Reference:
[1] Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.;
Smalley, R. E. Nature 1985, 318, 162-163.
[2] Buntar, V.; Weber, H. W. Superconductor Science and Technology
1996, 9, 599-615.
[3] Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S. E. Science
2010, 329, 1180.
[4] Campbell, E. K.; Holz, M.; Gerlich, D.; Maier, J. P. Nature
2015, 523, 322-323.
[5] Deibel, C.; Dyakonov, V. Reports on Progress in Physics 2010,
73, 096401.
[6] Foing, B. H.; Ehrenfreund, P. Nature 1994, 369, 296-298.
[7] Fulara, J.; Jakobi, M.; Maier, J. P. Chemical Physics Letters
1993, 211, 227-234.
[8] Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M.
Materials Today 2017, 20, 460-480.
[9] Speltini, A.; Merli, D.; Profumo, A. Analytica Chimica Acta
2013, 783, 1-16.
[10] Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V.
V.; Vorotyntsev, I. V.; Galagudza, M. M.; Murin, I. V. Progress in Solid
State Chemistry 2016, 44, 59-74.
[11] Diniakhmetova, D. R.; Friesen, A. K.; Kolesov, S. V. 2020, 120,
e26335.
[12] Billups, W. E. Journal of the American Chemical Society 2005,
127, 11876-11876.
[13] Lin, H.-S.; Matsuo, Y. Chemical Communications 2018, 54,
11244-11259.
[14] Martín, N. Chemical Communications 2006, 2093-2104.
[15] Thilgen, C.; Diederich, F. Chemical Reviews 2006, 106,
5049-5135.
[16] He, Y.; Li, Y. Physical Chemistry Chemical Physics 2011, 13,
1970-1983.
[17] Bolskar, R. D. Nanomedicine 2008, 3, 201-213.
[18] Wang, T.; Wang, C. 2019, 15, 1901522.
[19] Hatzimarinaki, M.; Vassilikogiannakis, G.; Orfanopoulos, M.
Tetrahedron Letters 2000, 41, 4667-4670.
[20] Pla, P.; Wang, Y.; Alcamí, M. Physical Chemistry Chemical
Physics 2020, 22, 8846-8852.
[21] Śliwa, W. Fullerene Science and Technology 1997, 5, 1133-1175.
[22] Vassilikogiannakis, G.; Hatzimarinaki, M.; Orfanopoulos, M. The
Journal of Organic Chemistry 2000, 65, 8180-8187.
[23] Vassilikogiannakis, G.; Orfanopoulos, M. Journal of the
American Chemical Society 1997, 119, 7394-7395.
[24] Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.;
Miyata, Y.; Kitaura, R.; Shinohara, H.; Okada, H.; Sakai, T.; Ono, Y.;
Kawachi, K.; Yokoo, K.; Ono, S.; Omote, K.; Kasama, Y.; Ishikawa, S.;
Komuro, T.; Tobita, H. Nature Chemistry 2010, 2, 678-683.
[25] Vidal, S.; Izquierdo, M.; Alom, S.; Garcia-Borràs, M.;
Filippone, S.; Osuna, S.; Solà, M.; Whitby, R. J.; Martín, N. Chemical
Communications 2017, 53, 10993-10996.
[26] Maroto, E. E.; Mateos, J.; Garcia-Borràs, M.; Osuna, S.;
Filippone, S.; Herranz, M. Á.; Murata, Y.; Solà, M.; Martín, N. Journal
of the American Chemical Society 2015, 137, 1190-1197.
[27] Bologna, F.; Mattioli, E. J.; Bottoni, A.; Zerbetto, F.;
Calvaresi, M. ACS Omega 2018, 3, 13782-13789.
[28] Camacho Gonzalez, J.; Mondal, S.; Ocayo, F.; Guajardo-Maturana,
R.; Muñoz-Castro, A. 2020, 120, e26080.
[29] Kroto, H. W. Nature 1987, 329, 529-531.
[30] Kawakami, H.; Okada, H.; Matsuo, Y. Organic Letters 2013, 15,
4466-4469.
[31] Ueno, H.; Kawakami, H.; Nakagawa, K.; Okada, H.; Ikuma, N.;
Aoyagi, S.; Kokubo, K.; Matsuo, Y.; Oshima, T. Journal of the American
Chemical Society 2014, 136, 11162-11167.
[32] Tran, C.; Sakai, H.; Kawashima, Y.; Ohkubo, K.; Fukuzumi, S.;
Murata, H. Organic Electronics 2017, 45.
[33] Supur, M.; Kawashima, Y.; Ohkubo, K.; Sakai, H.; Hasobe, T.;
Fukuzumi, S. Physical Chemistry Chemical Physics 2015, 17, 15732-15738.
[34] Ohkubo, K.; Kawashima, Y.; Sakai, H.; Hasobe, T.; Fukuzumi, S.
Chemical Communications 2013, 49, 4474-4476.
[35] Fukuzumi, S.; Ohkubo, K. Dalton Transactions 2013, 42,
15846-15858.
[36] Karimi, J.; Izadyar, M.; Nakhaeipour, A. Structural Chemistry
2020, 31, 1821-1829.
[37] Lu, X.; Bao, L.; Akasaka, T.; Nagase, S. Chemical
Communications 2014, 50, 14701-14715.
[38] Aoyagi, S.; Sado, Y.; Nishibori, E.; Sawa, H.; Okada, H.;
Tobita, H.; Kasama, Y.; Kitaura, R.; Shinohara, H. 2012, 51, 3377-3381.
[39] Aoyagi, S.; Tokumitu, A.; Sugimoto, K.; Okada, H.; Hoshino, N.;
Akutagawa, T. Journal of the Physical Society of Japan 2016, 85, 094605.
[40] Ueno, H.; Nishihara, T.; Segawa, Y.; Itami, K. 2015, 54,
3707-3711.
[41] Zhang, D.; Li, H.; Wang, H.; Li, L. 2016, 116, 1846-1850.
[42] Cui, C.-X.; Liu, Y.-J. The Journal of Physical Chemistry A
2015, 119, 3098-3106.
[43] García-Rodeja, Y.; Solà, M.; Bickelhaupt, F. M.; Fernández, I.
2017, 23, 11030-11036.
[44] Osuna, S.; Swart, M.; Solà, M. 2009, 15, 13111-13123.
[45] Wu, Y.; Jiang, Y.; Deng, J.; Wang, Z. Physical Chemistry
Chemical Physics 2020, 22, 24249-24256.
[46] Debnath, T.; Ash, T.; Saha, J. K.; Das, A. K. 2017, 2,
4039-4053.
[47] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Scalmani G, Barone V, Mennucci B, PeterssonGA, Nakatsuji
H, Caricato M, Li X, Hratchian HP,Izmaylov AF, Bloino J, Zheng G,
Sonnenberg JL, Hada M,Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida
M,Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T,Montgomery Jr JA,
Peralta JE, Ogliaro F, Bearpark MJ, Heyd J,Brothers EN, Kudin KN,
Staroverov VN, Kobayashi R,Normand J, Raghavachari K, Rendell AP, Burant
JC,Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M,Knox JE,
Cross JB, Bakken V, Adamo C, Jaramillo J,GompertsR Stratmann RE, Yazyev
O, Austin AJ, Cammi R,Pomelli C, Ochterski JW, Martin RL, Morokuma
K,Zakrzewski VG, VothGA, Salvador P, Dannenberg JJ,Dapprich S, Daniels
AD, Farkas \euroO, Foresman JB, Ortiz JV,Cioslowski J, Fox DJ.
Gaussian 09. Wallingford, CT: Revision D.01. Inc.; 2013.
[48] Zhao, Y.; Truhlar, D. G. Theoretical Chemistry Accounts 2008,
120, 215-241.
[49] Sato, S.; Maeda, Y.; Guo, J.-D.; Yamada, M.; Mizorogi, N.;
Nagase, S.; Akasaka, T. Journal of the American Chemical Society 2013,
135, 5582-5587.
[50] Peng, C.; Bernhard Schlegel, H. 1993, 33, 449-454.
[51] Gonzalez, C.; Schlegel, H. B. The Journal of Physical Chemistry
1990, 94, 5523-5527.
[52] Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. The Journal
of Physical Chemistry 1996, 100, 12771-12800.
[53] Evans, M. G.; Polanyi, M. Transactions of the Faraday Society
1935, 31, 875-894.
[54] Duncan, W. T.; Bell, R. L.; Truong, T. N. 1998, 19, 1039-1052.