References
1          Michener, C. D. The bees of the world.  (The Johns Hopkins University Press, 2007).
2          Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and Evolution of Communication in Social Insects. Cell 164, 1277-1287, doi:10.1016/j.cell.2016.01.035 (2016).
3          Schultner, E., Oettler, J. & Helantera, H. The Role of Brood in Eusocial Hymenoptera. Q Rev Biol 92, 39-78, doi:10.1086/690840 (2017).
4          Ronai, I., Vergoz, V. & Oldroyd, B. P. The Mechanistics, Genetic, and Evolutionary basis of Worker Sterility in the Social Hymenoptera in Advances in the Study of Behavior (eds M. Naguib et al.) 251-317 (Academic Press, 2016).
5          Slessor, K. N., Kaminski, L. A., King, G. G. S. & Winston, M. L. Semiochemicals of the honeybee queen mandibular glands. Journal of chemical ecology 16, 851-860, doi:10.1007/BF01016495 (1990).
6          Le Conte, Y., Arnold, G., Trouiller, J., Masson, C. & Chappe, B. Identification of a brood pheromone in honeybees. Naturwissenschaften 77, 334-336 (1990).
7          Visscher, P. K. Reproductive conflict in honey bees: a stalemate of worker egg-laying and policing. Behavioral ecology and sociobiology 39, 237-244, doi:10.1007/s002650050286 (1996).
8          Duchateau, M. J. & Velthuis, H. H. W. Development and reproductive strategies in Bombus terrestriscolonies. Behavior 107, 186-207 (1988).
9          Orlova, M., Treanore, E. D. & Amsalem, E. Built to change: dominance strategy changes with life stage in a primitively eusocial bee. Behavioral Ecology (2020).
10        Amsalem, E. & Hefetz, A. The effect of group size on the interplay between dominance and reproduction in Bombus terrestrisPLoS One 6, e18238, doi:10.1371/journal.pone.0018238 (2011).
11        Bloch, G. & Hefetz, A. Regulation of reproduction by dominant workers in bumblebee (Bombus terrestris) queenright colonies. Behavioral Ecology and Sociobiology 45, 125-135, doi:10.1007/s002650050546 (1999).
12        Roseler, P. F., Roseler, I. & Van-Honk, C. G. J. Evidence for inhibition of corpora allata activity in workers of Bombus terrestris by a pheromone from the queens mandibular glands. Experientia 37, 348-351 (1981).
13        Van-Honk, C. J. K., Roeseler, P. F., Velthuis, H. H. W. & Hogeveen, J. C. Factors influencing egg laying of workers in a captive Bombus terrestris colony. Behavioral Ecology and Sociobiology 9, 9-14 (1981).
14        Starkey, J., Brown, A. & Amsalem, E. The road to sociality: brood regulation of worker reproduction in the simple eusocial bee Bombus impatiensAnimal Behaviour 154, 57-65, doi:10.1016/j.anbehav.2019.06.004 (2019).
15        Rittschof, C. C. & Grozinger, C. M. Frenemies: the interplay between cooperation and conflict in the evolution and function of insect societies in Cooperation and conflict: The interaction of opposites in shaping social behavior (eds. Wilczynski, W. & Brosnan, S.F) (Cambridge University Press, 2021).
16        Ratnieks, F. L. W. Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. The American Naturalist 132, 217-236, doi:10.1086/284846 (1988).
17        Amsalem, E. One problem, many solutions: Female reproduction is regulated by chemically diverse pheromones across insects in Advances in Insect Physiology Vol. 59 (ed Russell Jurenka)  131-182 (Academic Press, 2020).
18        Ratnieks, F. L. W. & Visscher, P. K. Worker policing in the honeybee. Nature 342, 796-797, doi:10.1038/342796a0 (1989).
19        Boer, S. P. A. d. & Duchateau, M. J. H. M. A larval hunger signal in the bumblebee Bombus terrestrisInsectes Sociaux 53, 369-373, doi:10.1007/s00040-006-0883-8 (2006).
20        Le Conte, Y., Mohammedi, A. & Robinson, G. E. Primer effects of a brood pheromone on honeybee behavioural development. Proc Biol Sci 268, 163-168, doi:10.1098/rspb.2000.1345 (2001).
21        Beggs, K. T. et al. Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci U S A 104, 2460-2464, doi:10.1073/pnas.0608224104 (2007).
22        Ebie, J. D., Holldobler, B. & Liebig, J. Larval regulation of worker reproduction in the polydomous ant Novomessor cockerelliNaturwissenschaften 102, 72, doi:10.1007/s00114-015-1323-2 (2015).
23        Smith, A. A., Hölldobler, B. & Liebig, J. Queen-specific signals and worker punishment in the ant Aphaenogaster cockerelli: the role of the Dufour’s gland. Animal behaviour 83, 587-593, doi:10.1016/j.anbehav.2011.12.024 (2012).
24        Smith, A. A., Hölldobler, B. & Liebig, J. Hydrocarbon Signals Explain the Pattern of Worker and Egg Policing in the Ant Aphaenogaster cockerelliJournal of Chemical Ecology 34, 1275-1282, doi:10.1007/s10886-008-9529-9 (2008).
25        Shpigler, H. et al. Gonadotropic and physiological functions of juvenile hormone in Bumblebee (Bombus terrestris) workers. PLoS One 9, e100650, doi:10.1371/journal.pone.0100650 (2014).
26        Shpigler, H. et al. The transcription factor Kruppel homolog 1 is linked to hormone mediated social organization in bees. BMC Evol Biol 10, 120, doi:10.1186/1471-2148-10-120 (2010).
27        Orlova, M., Starkey, J. & Amsalem, E. A small family business: synergistic and additive effects of the queen and the brood on worker reproduction in a primitively eusocial bee. The Journal of Experimental Biology 223, jeb217547, doi:10.1242/jeb.217547 (2020).
28        Grozinger, C. M., Sharabash, N. M., Whitfield, C. W. & Robinson, G. E. Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci U S A 100 Suppl 2, 14519-14525, doi:10.1073/pnas.2335884100 (2003).
29        Fischer, P. & Grozinger, C. M. Pheromonal regulation of starvation resistance in honey bee workers (Apis mellifera). Naturwissenschaften 95, 723-729, doi:10.1007/s00114-008-0378-8 (2008).
30        Alaux, C. et al. Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav 8, 309-319, doi:10.1111/j.1601-183X.2009.00480.x (2009).
31        Amsalem, E., Grozinger, C. M., Padilla, M. & Hefetz, A. The Physiological and Genomic Bases of Bumble Bee Social Behavior in Genomics, Physiology and Behaviour of Social Insects Vol. 48 (eds Zayed Amro & F. Kent Clement) 37-93 (Academic Press, 2015).
32        Alaux, C., Jaisson, P. & Hefetz, A. Queen influence on worker reproduction in bumblebees (Bombus terrestris) colonies. Insectes Sociaux 51, 287-293, doi:10.1007/s00040-004-0741-5 (2004).
33        Padilla, M., Amsalem, E., Altman, N., Hefetz, A. & Grozinger, C. M. Chemical communication is not sufficient to explain reproductive inhibition in the bumblebee Bombus impatiensRoyal Society Open Science 3, 160576 (2016).
34        Amsalem, E. & Hefetz, A. The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. Behavioral ecology and sociobiology 64, 1685-1694, doi:10.1007/s00265-010-0982-4 (2010).
35        Starkey, J., Derstine, N. & Amsalem, E. Do bumble bees produce brood pheromone? Journal of chemical ecology 45, 725-734 (2019).
36        Amsalem, E. et al. Do Bumble Bee, Bombus impatiens, Queens Signal their Reproductive and Mating Status to their Workers? J Chem Ecol 43, 563-572, doi:10.1007/s10886-017-0858-4 (2017).
37        Cnaani, J., Schmid-Hempel, R. & Schmidt, J. O. Colony development, larval development and worker reproduction in Bombus impatiens CressonInsectes Sociaux 49, 164-170, doi:10.1007/s00040-002-8297-8 (2002).
38        Amsalem, E., Twele, R., Francke, W. & Hefetz, A. Reproductive competition in the bumble-bee Bombus terrestris: do workers advertise sterility? Proceedings of the Royal Society B: Biological Sciences 276, 1295-1304, doi:10.1098/rspb.2008.1688 (2009).
39        Andrews, S.  FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (2010).
40        Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047-3048, doi:10.1093/bioinformatics/btw354 (2016).
41        Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).
42        Sadd, B. M. et al. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 16, 76, doi:10.1186/s13059-015-0623-3 (2015).
43        Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
44        Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc Bioinformatics 12, 323, doi:10.1186/1471-2105-12-323 (2011).
45        Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521, doi:10.12688/f1000research.7563.2 (2015).
46        Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
47        Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).
48        Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 28, 882-883, doi:10.1093/bioinformatics/bts034 (2012).
49        Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483, doi:10.1186/s12859-016-1323-z (2016).
50        Kolde, R. & Kolde, M. R. Package ‘pheatmap’. R package 1, 790 (2015).
51        Libbrecht, R., Oxley, P. R. & Kronauer, D. J. C. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biol 16, 89, doi:10.1186/s12915-018-0558-8 (2018).
52        Ma, R., Rangel, J. & Grozinger, C. M. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genomics 20, 1-15 (2019).
53        Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13, 134, doi:10.1186/1471-2105-13-134 (2012).
54        Harrison, M. C., Hammond, R. L. & Mallon, E. B. Reproductive workers show queen-like gene expression in an intermediately eusocial insect, the buff-tailed bumble bee Bombus terrestris. Molecular Ecology 24, 3043-3063 (2014).
55        Grozinger, C. M., Fan, Y., Hoover, S. E. & Winston, M. L. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol Ecol 16, 4837-4848, doi:10.1111/j.1365-294X.2007.03545.x (2007).
56        Negroni, M. A., Macit, M. N., Stoldt, B. F., Feldmeyer, B. & Foitzik, S. Molecular regulation of lifespan extension in fertile ant workers. Philos T R Soc B 376 (2021).
57        Patalano, S. et al. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proceedings of the National Academy of Sciences 112, 13970, doi:10.1073/pnas.1515937112 (2015).
58        Badisco, L. et al. Neuroparsins, a family of conserved arthropod neuropeptides. General and Comparative Endocrinology 153, 64-71, doi:https://doi.org/10.1016/j.ygcen.2007.03.008 (2007).
59        Girardie, J., Boureme, D., Couillaud, F., Tamarelle, M. & Girardie, A. Anti-juvenile effect of neuroparsin A, a neuroprotein isolated from locust corpora cardiaca. Insect Biochemistry 17, 977-983, doi:https://doi.org/10.1016/0020-1790(87)90106-5 (1987).
60        Opachaloemphan, C. et al. Early behavioral and molecular events leading to caste switching in the ant HarpegnathosGenes & Development 35, 410-424 (2021).
61        Klowden, M. J. Reproductive System in Physiological Systems in Insects. 197-254 (Academic Press, 2013).
62        Amsalem, E., Malka, O., Grozinger, C. & Hefetz, A. Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. BMC evolutionary biology 14, 45, doi:10.1186/1471-2148-14-45 (2014).
63        Stanley, D. & Kim, Y. Insect prostaglandins and other eicosanoids: From molecular to physiological actions in Advances in Insect Physiology (eds. Jurenka, R.) 283-343 (Elsevier Ltd., 2019).
64        Stanley, D. Prostaglandins and other eicosanoids in insects:: Biological Significance. Annual Review of Entomology 51, 25-44, doi:10.1146/annurev.ento.51.110104.151021 (2005).
65        Quintana-Hayashi, M. P. et al. The levels of Brachyspira hyodysenteriae binding to porcine colonic mucins differ between individuals, and binding is increased to mucins from infected pigs with de novo MUC5AC synthesis. Infect Immun 83, 1610-1619, doi:10.1128/iai.03073-14 (2015).
66        Zhao, X. et al. Mucin family genes are essential for the growth and development of the migratory locust, Locusta migratoriaInsect Biochemistry and Molecular Biology 123, 103404, doi:https://doi.org/10.1016/j.ibmb.2020.103404 (2020).
67        Amsalem, E., Galbraith, D. A., Cnaani, J., Teal, P. E. & Grozinger, C. M. Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Molecular Ecology 24, 5596-5615, doi:10.1111/mec.13410 (2015).