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Abstract: Exact nonlinear partial differential equation solutions are critical for describing new
complex characteristics in a variety of fields of applied science. The aim of this research is to use
the F-expansion method to find the generalized solitary wave solution of the regularized long
wave (RLW) equation of fractional order. Fractional partial differential equations can also be
transformed into ordinary differential equations using fractional complex transformation and the
properties of the modified Riemann-Liouville fractional-order operator. Because of the chain
rule and the derivative of composite functions, nonlinear fractional differential equations
(NLFDEs) can be converted to ordinary differential equations. We have investigated various set
of explicit solutions with some free parameters using this approach. The solitary wave solutions
are derived from the moving wave solutions when the parameters are set to special values. Our
findings show that this approach is a very active and straightforward way of formulating exact
solutions to nonlinear evolution equations that arise in mathematical physics and engineering. It
is anticipated that this research will provide insight and knowledge into the implementation of
novel methods for solving wave equations.
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1. Introduction
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The fundamental properties of applied sciences are closely connected with the properties of
nature and science that can be explained using nonlinear partial differential equations (NPDES).
NPDEs have recently been used to investigate the properties of a variety of real-world problems
in fluid dynamics, population ecology, shallow-water wave propagation, plasma physics, solid-
state physics, heat, and quantum mechanics, optical fibers and biology. In addition, their
mathematical models have been published in the literature. Exact solutions can help people better
understand the physical mechanisms underlying natural or social phenomena explained by
nonlinear evolution equations (NEEs). Exploring exact solutions (especially solitary wave
solutions) for the NEEs has thus been a hot and difficult topic in mathematical physics for a long

time.

Several analytical methods for solving nonlinear partial differential equations have been given by
trial equation method [1], extended trial equation method [2], Jacobi elliptic function method [3],
Weierstrass elliptic function expansion method [4], F-expansion method [5-8], the first integral
method [9], the extended fractional Riccati expansion method [10], the fractional complex

transform [11], the Jacobi elliptic equation method [12], the modified extended tanh method

[13], the exp(~®(&)) method [14,15], the generalized (G'/G)-expansion method [16-18], the

exp (- (z))-expansion method [19-23], the (m+1/G')-expansion method [24], the sine-

Gordon expansion method [25-31]. The Jacobi elliptic function solutions of nonlinear partial
differential equations are significant. The Jacobi elliptic F-expansion method, the improved
Jacobi elliptic F-expansion method, and the generalized Jacobi elliptic F-expansion method are
used to obtain Jacobi elliptic function-based solutions. Various exact or numerical solutions to

FPDEs have been successfully developed using these methods.



In this paper a generalized fractional complex transform [32-34] used to convert FDE to ODE.
The regularized long wave (RLW) equation is a crucial partial differential equation that explains
dispersive wave action. Since they explain a wide range of important physical phenomena, such
as shallow water waves and ion-acoustic plasma waves, the RLW equations are crucial in the
study of nonlinear dispersive waves. This equation is of great importance in engineering
sciences. By applying elliptical equations various type of travelling wave solutions to nonlinear
partial differential equations can be obtained using F-expansion method. This method is a
generalized form of Jacobi method [5-8]. The main uniqueness of this technique is that there is
no need to calculate the Jacobi elliptic function. The solution of elliptic function is regarded as
solution of corresponding Jacobi elliptic function. The suggested algorithm is quite useful for
such type of complex problems and is user-friendly. Numerical results show accuracy and

efficiency of method.

This paper consists of several sections. In Section 2, some preliminaries and notations are
addressed. In Section 3, a chain rule and fractional complex transform is reviewed. In Section 4,
a brief description of the F-expansion method is reviewed. With the aid of this method, we will
retrieve several sets of exact solutions for the RLW Equation in Section 5. However, to the best
of the authors’ knowledge, this method has not been applied for equation (1) in previous studies.

Finally, Section 6 concludes the paper.

2. Preliminaries and Notation
This section has some primary definition and properties of fractional calculus theory that allows

you to be used similarly on this work. For the finite derivative in the closed interval [a,b]

fractional integral and derivatives are defined as below.
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Definition 2.1 A real function is said to be in the space C#,6 € R, If there exists a real
number (p > 6) : h(x) = x”h,(x) where h (x) =C(0,) and it is said to be in the space C,@ if
h"eCO,neN

Definition 2.2 The Riemann-Liouville fractional integral operator of order c>0of a

functionh eC#8, 8 > -1, is defined as
Jc(x)=ijx.(x—t)°‘lh(t)dt,c>0,x>0, 1)
)y

J%(X) =h(x).
Properties of the operator J°can be found in [35]; some of them are:

ForheCO,0>-1c,d >0ande>-1

J°Jh(x) = I*h(x),

J°3%h(x) = J%JI°h(x), (2)
J CXe — 1—‘(e +1) XC+e.
r'd+e+1)

When using fractional differential equations to model real-world phenomena, the Riemann—
Liouville derivative has several disadvantages. As a result, we'll implement a relatively new
technique known as the modified fractional differential operator, which was introduced by M.
Caputo in his work on viscoelasticity theory [36].

Definition 2.3 For mto be the smallest integer that exceeds, cthe Caputo time fractional

derivative operator of order ¢ > 0and defined as

L j(x—t)”*‘lh(t)dt,—lz n,neN,
Deh(x) = VD T(=a)s (3)
t o’ oV (x,1)
,c=n.
ot

3. Chain rule for fractional calculus and fractional complex transform
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The authors used the chain rule to convert a fractional differential equation with alteration of the
Riemann-Liouville derivative into its classical differential partner. The following relationship
[11] was used by the authors to show that the chain rule is invalid.

DAV =1, ;—;’2 DfQ and D=1, c% D Q.

To determine z, we consider a special case as z=t"and v=2z", we have

QZM:T.@:Tntncic_ (4)
ot° TI'(l+nc—c) 0z

Thus, is calculated as:

I'(L+nc)

T, = m (5)

Other fractional indexes (z,,7,z;) can govern in similar means. Li and He [32-34] have

developed a fractional complex transform method for transforming FDE so that all analytical

methods for advanced calculus can be extended to fractional calculus.

c d e

wt Ix nx

V=) = S T T d) T ©)
where |, @ and n are constants.
4. Analysis of F-expansion Method
Consider the following general nonlinear FPDE as:

Q(v,V,,V,,V V..., DV, DV, Dy v,...) =0, 0<c <1. (7

where Dfv, D;v, D; vare the modified Riemann-Liouville derivative of u with respect to t, X, xx

respectively.
The following steps will demonstrate the nature of the F-expansion method:
Step 1: By transforming Eq. (7), look for solitary wave solutions (6).
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Rewrite equation (7) in the following nonlinear ODE.

P(v,@wV',cv,dv',ev',...) =0, (8)
where c,d,e and @ are constants and prime denotes the derivative with respect to y.

Step 2: If necessary, integrate Eq. (8) term by term one or more times. As a consequence, the

integration constant is defined (s). For convenience, the integration constant(s) can be set to zero.

Step 3: We assume that the wave solution can be expressed in the following form using the F-

expansion process.

V() =2 Lo H' (). 9)

where «, real constants to be determined are, N is a positive integer to be determined. F(&)

satisfies the following auxiliary equation

[H'()FF =QH*(x) +PH* (1) +R. (10)

where Q,P P, @,and R are constants. The last equation hence holds for

H"(x) =2QH?(x) + PH (%),
H" (%) =6QH*H"(x) +PH'(%),

H®™ (%) = 24Q"H® () + 20QPH() +12QRH (1) + Q*H (%),

H"(x) =120Q*H*H’(y) + 60QPH*H () +12QRH'(x) + P*H'(¥),
M

Step 4: Make the decision N . This is generally done by balancing the highest order linear

term(s) with the highest order nonlinear term(s) in Eq (8).



Step 5: putting Eqg. (9) into Eg. (8) along with Eq. (10) yields an algebraic equation involving
powers of H'H'. Equating the coefficients of each power of H'H' to zero gives a system of
algebraic equations for «,,c,d,e and@ . Then, these constant are determined by use of computer
algebra system for example Maple 18.

Eq. (11) [37-41] has 52 forms of exact solutions, as shown in Tables 1 and 2. In reality, these

exact solutions can be used to create even more precise solutions (7).

Table 1: Relations between the coefficients (P, Q, R) and corresponding H ().

Case | Q P R H(x)

1 n? —(1+n?%) 1 Snf

2 n’ —(14+n?) 1 cdf = cnf fdnf
3 -n? 2n° -1 1-n? Cnf

4 -1 2-n? n’ -1 Dnf

5 1 —(1+n?) n ns¢ = (snf)~*
6 1 —@+n?) | dcE = dnf fcng
7 1-n’ 2n* -1 —n’ ncf = (enf)™*
8 n®-1 2-n° -1 nd¢ = (dnf)~*
9 1-n? 2-n? 1 scf = snf /enf
10 —n?(n*-1) 2n?2 -1 1 sdf = snf /dnf
11 1 2-n? 1-n? cs§ = cnf /sné
12 1 2n? -1 —n*(n* -1) ds = dnf /sn{




13 a
| 2 %
nsf + o
: 1+n? HE
15 : 1-n?
% 2 ncf + scf
n*—2
n2
5 -
. 2
| ) 1 nsf +d
4 = .
2 n
17 " | :
: 1 snf +ic
4 i .
2 n
18 2 :
4 4 I
J1—misdf +
- + edf
> 4
19
4
medé & iy/1 —m?
° mindf
20 2 %
% msnf + idef
1-n? —
21 n*-1 2 %
V1-m?
4 - m?scf + def
2
22 nz ] n“-1
i n msd
4 nz sdf + ndf
-2
23 : - " snf
1+
n’+1 (n? -
: n? -1)°
) 2
| (n _1)2 n mené + d
4 r .
+1
4 2 %
25 2 (12_ ") .
s 2(1-n?)
. 1-n?
2 2
-2 dcf +/1— m?nef
nc




n2p ! —miQ ! —q
T | |
20 Q>0 PO Q@+n?)? Jim? + 1JPsn(x|'m= i1t
402 2 [ _ !
27 Q<0 P>0 LN G IO S I e Y O N
Q(n2_2)2 ,\|':2 —m2)P ,\|2 —m*
42 2 [ _mi0 T 0
28 Q<0 P>0 LU (L1 S B SN O S
P(2n*-1)? J@mi—1)p | j2m? -1
29 1 5 _an? 1 snf dnf
cnf
4 snf cnk
30 n 2 1 dn?
d
31 1 n®+2 1-2n’ +4n* njﬂ;nE
A*(n—-1)? n®+1 (n+1)° cnf dnf
32 1 +3n e A(l + snf)(1 + msnf)
33 A’(n+1)° n? 1 .0 | +1)? cnf dnf
4 2 4N Al + snf)(1 — msnl)
4 menf dnf
34 —— 6n-n*-1 | -2n*+n*+n? —
4 menf d
35 — —6n-n*-1 | 2n*+n*+n* | 7 _ﬂE
n men<f —1
1-2m snf
36 1% : % o
37 1-n’ 1+n° 1-n? cnf
4 2 4 1fsnf
m”snf enf
38 4n, 2+6n —n* | 2+2n —n’ it
) m’ snf cnf
39 —4n, 2-2n—n Tt




2—6n,—n?

2-n*-2n, n 2-n*-2n, m?snE cnf
40 4 ?—1—3I’11 4 snffi+ (1 +myldni — 1 —m,
2-n’+2n, n 2-n?+2n, m?sng cnf
4 4 ?_“3”1 4 sn?t+ (m, — 1)dnt — 1 +m,
C2n* —(B2+C2)i*+B? | - [ rr_cy
nz+1 n- -1 !—{E‘:—C: :]+sr1.f
2 4 2 acw By |
Benf + Cdnf
! 2 _ i1 p -
C2n2+82 1_ 2 1 I{B{B:i;_:fnggnj+ﬂﬂf
43 4 2 " 4(C%n2+B?) | X
Bsnf + Cdnf
! P 2 _ i1
€4 B? n? n* (BT —Cm) | ine
I P GG i E
Bsnf + Cenf
2n+n?+1 msn’ £ —1
2 2 2 _
45 —(n“+2n+1)B 2n°+2 " g7 | BimmE+ D)
2n+n?+1 msn’ +1
2 2 2 _
46 —(n —2n+l)B 2n +2 _? B{msn:-f—].:]

Weierstrass-elliptic function solutions for Eq. (4), where

and

D =%(—5F&J9P2 ~36QR)

, d
v'(2,9,95) =—w(x.9,.95)

dy

Table B: Relations between the coefficients g,, g,and corresponding H(y).




Case | 0, s H(x)
* 01 4Q(9PR — 20%) e 1
47 | 3@ -38R) AR 1I!*;(n;fni.,r.g-:,gg:] -39)
L 4Q (9PR — 20%) |! 3R
8 3@ -0 27 J30(Eg.g:) -0

49 —(3DQ + 4Q* + 33PQR)

20Q% — 27PQR — 63PRD + 210Q°%D

J12Rep(F:g;.9.) + 2R(2Q + D)

12

216

12¢p(F: go.ga) + D

1
50 EQ‘-!—PR

LQ(EE&PR -Q%

VRI6gp(F: go. g2 ) + O]

216 39’ (F: g, g5)
1 . 1 . 3¢ (£:9:.92)
—p? —Q(36PR — Q°*
51 12 Q*+FPR 216 et ‘2 VPleg(F: gy, ga) + O]
59 2Q° QF Qy/-15Q/2P3p(&; g;. g3) R _5@°
9 54 3¢90 +Q 0 36P
5. Numerical Applications
Consider the following fractional RLW Equation
86;—“\0!/+aVX+ZVVX+,Bva=O,O<a<1. (11)
With the help of Eq. (7), the Eq. (11) transform to
VWV, +alV, + 21V, + l*@V, ., =0. (12)
Integrating Eq. (12) once, gives
aV +alV +IV? + Bl*wV =0. (13)

By using homogenous balancing

principle, we have N = 2.
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Therefore, trial solution is given by

W=a,+oH +a,H?,

Substitute Eq. (14) into (13) and using (10), we have

oa, +ooH +owa,H? +ada, +adaH +ala,H? + la,’ +2la,oH + 2laga,H? +1a’H?

A Hay +la,’H* + 2 a1’ a,QH® + pal’a,PH + 6 Bal*a,QH” +

4Bwl*a,PH* +2pwl’a,R =0

On comparison of like powers of H we have system of algebraic equations

H°: @a,+ala, +la, +2po°a,R =0,

H': @ +ala,+2a,aq,+ pol’a,P =0,

H?: @a,+ada,+2aa, +la’ +4Bol*a,P =0,
H®: 2la,a, +2B@l*¢,Q=0,

H*: la,’+6pa1’°a,Q=0.

Solving the above system for @, a,, &, @, @, ay, a,, a, with the help of MAPLE 18, yields

(—1+ 4-31*QRA +1°P? B2 )dl
481°QRA% -161°P?p* +1

47 (<1+4-31°QRA +1°Q7 QB
_I_

__1 481*QRB% —161'P* 5% +1
a=—3p
—1+4,-31"QRA% +1P? M
481*°QRB% —161'P* 5% +1
3I2Q,6’(—1+4\/—3I4QR,82 +I4P2,6’2)d
a,=0,a,=—

481°QRB* —161°P*B* +1
Substituting solution set (15) into Eq. (13), yields

12
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411+ 4J QR +1°QF )P | L4 IR P

V(Q)=-1d
(@)=-4 481'QRB% —161'P*B% +1 481'QRB% —161'P*B% +1

(16)

3I2Qﬂ(—l+ 4-31'QRA? +1°P? 2 )dH (Q)
- 481°QRA2 —161°P?B° +1 '

Combining Table A and solution of Eq. (16), more generalized Jacobian-elliptic function can be
obtained for solution of Eq. (16). The following exact solutions are obtained after that.
Case 1: When Q=n*P=—(1+n?),R=1,H(y)=1ziy, then this is the exact solution of the

given equation:

ik (—1+ 4\/—3I4n2,82 14 (-n? -1)" g2 j(—n2 -1)p

481*n? g% ~161* (-n? 1)’ 2 +1

+

1+ 4\/—3I4n2ﬂ2 +k¢(-n2-1) g2

17
40202 aa14(_n2 _1)\° B2 +l (17
481*n* g% -161* (-n* 1) p* +1

3I2n2ﬂ(—1+ 4\/—3I4n2ﬂ2 +14(-n? -1)° g ]d sin(Q)”

481*n23? ~161* (—n? ~1)° g2 +1

Case 2: When Q=n’,P=—(1+n’),R=1H (z)=4dy, then this is the exact solution of the

given equation:
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412 (—1+ 4\/—3I“n2ﬂ2 14 (-n? -1)" g J(—“Z -8 1, 4\/—3I“n2ﬂ2 14 (—n? -1) g2
+

+1
481*n? g% ~161* (-n? 1)’ p2 +1 481*n? g% ~16k1* (—n? ~1) f +1

V,(0)=-4¢

3I2n2,8(—1+ 4\/—3I4n2ﬂ2 14 (-n? -1)° g2 jd¢2d292
481*n? g2 ~161* (-n? ~1)° 2 +1 '
3I2n2ﬁ(—1+ 4\/—3I4n2ﬂ2 +14(-n?-1)" g jd sin(Q)’

4814 ~161* (—n? ~1)° p% +1

(18)
Case 3: When Q=-n?,P=2n*-1,R=1-m? H(y)=4iy, then this is the exact solution of the

given equation:

417 (—1+ 4\/—3I4n2 (-n?+1) g2 +14(2n? -1)° g j(ZnZ -1)p

481n? (—n? +1) 47 ~161* (2n* ~1)° §% +1

_1+4\/_3|4n2 (—n2+1)ﬂ2+|4(2n2 _1)2 ﬁz

. +1 (19)
481*n* (-n* +1) #* -161* (2n* -1) B +1

3I2m2,8(—1+ 4\/—3I4n2 (-n?+1) 57 +1* (202 -1) 2 jd¢2i2n2

481n? (—n? +1) 4% ~161* (2n* ~1)° §% +1
Case 4: When Q=-1,P=2-n*,R=n’-1,H(y)=diy, then this is the exact solution of the

given equation:
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"k (—1+ 4\/3|4 (n?—1) 5% +1*(-2n? +1) f° j(—zn2 +1)p

481 (n? ~1)b? ~161* (~2n* +1)° 57 +1

+

14 4\/3|4 (n? 1) 32 +1* (-2m? +1)° §
4814 (n? ~1) 52 ~161* (-2n% +1)° f2 +1

+1 (20)

SIZ,B(—1+ 4\/3|4 (n?-1) g2 +14(~2n® +1) 2 JddzizQz

" 4814 (n? ~1) % ~161* (~2n? +1)’ f2 +1

Case 5: When Q=1,P=—(1+n”),R=n’H (Q)=izQ, then this is the exact solution of the

given equation:

4K (—1+ 4\/—3I4n2ﬂ2 +14(~2n 1) g2 j(—ZnZ ~1)p

+
481*n2? ~161* (~2n? 1) 2 +1

14 4\/—3I4n2,6’2 14 (—2n? 1) g2

21
4202 apid( 502 4\? 2 1 1)
481*n’ g% ~161* (-2n” -1)’ p* +1

3|2ﬂ(—1+ 4\/—3I4n2ﬂ2 +14(~2n? 1)’ g2 jdizzzQz

481*n*4? 16Kl (~2n? ~1) 5% +1

Case6: WhenQ=1,P=—(1+n?),R=n’,H(y)=dgy, then this is the exact solution of the

given equation:

15



41 (—1+ 4\/—3kl4n2,82 14 (-2n2 -1) 2 j(—an ~1)p

481*n*? ~161* (~2n? 1) 2 +1

+

14 4\/—3I4n2ﬁ2 #14(=2n2 -1) 2

22
4202 aal4(_on2 1\ p2 +1 (22)
481*n’ 5% ~161* (-2n* -1) B +1

3k2ﬂ(—1+ 4\/—3I4n2ﬁ2 +14(-2n? 1) g2 jdd%zgz

48K*n2? ~161* (~2n” ~1)° f% +1

Case 7: When Q =1-n?,P=2n’ -1 R=-n* H(y)=izy, then this is the exact solution of the

given equation:

41 [—1+ 4\/—3|4 (1-n)'n2p? +1* (202 -1) 2 j(an ~1)p

481* (L-n)’ %42 161 (2n* ~1) 5 +1

+

1+ 4\/—3|4 (1-n)’n2p% +1*(2n? -1) §°
481* (L-n)’ 4% 161 (2n* ~1) 5 +1

+1 (23)

31?(1-n)’ ﬁ(—1+ 4\/—3|4 (-n?+1)n?p +14 (207 ~1) jdi2¢292

481* (L-n)’ 242 161 (2n* ~1)° 5 +1

Case 8: When Q=n’*-1,P=2-n’,R=-1LH(x)=idy, then this is the exact solution of the

given equation:
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41 (—1+ 4\/3|4 (n?=1) 52 +1*(-n? +2) p2 )(—n2 +2)p

4814 (n? ~1) 7 ~161* (—n? +2)° 2 +1

+
V,(@)=-1¢

14 4\/3|4 (n?-1) g2 +14(-n?+2) 2

> +1 (24)
-481* (n* -1) g7 -161* (-n* +2) B* +1

312 (n? —1)ﬂ(—1+ 4\/3|4 (n?-1) g2 +14(-n? +2)° jdizszz

4814 (n? ~1) 7 ~161* (—n? + 2" 2 +1

Case 9: When Q=1-n*P=2-n?,R=1H(x)=zgy, then this is the exact solution of the

given equation:

4k? (-1+ 431 (1-ny g +1* (- 2) j(—nz +2)p

481* (L-n)° B2 ~161*(—n? +2) g2 +1

+
V,(Q)=-i¢

1+ 4\/—3|4 (1-n)* §2 +1*(-n? +2) 2

> +1 (25)
481* (1-n)’ p* -161*(-n*+2) B +1

31 (1-n)’ ﬂ(—1+ 4\/3|4 (1-ny g2 +14(-n? +2)° 2 jdz%zﬂz

481* (L-n)* B2 161 (—n? +2)’ 2 +1

Case 10: When Q = —n? (1— nz), P=2n"-1,R=1H(y)=zdy, then this is the exact solution of

the given equation:
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3I2n2(1—n)2

+

"k (—1+ 4\/3I4n2 (1-n)* g2 +1*(2n? -1) j(an ~1)p

~481°n* (1-n) 57 ~161* (2n? 1) f2 +1

1+ 4\/3I4n2 (1-ny g2 +14(2n? -1) p* .
+

~481°n? (1-n)’b? ~161* (2n% 1) §% +1

ﬂ(—1+ 4\/3I4n2 (1-n) g2 +1*(2n% -1) p° jdzzszz

~481°n? (1-n)’ 52 ~161* (2n? 1)’ p2 +1

+

(26)

Case 11: When Q=1P=2-n* R=1-n’,H(y)=4¢zy, then this is the exact solution of the

given equation:

V,, (Q)=-1d

41 (—1+ 4\/—3|4 (~n? +1) g2 +1*(-n+2)° B )(-n2 +2)

481 (—n? +1) 42 ~161* (-n? + 2) 52 +1

-1+ 4\/3I4 (—n2 +1)ﬂ2 +1* (—n2 +2)2 ik .
+

481 (—n? +1) 42 ~161* (-n? + 2) 5 +1

3l 2ﬂ(—1+ 4\/3|4 (-n?+1) g2 +14(-n +2)° 2 jd¢222§22

481*m? (—n? +1) 42 ~161* (—n* +2)° f2 +1

+

(27)

Case 12: When Q=1,P =2n°—1,R=-n’(1-n),H () =dzy, then this is the exact solution of

the given equation:
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4I2(—1+4\/3I4n2(—n2+1),82+I4(2n2—1)2b2j(2n2—1)ﬂ
2
v, (Q)=—1d —481*n* (-n” +1) B> ~161*(2n* -1) B +1
14 4\/3I4n2 (-n?+1) B% +1* (2n% -1) §° .
+
~481°n? (—n? +1) 52 ~161* (2n? 1)’ 42 +1
3k2b(—1+ 4\/3I4n2 (-n?+1) 82 +14(2n* ~1) g jddzzzQz

—481*n?

Case 13: When Q=1%,P

of the given equation:

(-n?+1) g2 ~161*(2n% -1 g2 +1

( L a1 (5 ﬂ2j(_n2+$)ﬂ
V (Q) = —1d 31'p? 161 (_n +%) B +1 "
RN | e
3l ,[\9’/—16;8(_ ) )+1ﬂ +1
( 1+4J SR ﬂzﬁzjdﬂxzi¢mnz
B 31“p? 16l (_ v1) A4l -

Case 14: When Q=(1-n°)/4,P=(1+n’)/2,R=(1-n")/4,H (x

exact solution of the given equation:
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+

(28)

=(1-2n%)/2,R=4%,H(x)=izx 4iy, then this is the exact solution

(29)

)=igy = 2¢y, then this is the



[4|2(_1+4\/_3l4(_}1n2+i)2ﬂ2 +1 4(%n2 +%)2ﬂ2j(

(48|4 (—in?+3) B2 =161 (107 +3)" 2 +1)

N
>
[N)

+
N
~—~—
i)
N—

2 2 (30)
_1+4\/_3|4(—¢11n2+411) ﬂ2+|4(%n2+%) ,32
+

481 (—3n? +2)° B2 161 (1n? +3) g2 +1
(3|2(—1n2+1)ﬂ(-1+4\/—3|4 —§n2+}1)2,82+I4(;n2+;)Zﬁzjd(ichZgﬁﬂ)z]
(48I (~in? +1) B* 161" (ln2+;)2ﬂ2+1) |

Case 15: When Q=P :(n2 —2)/2, R= n7, H (x)izy+dzy, then this is the exact solution

of the given equation:

4I2(—1+4\/—136I4n2/32+I4(§n2—1)2ﬂ2j(§n2—1),3
n?f? -161* (in? 1) 2 +1

—1+4\/ 21n?p2 14 (302 -1) g
31*n’ % ~161* (1n° - ) B +1

Vs (@) =—3d

+1 (31)

Izb(—1+4\/—l3sl4n2ﬂ2 +1%(5n? —1)2 ﬂz)d (izQ+dgQ)’
31242 161 (30 ~1)° f2 +1 '

Blw

Case 16: When Q=n24,P=(n2—2)/2,R=n7,H(;()zzi;(irgéi;(, then this is the exact

solution of the given equation:
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( 1+4\/ g2 +14(1n? 1)2,82)(§n2—1)ﬂ
31°n* g2 —161* (%n2 1) et
—1+4\/ n*p? +1* (0% -1) g2

np? ~16k* (1n’ )2/3 +1
ZnZﬂ(—1+4\/—136I4n4ﬂ2+l4( -1y p j (ziQ£rgiQ)’

3A*n* 2 ~161¢ (1n? -1)° 57 +1

+

+1 (32)

Slw

Case 17: When Q= / n - )/2 R= /,H(;()=\/1—nzzd;(i¢d;(, then this is the

exact solution of the given equation:

( 1+4\/ 21n*p 414 (30 1)2,sz(;n2—1)ﬁ
3A*ntp? ~161* (1n? -1)° 52 +1

—1+4\/ g1 (i -1) g2
n*p? -161* (4n? 1)2 241

Wﬂ( 1+4\/ g1t (3n?-1) B Zjd(\/—n2+1deJ_r¢dQ)2

3A*n* 57 161 (30 1) f +1

+1 (33)

|
»lw

Case 18: When Q=Y,,P =(1—n2)/2, R=%,H(x)=ngdy £ry1-nidy, then this is the exact

solution of the given equation:
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( 1+4\/ 21n2pR 41 +§)2ﬁ2J(—§n2+§)ﬂ
31“n2 % —16l1° (%n2 -1) 241
—1+4\/ n2pt +14(~int 1) g2
3*n2p? ~161* (~4nt +1) f2 +1

1
n?g2 ~161*(~4n? +3) p+1

(Iznzﬂ(—1+ 4\/—%I4n2ﬁ2 +1*(—4n +%)2 B ]d (n¢in rv-n? +1idQ)2j.

+1

|
Blw

(34)

Case 19: When Q=%,P=(1-2n")/2,R=%,H (y)=nziy*idgy, then this is the exact

solution of the given equation:

2
( 1+4\/ 1B+ (-0 +3) ﬂzj(—§n2+§),b’
347 161 (3n? +1) A7 +1
2

—1+4\/ VA1 (-0 +3) B

A7 1614 (~2n? + 1) A7 +1

1
3K*b? 1614 (~3n? +1) 42 +1

2 2

(I ﬂ[ 1+4\/ 216214 (~4 Z)Zﬂzjd(nziQirdm)zj.

+1

EN[)

(35)

Case 20: When Q=%,P=(1-n")/2,R=%,,H () =v1-n’z¢y +dgy, then this is the exact

solution of the given equation:
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( 1+4\/ 2141 (—1n2 ;)Zﬁzj(—§n2+§)ﬁ
31432 —161* (%n2+%)2ﬂ2+1

Vi (Q) =-1d
—1+4\/ 1B+ 7) B "
31p% 161" (—%n +§) B2 +1
1

(36)

|
Blw

A7 1614 (~1n? + 1) 42 +1

(I ,8( 1+4\/ YL/ o E)Zﬁzjd(MZgﬂidm)zj.

Case 21: When Q=(n’-1)/4,P=(n’+1)/2,R=(n"-1)/4,H (y)=nzd y+idy, then this is

the exact solution of the given equation:

CIERTET z>2ﬂ2+l“<;n2+z>zﬂ2)<;nn;>ﬂj
(481 (30 —4)" g7 81" (30 1) 1) 37)

—1+4\/ A (302 —2) B4l (3P +2) B
+ 2
481*(1n —%) B 161 (1n* +3) B> +1

161* —(% n® +%)2 B +1.

. =n2 = 2_ = = ZIZ
Case 22: When Q=" P (n 2)/2,R Y% H(x) Trdiy then this is the exact solution

of the given equation:
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( 1+4\/ n?f? +14(3n? - )ZﬂZJ(;nz—l)ﬂ
N

3A*nt 2 ~161* (3n* -1) 52 +1

—1+4\/ ‘B 1% (40’ 1) B
3*n2 37 ~16k* (0 1)2ﬂ +1
|2n2/3(—1+4\/ 21404 B2 +|( n?-1) g jdzz 202022
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EN[)

Case 23: When Q:—}/4,P:(n2+l)/2,R:(l " )/,H(;():n(/ﬁi;(idi;(, then this is the

exact solution of the given equation:

(4I2(—1+4\/§5I4(—n2 +1) g2l (3n2 1) 2 ](;nz +§)ﬁ]

(—3|4 (~n2+1)° g2 —161* (102 + 1) B2 +1)

(39)

—1+4\/ n? 1) B2+ 14 (202 +3) B
—3I(n+1)ﬂ ~-161*(4n’ §)ﬂ+l

(|Zﬁ(_1+4\/g|4(—n2 +1) p2 a1t (32 +3) ﬁz]d (n¢iQidiQ)2j

(—3|4 (—n2+12)° g2 —161* (102 + 1) B2 +1)

+1

3
+ta

1-n?)
Case 24: When Q:( 2 ) ,P:(n2+1)/2,R:%,H(;():dz;(i(/ﬁz;g, then this is the exact

solution of the given equation:
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(3|4(—n2+1) 52—16|4(;n2+;)2ﬁ2+1) |

Slw

In the same manner with the aid of Table 1 and 2, other exact solutions of Eq. (16) can be

obtained.

6. Conclusion

The fractional kind generalized solitary solutions of the nonlinear regularized long wave RLW
equation are obtained using the F-expansion method. The results of this study show that this
approach has exact solutions for all forms of functions, including Weierstrass-elliptic and
Jacobian-elliptic functions. These solutions are validated by substituting them back into the
physical model, and they are found to be superior to other existing methods. Furthermore, this
approach has major advantages in terms of ease of use, precision, and computational
performance. The obtained results are strengthened by addition of MAPLE 18. In future, this

method will be used in applied sciences for further modification in results.
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