Stock, W. D. (2009). Water stress
vulnerability of four Banksia species in contrasting ecohydrological
habitats on the Gnangara Mound, Western Australia. Plant, Cell &
Environment, 32 (1), 64-72. doi:10.1111/j.1365-3040.2008.01904.x
Carter, J. L., & White, D. A. (2009). Plasticity in the Huber value
contributes to homeostasis in leaf water relations of a mallee Eucalypt
with variation to groundwater depth. Tree Physiology, 29 (11),
1407-1418. doi:10.1093/treephys/tpp076
Cater, M. (2011). Osmotic adaptation of Quercus robur L. under water
stress in stands with different tree density - relation with groundwater
table. Dendrobiology, 65 , 29-36.
Challis, A., Stevens, J. C., McGrath, G., & Miller, B. P. (2016). Plant
and environmental factors associated with drought-induced mortality in
two facultative phreatophytic trees. Plant and Soil, 404 (1-2),
157-172. doi:10.1007/s11104-016-2793-5
Chen, L.-Y., Shi, D.-Q., Zhang, W.-J., Tang, Z.-S., Liu, J., & Yang,
W.-C. (2015). The Arabidopsis alkaline ceramidase TOD1 is a key turgor
pressure regulator in plant cells. Nature Communications, 6 .
doi:10.1038/ncomms7030
Cooper, D. J., Sanderson, J. S., Stannard, D. I., & Groeneveld, D. P.
(2006). Effects of long-term water table drawdown on evapotranspiration
and vegetation in an arid region phreatophyte community. Journal
of Hydrology, 325 (1-4), 21-34. doi:10.1016/j.jhydrol.2005.09.035
Cushman, J. C. (2001). Osmoregulation in plants: Implications for
agriculture. American Zoologist, 41 (4), 758-769.
doi:10.1668/0003-1569(2001)041[0758:oipifa]2.0.co;2
Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., & Huete,
A. (2015). Groundwater-dependent ecosystems: recent insights from
satellite and field-based studies. Hydrology and Earth System
Sciences, 19 (10), 4229-4256. doi:10.5194/hess-19-4229-2015
Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global Patterns of
Groundwater Table Depth. Science, 339 (6122), 940-943.
doi:10.1126/science.1229881
Fernandez, R. J., & Reynolds, J. F. (2000). Potential growth and
drought tolerance of eight desert grasses: lack of a trade-off?Oecologia, 123 (1), 90-98. doi:10.1007/s004420050993
Froend, R., & Sommer, B. (2010). Phreatophytic vegetation response to
climatic and abstraction-induced groundwater drawdown: Examples of
long-term spatial and temporal variability in community response.Ecological Engineering, 36 (9), 1191-1200.
doi:https://doi.org/10.1016/j.ecoleng.2009.11.029
Garrido, M., Bown, H., Ayamante, J., Orell, M., Sanchez, A., & Acevedo,
E. (2020). The adjustment of Prosopis tamarugo hydraulic architecture
traits has a homeostatic effect over its performance under descent of
phreatic level in the Atacama Desert. Trees-Structure and
Function, 34 (1), 89-99. doi:10.1007/s00468-019-01899-2
Gebre, G. M., Tschaplinski, T. J., Tuskan, G. A., & Todd, D. E. (1998).
Clonal and seasonal differences in leaf osmotic potential and organic
solutes of five hybrid poplar clones grown under field conditions.Tree Physiology, 18 (10), 645-652.
Glazer, A. N., & Likens, G. E. (2012). The Water Table: The Shifting
Foundation of Life on Land. Ambio, 41 (7), 657-669.
doi:10.1007/s13280-012-0328-8
Gong, X.-W., Lu, G.-H., He, X.-M., Sarkar, B., & Yang, X.-D. (2019).
High Air Humidity Causes Atmospheric Water Absorption via Assimilating
Branches in the Deep-Rooted Tree Haloxylon ammodendron in an Arid Desert
Region of Northwest China. Frontiers in Plant Science, 10 .
doi:10.3389/fpls.2019.00573
Gries, D., Zeng, F., Foetzki, A., Arndt, S. K., Bruelheide, H., Thomas,
F. M., . . . Runge, M. (2003). Growth and water relations of Tamarix
ramosissima and Populus euphratica on Taklamakan desert dunes in
relation to depth to a permanent water table. Plant Cell and
Environment, 26 (5), 725-736. doi:10.1046/j.1365-3040.2003.01009.x
Griffith, S. J., Rutherford, S., Clarke, K. L., & Warwick, N. W. M.
(2015). Water relations of wallum species in contrasting groundwater
habitats of Pleistocene beach ridge barriers on the lower north coast of
New South Wales, Australia. Australian Journal of Botany, 63 (7),
618-630. doi:10.1071/bt15103
Hong, Z. L., Lakkineni, K., Zhang, Z. M., & Verma, D. P. S. (2000).
Removal of feedback inhibition of Delta(1)-pyrroline-5-carboxylate
synthetase results in increased proline accumulation and protection of
plants from osmotic stress. Plant Physiology, 122 (4), 1129-1136.
doi:10.1104/pp.122.4.1129
Huang, F., Zhang, D., & Chen, X. (2019). Vegetation Response to
Groundwater Variation in Arid Environments: Visualization of Research
Evolution, Synthesis of Response Types, and Estimation of Groundwater
Threshold. International Journal of Environmental Research and
Public Health, 16 (10). doi:10.3390/ijerph16101849
Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated
dryland expansion under climate change. Nature Climate Change,
6 (2), 166-+. doi:10.1038/nclimate2837
Hubbard, R. M., Ryan, M. G., Stiller, V., & Sperry, J. S. (2001).
Stomatal conductance and photosynthesis vary linearly with plant
hydraulic conductance in ponderosa pine. Plant Cell and
Environment, 24 (1), 113-121. doi:10.1046/j.1365-3040.2001.00660.x
Hultine, K. R., Froend, R., Blasini, D., Bush, S. E., Karlinski, M., &
Koepke, D. F. (2020). Hydraulic traits that buffer deep-rooted plants
from changes in hydrology and climate. Hydrological Processes,
34 (2), 209-222. doi:10.1002/hyp.13587
Kang, J., Duan, J., Wang, S., Zhao, M., & Yang, Z. (2013). Na compound
fertilizer promotes growth and enhances drought resistance of the
succulent xerophyte Haloxylon ammodendron. Soil Science and Plant
Nutrition, 59 (2), 289-299. doi:10.1080/00380768.2012.763183
Kroeger, J. H., Zerzour, R., & Geitmann, A. (2011). Regulator or
Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell
Growth. Plos One, 6 (4), e18549. doi:10.1371/journal.pone.0018549
Leuschner, C., Wedde, P., & Luebbe, T. (2019). The relation between
pressure-volume curve traits and stomatal regulation of water potential
in five temperate broadleaf tree species. Annals of Forest
Science, 76 (2). doi:10.1007/s13595-019-0838-7
Li, E., Tong, Y., Huang, Y., Li, X., Wang, P., Chen, H., & Yang, C.
(2019). Responses of two desert riparian species to fluctuating
groundwater depths in hyperarid areas of Northwest China.Ecohydrology, 12 (3), e2078. doi:10.1002/eco.2078
Li, J., Yu, B., Zhao, C., Nowak, R. S., Zhao, Z., Sheng, Y., & Li, J.
(2013). Physiological and morphological responses of Tamarix ramosissima
and Populus euphratica to altered groundwater availability. Tree
Physiology, 33 (1), 57-68. doi:10.1093/treephys/tps120
Lu, X.-P., Gao, H.-J., Zhang, L., Wang, Y.-P., Shao, K.-Z., Zhao, Q., &
Zhang, J.-L. (2019). Dynamic responses of Haloxylon ammodendron to
various degrees of simulated drought stress. Plant Physiology and
Biochemistry, 139 , 121-131. doi:10.1016/j.plaphy.2019.03.019
Lucani, C. J., Brodribb, T. J., Jordan, G., & Mitchell, P. J. (2019).
Intraspecific variation in drought susceptibility in Eucalyptus globulus
is linked to differences in leaf vulnerability. Functional Plant
Biology, 46 (3), 286-293. doi:10.1071/fp18077
Magnani, F., Grace, J., & Borghetti, M. (2002). Adjustment of tree
structure in response to the environment under hydraulic constraints.Functional Ecology, 16 (3), 385-393.
doi:10.1046/j.1365-2435.2002.00630.x
Nolan, R. H., Tarin, T., Santini, N. S., McAdam, S. A. M., Ruman, R., &
Eamus, D. (2017). Differences in osmotic adjustment, foliar abscisic
acid dynamics, and stomatal regulation between an isohydric and
anisohydric woody angiosperm during drought. Plant, Cell &
Environment, 40 (12), 3122-3134. doi:10.1111/pce.13077
O’Brien, M. J., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt,
B., Jansen, S., . . . Macinnis-Ng, C. (2017). A synthesis of tree
functional traits related to drought-induced mortality in forests across
climatic zones. Journal of Applied Ecology, 54 (6), 1669-1686.
doi:https://doi.org/10.1111/1365-2664.12874
Ogburn, R. M., & Edwards, E. J. (2010). The Ecological Water-Use
Strategies of Succulent Plants. In J. C. Kader & M. Delseny (Eds.),Advances in Botanical Research, Vol 55 (Vol. 55, pp. 179-225).
Orellana, F., Verma, P., Loheide, S. P., II, & Daly, E. (2012).
MONITORING AND MODELING WATER-VEGETATION INTERACTIONS IN
GROUNDWATER-DEPENDENT ECOSYSTEMS. Reviews of Geophysics, 50 .
doi:10.1029/2011rg000383
Pan, Y., Chen, Y., Chen, Y., Wang, R., & Ren, Z. (2016). Impact of
groundwater depth on leaf hydraulic properties and drought vulnerability
of Populus euphratica in the Northwest of China. Trees, 30 (6),
2029-2039. doi:10.1007/s00468-016-1430-5
Passioura, J. B., & Fry, S. C. (1992). TURGOR AND CELL EXPANSION -
BEYOND THE LOCKHART EQUATION. Australian Journal of Plant
Physiology, 19 (5), 565-576. doi:10.1071/pp9920565
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L.,
Mortimore, M., Batterbury, S. P. J., . . . Walker, B. (2007). Global
desertification: Building a science for dryland development.Science, 316(5826), 847-851. doi:10.1126/science.1131634
R Development Core Team, 2016. R: A Language and Environment for
Statistical Computing. R Found. Stat. Comput. Vienna, Austria.
doi:10.1038/sj.hdy.6800737.
Rosado, B. H. P., Joly, C. A., Burgess, S. S. O., Oliveira, R. S., &
Aidar, M. P. M. (2016). Changes in plant functional traits and water use
in Atlantic rainforest: evidence of conservative water use in
spatio-temporal scales. Trees, 30 (1), 47-61.
doi:10.1007/s00468-015-1165-8
Schreckenberg, K., Awono, A., Degrande, A., Mbosso, C., Ndoye, O., &
Tchoundjeu, Z. (2006). DOMESTICATING INDIGENOUS FRUIT TREES AS A
CONTRIBUTION TO POVERTY REDUCTION. Forests, Trees and Livelihoods,
16 (1), 35-51. doi:10.1080/14728028.2006.9752544
Schulte, P. J., & Hinckley, T. M. (1985). A COMPARISON OF
PRESSURE-VOLUME CURVE DATA-ANALYSIS TECHNIQUES. Journal of
Experimental Botany, 36 (171), 1590-1602. doi:10.1093/jxb/36.10.1590
Si, J., Feng, Q., Yu, T., Zhao, C., & Li, W. (2015). Variation in
Populus euphratica foliar carbon isotope composition and osmotic solute
for different groundwater depths in an arid region of China.Environmental Monitoring and Assessment, 187 (11).
doi:10.1007/s10661-015-4890-y
Sommer, B., & Froend, R. (2011). Resilience of phreatophytic vegetation
to groundwater drawdown: is recovery possible under a drying climate?Ecohydrology, 4 (1), 67-82. doi:doi:10.1002/eco.124
Song, H., Feng, G., Tian, C. Y., & Zhang, F. S. (2006). Osmotic
adjustment traits of Suaeda physophora, Haloxylon ammodendron and
Haloxylon persicum in field or controlled conditions. Plant
Science, 170 (1), 113-119. doi:10.1016/j.plantsci.2005.08.004
Taylor, R. G., Scanlon, B., Doell, P., Rodell, M., van Beek, R., Wada,
Y., . . . Treidel, H. (2013). Ground water and climate change.Nature Climate Change, 3 (4), 322-329. doi:10.1038/nclimate1744
Thomas, F. M. (2014). Ecology of Phreatophytes. In U. Lüttge, W.
Beyschlag, & J. Cushman (Eds.), Progress in Botany: Vol. 75 (pp.
335-375). Berlin, Heidelberg: Springer Berlin Heidelberg.
Thomas, F. M., Foetzki, A., Arndt, S. K., Bruelheide, H., Gries, D., Li,
X., . . . Runge, M. (2006). Water use by perennial plants in the
transition zone between river oasis and desert in NW China. Basic
and Applied Ecology, 7 (3), 253-267.
doi:https://doi.org/10.1016/j.baae.2005.07.008
Tiemuerbieke, B., Min, X.-J., Zang, Y.-X., Xing, P., Ma, J.-Y., & Sun,
W. (2018). Water use patterns of co-occurring C-3 and C-4 shrubs in the
Gurbantonggut desert in northwestern China. Science of the Total
Environment, 634 , 341-354. doi:10.1016/j.scitotenv.2018.03.307
Tyree, M. T., & Ewers, F. W. (1991). THE HYDRAULIC ARCHITECTURE OF
TREES AND OTHER WOODY-PLANTS. New Phytologist, 119 (3), 345-360.
doi:10.1111/j.1469-8137.1991.tb00035.x
Tyree, M. T., & Hammel, H. T. (1972). The Measurement of the Turgor
Pressure and the Water Relations of Plants by the Pressure-bomb
Technique. Journal of Experimental Botany, 23 (1), 267-282.
doi:10.1093/jxb/23.1.267
Wu, X., Zheng, X.-J., Li, Y., & Xu, G.-Q. (2019). Varying responses of
two Haloxylon species to extreme drought and groundwater depth.Environmental and Experimental Botany, 158 , 63-72.
doi:10.1016/j.envexpbot.2018.11.014
Wu, X., Zheng, X.-J., Yin, X.-W., Yue, Y.-M., Liu, R., Xu, G.-Q., & Li,
Y. (2019). Seasonal variation in the groundwater dependency of two
dominant woody species in a desert region of Central Asia. Plant
and Soil . doi:10.1007/s11104-019-04251-2
Xu, G.-Q., McDowell, N. G., & Li, Y. (2016). A possible link between
life and death of a xeric tree in desert. Journal of Plant
Physiology, 194 , 35-44. doi:https://doi.org/10.1016/j.jplph.2016.02.014
Xu, G.-Q., Yu, D.-D., & Li, Y. (2017). Patterns of biomass allocation
in Haloxylon persicum woodlands and their understory herbaceous layer
along a groundwater depth gradient. Forest Ecology and Management,
395 , 37-47. doi:10.1016/j.foreco.2017.03.037
Xu, G. Q., & Li, Y. (2008). Rooting depth and leaf hydraulic
conductance in the xeric tree Haloxyolon ammodendron growing at sites of
contrasting soil texture. Functional Plant Biology, 35 (12),
1234-1242. doi:10.1071/fp08175
Xu, H., Li, Y., Xu, G., & Zou, T. (2007). Ecophysiological response and
morphological adjustment of two Central Asian desert shrubs towards
variation in summer precipitation. Plant Cell and Environment,
30 (4), 399-409. doi:10.1111/j.1365-3040.2006.001626.x
Yang, Z., Li, W., Li, X., & He, J. (2019). Quantitative analysis of the
relationship between vegetation and groundwater buried depth: A case
study of a coal mine district in Western China. Ecological
Indicators, 102 , 770-782.
doi:https://doi.org/10.1016/j.ecolind.2019.03.027
Yin, L., Zhou, Y., Ge, S., Wen, D., Zhang, E., & Dong, J. (2013).
Comparison and modification of methods for estimating evapotranspiration
using diurnal groundwater level fluctuations in arid and semiarid
regions. Journal of Hydrology, 496 , 9-16.
doi:https://doi.org/10.1016/j.jhydrol.2013.05.016
Yin, L., Zhou, Y., Huang, J., Wenninger, J., Zhang, E., Hou, G., &
Dong, J. (2015). Interaction between groundwater and trees in an arid
site: Potential impacts of climate variation and groundwater abstraction
on trees. Journal of Hydrology, 528 , 435-448.
doi:10.1016/j.jhydrol.2015.06.063
Zeppel, M., & Eamus, D. (2008). Coordination of leaf area, sapwood area
and canopy conductance leads to species convergence of tree water use in
a remnant evergreen woodland. Australian Journal of Botany,
56 (2), 97-108. doi:10.1071/bt07091
Zheng, X.-J., Xu, G.-Q., Li, Y., & Wu, X. (2019). Deepening Rooting
Depths Improve Plant Water and Carbon Status of a Xeric Tree during
Summer Drought. Forests, 10 (7). doi:10.3390/f10070592
Zhou, H.-F., Zheng, X.-J., Zhou, B., Dai, Q., & Li, Y. (2012).
Sublimation over seasonal snowpack at the southeastern edge of a desert
in central Eurasia. Hydrological Processes, 26 (25), 3911-3920.
doi:10.1002/hyp.8402
Zhou, H., Zhao, W., & Zhang, G. (2017). Varying water utilization of
Haloxylon ammodendron plantations in a desert-oasis ecotone.Hydrological Processes, 31 (4), 825-835. doi:10.1002/hyp.11060
Zhu, S.-D., Chen, Y.-J., Ye, Q., He, P.-C., Liu, H., Li, R.-H., . . .
Cao, K.-F. (2018). Leaf turgor loss point is correlated with drought
tolerance and leaf carbon economics traits. Tree Physiology,
38 (5), 658-663. doi:10.1093/treephys/tpy013
Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., & Eamus, D. (2015).
Co-ordination among leaf water relations and xylem vulnerability to
embolism of Eucalyptus trees growing along a depth-to-groundwater
gradient. Tree Physiology, 35 (7), 732-743.
doi:10.1093/treephys/tpv039
Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., Zeppel, M., Rumman,
R., & Eamus, D. (2014). The influence of depth-to-groundwater on
structure and productivity of Eucalyptus woodlands. Australian
Journal of Botany, 62 (5), 428-437. doi:10.1071/bt14139
Zolfaghar, S., Villalobos-Vega, R., Zeppel, M., & Eamus, D. (2015). The
hydraulic architecture of Eucalyptus trees growing across a gradient of
depth-to-groundwater. Functional Plant Biology, 42 (9), 888-898.
doi:10.1071/fp14324