References
Abraham, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for Determination of Proline in Plants. In R. Sunkar (Ed.),Plant Stress Tolerance: Methods and Protocols (Vol. 639, pp. 317-331).
Addington, R. N., Donovan, L. A., Mitchell, R. J., Vose, J. M., Pecot, S. D., Jack, S. B., . . . Oren, R. (2006). Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant, Cell & Environment, 29 (4), 535-545. doi:10.1111/j.1365-3040.2005.01430.x
Anderegg, W. R. L., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D. L., & Field, C. B. (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109 (1), 233-237. doi:10.1073/pnas.1107891109
Antunes, C., Chozas, S., West, J., Zunzunegui, M., Diaz Barradas, M. C., Vieira, S., & Máguas, C. (2018). Groundwater drawdown drives ecophysiological adjustments of woody vegetation in a semi-arid coastal ecosystem. Global Change Biology, 24 (10), 4894-4908. doi:doi:10.1111/gcb.14403
Antunes, C., Díaz Barradas, M. C., Zunzunegui, M., Vieira, S., Pereira, Â., Anjos, A., . . . Máguas, C. (2018). Contrasting plant water-use responses to groundwater depth in coastal dune ecosystems.Functional Ecology, 32 (8), 1931-1943. doi:doi:10.1111/1365-2435.13110
Arndt, S. K., Irawan, A., & Sanders, G. J. (2015). Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves. Physiologia Plantarum, 155 (4), 355-368. doi:10.1111/ppl.12380
Ashraf, B., AghaKouchak, A., Alizadeh, A., Baygi, M. M., Moftakhari, H. R., Mirchi, A., . . . Madani, K. (2017). Quantifying Anthropogenic Stress on Groundwater Resources. Scientific Reports, 7 . doi:10.1038/s41598-017-12877-4
Awad, H., Barigah, T., Badel, E., Cochard, H., & Herbette, S. (2010). Poplar vulnerability to xylem cavitation acclimates to drier soil conditions. Physiologia Plantarum, 139 (3), 280-288. doi:10.1111/j.1399-3054.2010.01367.x
Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15 (5), 393-405. doi:10.1111/j.1461-0248.2012.01751.x
Bartlett, M. K., Zhang, Y., Kreidler, N., Sun, S., Ardy, R., Cao, K., & Sack, L. (2014). Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters, 17 (12), 1580-1590. doi:10.1111/ele.12374
Bates D., Maechler M., Bolker B., Walker S., Christensen R. H. B., Singmann H., et al. (2014). Package ‘lme4’. Vienna: R Foundation for Statistical Computing
Burgess, S. S. O. (2006). Facing the challenge of seasonally dry environments. Physiologia Plantarum, 127 (3), 339-342. doi:10.1111/j.1399-3054.2006.00726.x
Canham, C. A., Froend, R. H., & Stock, W. D. (2009). Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound, Western Australia. Plant, Cell & Environment, 32 (1), 64-72. doi:10.1111/j.1365-3040.2008.01904.x
Carter, J. L., & White, D. A. (2009). Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiology, 29 (11), 1407-1418. doi:10.1093/treephys/tpp076
Cater, M. (2011). Osmotic adaptation of Quercus robur L. under water stress in stands with different tree density - relation with groundwater table. Dendrobiology, 65 , 29-36.
Challis, A., Stevens, J. C., McGrath, G., & Miller, B. P. (2016). Plant and environmental factors associated with drought-induced mortality in two facultative phreatophytic trees. Plant and Soil, 404 (1-2), 157-172. doi:10.1007/s11104-016-2793-5
Chen, L.-Y., Shi, D.-Q., Zhang, W.-J., Tang, Z.-S., Liu, J., & Yang, W.-C. (2015). The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nature Communications, 6 . doi:10.1038/ncomms7030
Cooper, D. J., Sanderson, J. S., Stannard, D. I., & Groeneveld, D. P. (2006). Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community. Journal of Hydrology, 325 (1-4), 21-34. doi:10.1016/j.jhydrol.2005.09.035
Cushman, J. C. (2001). Osmoregulation in plants: Implications for agriculture. American Zoologist, 41 (4), 758-769. doi:10.1668/0003-1569(2001)041[0758:oipifa]2.0.co;2
Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., & Huete, A. (2015). Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrology and Earth System Sciences, 19 (10), 4229-4256. doi:10.5194/hess-19-4229-2015
Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global Patterns of Groundwater Table Depth. Science, 339 (6122), 940-943. doi:10.1126/science.1229881
Fernandez, R. J., & Reynolds, J. F. (2000). Potential growth and drought tolerance of eight desert grasses: lack of a trade-off?Oecologia, 123 (1), 90-98. doi:10.1007/s004420050993
Froend, R., & Sommer, B. (2010). Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: Examples of long-term spatial and temporal variability in community response.Ecological Engineering, 36 (9), 1191-1200. doi:https://doi.org/10.1016/j.ecoleng.2009.11.029
Garrido, M., Bown, H., Ayamante, J., Orell, M., Sanchez, A., & Acevedo, E. (2020). The adjustment of Prosopis tamarugo hydraulic architecture traits has a homeostatic effect over its performance under descent of phreatic level in the Atacama Desert. Trees-Structure and Function, 34 (1), 89-99. doi:10.1007/s00468-019-01899-2
Gebre, G. M., Tschaplinski, T. J., Tuskan, G. A., & Todd, D. E. (1998). Clonal and seasonal differences in leaf osmotic potential and organic solutes of five hybrid poplar clones grown under field conditions.Tree Physiology, 18 (10), 645-652.
Glazer, A. N., & Likens, G. E. (2012). The Water Table: The Shifting Foundation of Life on Land. Ambio, 41 (7), 657-669. doi:10.1007/s13280-012-0328-8
Gong, X.-W., Lu, G.-H., He, X.-M., Sarkar, B., & Yang, X.-D. (2019). High Air Humidity Causes Atmospheric Water Absorption via Assimilating Branches in the Deep-Rooted Tree Haloxylon ammodendron in an Arid Desert Region of Northwest China. Frontiers in Plant Science, 10 . doi:10.3389/fpls.2019.00573
Gries, D., Zeng, F., Foetzki, A., Arndt, S. K., Bruelheide, H., Thomas, F. M., . . . Runge, M. (2003). Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell and Environment, 26 (5), 725-736. doi:10.1046/j.1365-3040.2003.01009.x
Griffith, S. J., Rutherford, S., Clarke, K. L., & Warwick, N. W. M. (2015). Water relations of wallum species in contrasting groundwater habitats of Pleistocene beach ridge barriers on the lower north coast of New South Wales, Australia. Australian Journal of Botany, 63 (7), 618-630. doi:10.1071/bt15103
Hong, Z. L., Lakkineni, K., Zhang, Z. M., & Verma, D. P. S. (2000). Removal of feedback inhibition of Delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology, 122 (4), 1129-1136. doi:10.1104/pp.122.4.1129
Huang, F., Zhang, D., & Chen, X. (2019). Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold. International Journal of Environmental Research and Public Health, 16 (10). doi:10.3390/ijerph16101849
Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6 (2), 166-+. doi:10.1038/nclimate2837
Hubbard, R. M., Ryan, M. G., Stiller, V., & Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell and Environment, 24 (1), 113-121. doi:10.1046/j.1365-3040.2001.00660.x
Hultine, K. R., Froend, R., Blasini, D., Bush, S. E., Karlinski, M., & Koepke, D. F. (2020). Hydraulic traits that buffer deep-rooted plants from changes in hydrology and climate. Hydrological Processes, 34 (2), 209-222. doi:10.1002/hyp.13587
Kang, J., Duan, J., Wang, S., Zhao, M., & Yang, Z. (2013). Na compound fertilizer promotes growth and enhances drought resistance of the succulent xerophyte Haloxylon ammodendron. Soil Science and Plant Nutrition, 59 (2), 289-299. doi:10.1080/00380768.2012.763183
Kroeger, J. H., Zerzour, R., & Geitmann, A. (2011). Regulator or Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell Growth. Plos One, 6 (4), e18549. doi:10.1371/journal.pone.0018549
Leuschner, C., Wedde, P., & Luebbe, T. (2019). The relation between pressure-volume curve traits and stomatal regulation of water potential in five temperate broadleaf tree species. Annals of Forest Science, 76 (2). doi:10.1007/s13595-019-0838-7
Li, E., Tong, Y., Huang, Y., Li, X., Wang, P., Chen, H., & Yang, C. (2019). Responses of two desert riparian species to fluctuating groundwater depths in hyperarid areas of Northwest China.Ecohydrology, 12 (3), e2078. doi:10.1002/eco.2078
Li, J., Yu, B., Zhao, C., Nowak, R. S., Zhao, Z., Sheng, Y., & Li, J. (2013). Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability. Tree Physiology, 33 (1), 57-68. doi:10.1093/treephys/tps120
Lu, X.-P., Gao, H.-J., Zhang, L., Wang, Y.-P., Shao, K.-Z., Zhao, Q., & Zhang, J.-L. (2019). Dynamic responses of Haloxylon ammodendron to various degrees of simulated drought stress. Plant Physiology and Biochemistry, 139 , 121-131. doi:10.1016/j.plaphy.2019.03.019
Lucani, C. J., Brodribb, T. J., Jordan, G., & Mitchell, P. J. (2019). Intraspecific variation in drought susceptibility in Eucalyptus globulus is linked to differences in leaf vulnerability. Functional Plant Biology, 46 (3), 286-293. doi:10.1071/fp18077
Magnani, F., Grace, J., & Borghetti, M. (2002). Adjustment of tree structure in response to the environment under hydraulic constraints.Functional Ecology, 16 (3), 385-393. doi:10.1046/j.1365-2435.2002.00630.x
Nolan, R. H., Tarin, T., Santini, N. S., McAdam, S. A. M., Ruman, R., & Eamus, D. (2017). Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Plant, Cell & Environment, 40 (12), 3122-3134. doi:10.1111/pce.13077
O’Brien, M. J., Engelbrecht, B. M. J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., . . . Macinnis-Ng, C. (2017). A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. Journal of Applied Ecology, 54 (6), 1669-1686. doi:https://doi.org/10.1111/1365-2664.12874
Ogburn, R. M., & Edwards, E. J. (2010). The Ecological Water-Use Strategies of Succulent Plants. In J. C. Kader & M. Delseny (Eds.),Advances in Botanical Research, Vol 55 (Vol. 55, pp. 179-225).
Orellana, F., Verma, P., Loheide, S. P., II, & Daly, E. (2012). MONITORING AND MODELING WATER-VEGETATION INTERACTIONS IN GROUNDWATER-DEPENDENT ECOSYSTEMS. Reviews of Geophysics, 50 . doi:10.1029/2011rg000383
Pan, Y., Chen, Y., Chen, Y., Wang, R., & Ren, Z. (2016). Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the Northwest of China. Trees, 30 (6), 2029-2039. doi:10.1007/s00468-016-1430-5
Passioura, J. B., & Fry, S. C. (1992). TURGOR AND CELL EXPANSION - BEYOND THE LOCKHART EQUATION. Australian Journal of Plant Physiology, 19 (5), 565-576. doi:10.1071/pp9920565
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., . . . Walker, B. (2007). Global desertification: Building a science for dryland development.Science, 316(5826), 847-851. doi:10.1126/science.1131634
R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria. doi:10.1038/sj.hdy.6800737.
Rosado, B. H. P., Joly, C. A., Burgess, S. S. O., Oliveira, R. S., & Aidar, M. P. M. (2016). Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees, 30 (1), 47-61. doi:10.1007/s00468-015-1165-8
Schreckenberg, K., Awono, A., Degrande, A., Mbosso, C., Ndoye, O., & Tchoundjeu, Z. (2006). DOMESTICATING INDIGENOUS FRUIT TREES AS A CONTRIBUTION TO POVERTY REDUCTION. Forests, Trees and Livelihoods, 16 (1), 35-51. doi:10.1080/14728028.2006.9752544
Schulte, P. J., & Hinckley, T. M. (1985). A COMPARISON OF PRESSURE-VOLUME CURVE DATA-ANALYSIS TECHNIQUES. Journal of Experimental Botany, 36 (171), 1590-1602. doi:10.1093/jxb/36.10.1590
Si, J., Feng, Q., Yu, T., Zhao, C., & Li, W. (2015). Variation in Populus euphratica foliar carbon isotope composition and osmotic solute for different groundwater depths in an arid region of China.Environmental Monitoring and Assessment, 187 (11). doi:10.1007/s10661-015-4890-y
Sommer, B., & Froend, R. (2011). Resilience of phreatophytic vegetation to groundwater drawdown: is recovery possible under a drying climate?Ecohydrology, 4 (1), 67-82. doi:doi:10.1002/eco.124
Song, H., Feng, G., Tian, C. Y., & Zhang, F. S. (2006). Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Science, 170 (1), 113-119. doi:10.1016/j.plantsci.2005.08.004
Taylor, R. G., Scanlon, B., Doell, P., Rodell, M., van Beek, R., Wada, Y., . . . Treidel, H. (2013). Ground water and climate change.Nature Climate Change, 3 (4), 322-329. doi:10.1038/nclimate1744
Thomas, F. M. (2014). Ecology of Phreatophytes. In U. Lüttge, W. Beyschlag, & J. Cushman (Eds.), Progress in Botany: Vol. 75 (pp. 335-375). Berlin, Heidelberg: Springer Berlin Heidelberg.
Thomas, F. M., Foetzki, A., Arndt, S. K., Bruelheide, H., Gries, D., Li, X., . . . Runge, M. (2006). Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic and Applied Ecology, 7 (3), 253-267. doi:https://doi.org/10.1016/j.baae.2005.07.008
Tiemuerbieke, B., Min, X.-J., Zang, Y.-X., Xing, P., Ma, J.-Y., & Sun, W. (2018). Water use patterns of co-occurring C-3 and C-4 shrubs in the Gurbantonggut desert in northwestern China. Science of the Total Environment, 634 , 341-354. doi:10.1016/j.scitotenv.2018.03.307
Tyree, M. T., & Ewers, F. W. (1991). THE HYDRAULIC ARCHITECTURE OF TREES AND OTHER WOODY-PLANTS. New Phytologist, 119 (3), 345-360. doi:10.1111/j.1469-8137.1991.tb00035.x
Tyree, M. T., & Hammel, H. T. (1972). The Measurement of the Turgor Pressure and the Water Relations of Plants by the Pressure-bomb Technique. Journal of Experimental Botany, 23 (1), 267-282. doi:10.1093/jxb/23.1.267
Wu, X., Zheng, X.-J., Li, Y., & Xu, G.-Q. (2019). Varying responses of two Haloxylon species to extreme drought and groundwater depth.Environmental and Experimental Botany, 158 , 63-72. doi:10.1016/j.envexpbot.2018.11.014
Wu, X., Zheng, X.-J., Yin, X.-W., Yue, Y.-M., Liu, R., Xu, G.-Q., & Li, Y. (2019). Seasonal variation in the groundwater dependency of two dominant woody species in a desert region of Central Asia. Plant and Soil . doi:10.1007/s11104-019-04251-2
Xu, G.-Q., McDowell, N. G., & Li, Y. (2016). A possible link between life and death of a xeric tree in desert. Journal of Plant Physiology, 194 , 35-44. doi:https://doi.org/10.1016/j.jplph.2016.02.014
Xu, G.-Q., Yu, D.-D., & Li, Y. (2017). Patterns of biomass allocation in Haloxylon persicum woodlands and their understory herbaceous layer along a groundwater depth gradient. Forest Ecology and Management, 395 , 37-47. doi:10.1016/j.foreco.2017.03.037
Xu, G. Q., & Li, Y. (2008). Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture. Functional Plant Biology, 35 (12), 1234-1242. doi:10.1071/fp08175
Xu, H., Li, Y., Xu, G., & Zou, T. (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell and Environment, 30 (4), 399-409. doi:10.1111/j.1365-3040.2006.001626.x
Yang, Z., Li, W., Li, X., & He, J. (2019). Quantitative analysis of the relationship between vegetation and groundwater buried depth: A case study of a coal mine district in Western China. Ecological Indicators, 102 , 770-782. doi:https://doi.org/10.1016/j.ecolind.2019.03.027
Yin, L., Zhou, Y., Ge, S., Wen, D., Zhang, E., & Dong, J. (2013). Comparison and modification of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in arid and semiarid regions. Journal of Hydrology, 496 , 9-16. doi:https://doi.org/10.1016/j.jhydrol.2013.05.016
Yin, L., Zhou, Y., Huang, J., Wenninger, J., Zhang, E., Hou, G., & Dong, J. (2015). Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees. Journal of Hydrology, 528 , 435-448. doi:10.1016/j.jhydrol.2015.06.063
Zeppel, M., & Eamus, D. (2008). Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland. Australian Journal of Botany, 56 (2), 97-108. doi:10.1071/bt07091
Zheng, X.-J., Xu, G.-Q., Li, Y., & Wu, X. (2019). Deepening Rooting Depths Improve Plant Water and Carbon Status of a Xeric Tree during Summer Drought. Forests, 10 (7). doi:10.3390/f10070592
Zhou, H.-F., Zheng, X.-J., Zhou, B., Dai, Q., & Li, Y. (2012). Sublimation over seasonal snowpack at the southeastern edge of a desert in central Eurasia. Hydrological Processes, 26 (25), 3911-3920. doi:10.1002/hyp.8402
Zhou, H., Zhao, W., & Zhang, G. (2017). Varying water utilization of Haloxylon ammodendron plantations in a desert-oasis ecotone.Hydrological Processes, 31 (4), 825-835. doi:10.1002/hyp.11060
Zhu, S.-D., Chen, Y.-J., Ye, Q., He, P.-C., Liu, H., Li, R.-H., . . . Cao, K.-F. (2018). Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology, 38 (5), 658-663. doi:10.1093/treephys/tpy013
Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., & Eamus, D. (2015). Co-ordination among leaf water relations and xylem vulnerability to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient. Tree Physiology, 35 (7), 732-743. doi:10.1093/treephys/tpv039
Zolfaghar, S., Villalobos-Vega, R., Cleverly, J., Zeppel, M., Rumman, R., & Eamus, D. (2014). The influence of depth-to-groundwater on structure and productivity of Eucalyptus woodlands. Australian Journal of Botany, 62 (5), 428-437. doi:10.1071/bt14139
Zolfaghar, S., Villalobos-Vega, R., Zeppel, M., & Eamus, D. (2015). The hydraulic architecture of Eucalyptus trees growing across a gradient of depth-to-groundwater. Functional Plant Biology, 42 (9), 888-898. doi:10.1071/fp14324