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Abstract. We calculate the energy and Shannon entropy for a hydrogen atom confined 

in a dielectric spherical microcavity for the fist time. In contrast to the hydrogen atom 

in the vacuum microcavity, some unexpected and interesting phenomena appear: First, 

the turning radius for the bound energy changes from positive to negative depends on 

the dielectric constant of the spherical microcavity sensitively. With the increase of 

the relative dielectric constant, the turning radius gets larger. Second, the dielectric 

spherical microcavity impacts the rearrangement of the excited state energy, and 

breaks the energy degeneracy of the excited states. At some given radius, there is 

energy crossover between different orbital. Third, the dielectric in the spherical 

microcavity affects the Shannon entropy for the confined hydrogen atom greatly. The 

Shannon entropy in the vacuum microcavity is the smallest and the Shannon entropy 

increases with the relative dielectric constant. For smaller size spherical microcavity, 

the Shannon entropy change is always negative, which suggests that the electron 

density is localized. With the increase of the radius of the microcavity, the Shannon 

entropy change becomes positive, and the confinement of the electron density gets 

delocalized. Our results show that we can control the confining effect of the spherical 

microcavity on the atom by changing the dielectric. This work can guide the future 

experimental studies for trapping and manipulating of atoms and molecules in the 

external environment and has some practical applications in metrology and quantum 

information processing.    
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1.Introduction 

In the past several decades, study of the atoms and molecules confined in the 

quantum wells has attracted extensive attention. As we know, the classical and 

quantum behavior of free atoms or molecules are familiar. However, when the atoms 

or molecules are confined in micro-size domains, their physical characters will be 

completely different from those in the free case[1-3]. From the aspect of the quantum 

mechanics, the difference is caused by the modification of the boundary conditions 

when solving the Schrodinger equation. Spatially confined atoms appear in many 

basic and applied researches, such as optical traps [4,5], atom optic billiards [6–10], 

low dimensional nano-materials [11], quantum dot or quantum wires[12],etc. These 

confined systems have many physical applications. For example, the atom optic 

billiards can be considered as a rapidly scanning and tightly focused laser beam, 

which can create a time-averaged quasi-static potential for atoms[6-7]. The confined 

atom in the two-dimensional quantum wells has been widely used in the 

semiconductor micro-junction[13]. The confined quantum dot or quantum wire 

systems are applied to manufacture transistors because of their high mobility and 

carrier scattering suppression[14-15].  

Pioneering studies of the confined system were dated back to 1930s. In order to 

study the polarizability of the hydrogen atom under high pressure, Michels et al put 

forward a theoretical model of a hydrogen atom confined by an impenetrable 

spherical microcavity [16-17]. It was found when the size of the spherical cavity is 

very small, the pressure acting on the hydrogen atom is very high. Therefore, this 
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model can be used to simulate the experimental study of hydrogen atom under high 

pressure condition. Ever since then, this model has been extended to study the atomic 

or molecular structures of quantum confined system by many researchers. Some 

typical researches are as follows: in 1976, Suryanarayana and Weil studied the 

hyperfine splitting of the hydrogen atom in a spherical box [18]. Aquino et al. studied 

some physical properties of the confined hydrogen atom in a spherical box with 

impenetrable walls using different methods[19-21]. Later, they calculated the Shannon 

and Fisher entropies for a hydrogen atom under soft spherical confinement[22]. Very 

recently, Garza et al. studied the Shannon entropy for a hydrogen atom confined by 

four different potentials[23]. Salazar calculated the Shannon-information entropy sum 

in the confined hydrogenic atom[24]. Ley-Koo studied the superintegrability and 

symmetry breakings in confined atoms and molecules[25], etc. In these previous 

studies, they all considered the atom confined in the external environment without 

dielectric. Then what will happen if the atom is confined in a dielectric spherical 

microcavity?  

In this paper, we study the confinement effect of the dielectric spherical 

microcavity on the physical properties of the hydrogen atom for the first time. We 

assume that the hydrogen atom is at the center of a spherical microcavity filled with 

dielectric. This system represents a physically more realistic model to simulate the 

atom immersed in a dielectric environment. By solving the Schrodinger equation with 

suitable boundary condition, we obtain the eigen-energy and wave function of this 

system analytically. Since the Shannon entropy in the configuration space is a good 
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indicator to measure the localization or delocalization of the electron density for the 

confined system[22], we also calculate the Shannon entropy for the hydrogen atom 

confined in a dielectric spherical microcavity. Our calculation suggests, compared to 

the confined hydrogen atom in a spherical microcavity without dielectric, some 

unexpected phenomenon appear. The energy and Shannon entropy of this system 

depend on the size and the relative dielectric constant of the spherical microcavity 

sensitively. For a given dielectric spherical microcavity, the variation of the ground 

state energy and Shannon entropy as a function of the radius of the microcavity is 

analyzed. If the radius of the microcavity is very large, the spatially confinement 

effect on the electron is small, the energy is negative and the electron density is 

delocalized, as a result, the Shannon entropy change becomes positive. However, as 

the radius of the microcavity decreases, the electron energy changes from negative to 

positive due to the strong confinement effect induced by the microcavity, which 

cannot happen in a free hydrogen atom. The Shannon entropy change changes from 

positive to negative, which suggest that the electron density is localized and the 

electron has little possibilities to escape from the spherical microcavity. For the 

excited states, the energy degeneracy is broken. For example, at given principal 

quantum number n, the energy varies with the orbit angular momentum, nsnp EE  . 

There are energy crossings among some excited states. The energy of npE  state can 

be larger than the pnE )1(   state. This is another unexpected result for the confinement 

hydrogen atom. In addition, we also discuss the influence of the relative dielectric 

constant of the spherical microcavity on the energy and Shannon entropy of this 
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system. Our work suggests that we can use a dielectric spherical microcavity to 

simulate the experimental study of hydrogen atom under different environments. 

Since the dielectric spherical microcavity is accessible for laboratory experiment, then 

the classical dynamics of this system is a real physical system instead of an abstract 

theoretical model. From this work it is evident that the investigation of a rather simple 

system, like the hydrogen atom confined in a microcavtiy leads to a variety of 

interesting and complicated properties. We hope that our results can guide the future 

researches about the atomic or molecular structures confined in the micro-size 

domains.  

2. The wave function and Shannon entropy for the hydrogen atom confined by a 

dielectric spherical microcavity   

Consider a hydrogen atom located at the center of a dielectric spherical 

microcavity with impenetrable surfaces, the relative dielectric constant is

 

  and the 

radius is rd.

 

The Hamiltonian of this system can be described as (in atomic unit):
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2.1 The analytic solution of the energy and wave function of this system 

The Schrodinger equation associated to the hydrogen atom in the dielectric 

spherical microcavity has the following expression (in spherical coordinates): 
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Here, ),,(  r  ( drr  ) is the wave function of the hydrogen atom inside the 

dielectric spherical microcavity. Outside of the microcavity, 0),,(   drr . 

As in the case of the hydrogen atom in the free space, the wave function 

),,(  r  in the spherical microcavity can be divided into the product of two parts: 

),()(),,(  lmYrRr  . Here )(rR  is radial function and ),( lmY  is the familiar 

spherical harmonic function. The radial function )(rR satisfies the following equation: 
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with the boundary condition 0)( drR . 

    As we know, for the case of the free hydrogen atom, the energy of the electron is 

always negative. However, if the hydrogen atom is confined in a microcavity, the 

surface of the microcavity will put a pressure on the atomic electron, which makes the 

energy of the electron can be positive. Therefore, for the case of the confined 

hydrogen atom, the energy of the electron can be positive or negative due to the 

confinement of the dielectric spherical microcavity[12]. In the following, we find the 

solution of the radial Schrodinger equation in two cases. 

    Case 1: the energy of the electron is positive, E>0. Let r  , where E22  . 

Then Eq.(4) becomes: 

         0)(]
)1(2

1[
)(2)(

22

2











 










R
llRR

        (5) 

where 


 1
 . The boundary condition becomes 0)( 0 rR  . Furthermore, we set 

)()( 1-  FR  , then we get: 
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The above equation is a Coulomb equation. Considering the boundary condition, 

its solution can be expressed as: 

),,()(  lFF  ,                             (7) 

with ),,( lF  is the regular Coulomb wave function. Therefore, the solution of 

Eq.(5) becomes: 
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here A is a normalization constant. The value of   can be determined from the 

boundary condition: 
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1
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   Therefore, the total energy of the system can be obtained: 

2
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   Case 2: the energy of the electron is negative, E<0. Set r  , where E82  . 

Then Eq.(4) becomes: 
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where 


 2
 . The boundary condition becomes 0)( drR  . Furthermore, we set 

)()( 1-  FR  , then the above equation can be written as: 
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The above equation is a Whittaker equation[]. Its solution can be written as: 

),22,1K( )( 12/
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here )),1(2,1K(   ll  is the Kummer function[12]. 
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Therefore, the solution of Eq.(11) can be expressed as: 
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Where B is a normalization constant. The value of   can be determined from the 

boundary condition: 
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   The total energy of this system can be given as: 

8
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    As discussed above, the energy of the electron in the dielectric spherical 

microcavity can be positive or negative. Then what is the turning point for the bound 

state energy changes from positive to negative? This problem can be obtained by 

setting E=0 in Eq.(4): 
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    The solution of the above equation is dependent on the value of the orbital 

angular momentum l and can be expressed as[12]:  
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1
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where 12 lJ is the Bessel function. 

Considering the bound state boundary condition, 0)( cl rR , which means 

0)/8(12  cl rJ . Assuming ic xr /8 , with xi are the roots of the Bessel function 

12 lJ , we can obtain the turning radius rc for the bound state energy changes from 

positive to negative. The turning radius for the first several s, p states corresponding 
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to different dielectric constant are shown in Table 1. For example, if we assume that 

the hydrogen atom is confined in the GaAs dielectric spherical microcavity, then the 

relative dielectric constant  =13.13. For the 1s bound state, the turning radius 

rc=24.0968a.u. If the radius of the dielectric spherical microcavity is less than this 

value, r < rc, the energy is positive, however, if the radius r>rc, the energy is negative. 

For the 2p bound state, the energy changes from positive to negative when the radius 

is larger than 66.8095a.u. From this table, we find at a given bound state, the value of 

the turning radius gets larger with the increase of the relative dielectric constant, 

which suggests that the confinement effect of the spherical microcavity on the atom 

can be varied by the dielectric constant.  

2.2 The Shannon entropy for the confined hydrogen atom  

In the above section, we have delineated the method to solve the Schrodinger 

equation for the confined hydrogen atom in a dielectric spherical microcavity. It is 

found that the wave function has exact analytic solution: ),()(),,(  lmYrRr  . 

Here )(rR  is the radial function. If the energy of the bound state is positive, it is  

given by Eq.(8) ; otherwise, it is given by Eq.(14). The normalization constant A or B 

is determined by: 1),,(|),,(   rr . Once the wave function is obtained, 

the electron density can be expressed as: 

2|),,(|),,(  rr                             (19) 

The Shannon entropy is an important indicator to measure the delocalization or 

localization of the electron density for the confinement system. In the position space, 

the Shannon entropy is defined as[22,23]: 
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 ddrdrrrSr sin)],,(ln[),,( 2           (20) 

    In comparison to the free atom, the Shannon entropy change is given as: 

   free
rdrr SrSS  )( .                            (21) 

In this work, )( dr rS  denotes the Shannon entropy for the hydrogen atom confined by 

a dielectric spherical microcavity, and  free
rS is the Shannon entropy for the free 

hydrogen atom. 

3. Results and discussion 

From Sec.2, we find that the energy and Shannon entropy for the hydrogen atom 

confined by a dielectric spherical microcavity depend on the relative dielectric 

constant

 

  sensitively. Firstly, we consider the case that the hydrogen atom is 

confined in the GaAs dielectric spherical microcavity ( =13.13). In Fig.1, we analyze 

the variation of the ground state energy E1s as a function of the radius of the spherical 

microcavity. It is found when the radius of the GaAs dielectric spherical microcavity 

is very small, the energy is positive and very large. With the increase of the radius, the 

energy is decreased. At approximately 24r a.u., the energy changes from positive 

to negative, and such value coincides with the one given in Table 1. When the radius 

of the GaAs microcavity is very large,

 

100r a.u., the energy approaches to a given 

value: 0029.0
2

1
21 

sE a.u. The reason can be analyzed on the basis of the 

pressure imposed by the spherical microcavity on the electron. The pressure acting on 

the electron is expressed as follows[19]:
drr
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. For small confinement 

radius, the ground state energy decreases very fast with the radius of the spherical 

microcavity, the slope of the E-r curve shown in Fig.1(a) is large, so the pressure 
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imposed by the spherical microcavity on the electron is very big, which causes the 

kinetic energy of the electron get very large and finally it overcomes the attractive 

potential between the electron and the nucleus. So the total energy is positive and very 

large. For large confinement radius, the ground state energy changes very slowly with 

the radius, the slope of the E-r curve is very small. As a consequence, the pressure on 

the electron becomes decreased, and the energy gets small. For comparison, we 

compare the ground state energy for the hydrogen atom confined in the GaAs 

dielectric spherical microcavity and in the vacuum spherical microcavity. From this 

figure, we find that the ground state energy in the dielectric spherical microcavity is 

larger than the case in the vacuum spherical microcavity. 

In Fig.2, we show the distribution of the ground state electron density s1 in the 

GaAs dielectric spherical microcavity at different radius. Fig.2(a) shows the electron 

density s1 in the case of small radius of the GaAs microcavity, rd=0.5a.u. It is found 

that the electron density decreases monotonically in the microcavity. When the radius 

of the GaAs microcavity increases, the electron density exhibits oscillations, and the 

number of nodes increases with the radius, as we show from Fig.2(b) to Fig.2(d). 

When the radius of the GaAs microcavity is very large, the node in the electron 

density disappears and the electron density decreases monotonically again.   

Using Eq.(20), we calculate the Shannon entropy for the hydrogen atom in the 

dielectric spherical microcavity. In Fig.3(a), the black line is the ground state Shannon 

entropy for the hydrogen atom confined in the GaAs dielectric spherical microcavity. 

It can be seen that when the radius of the GaAs dielectric spherical microcavity is less 
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than 2.0 a.u., the Shannon entropy is negative. As we increase the radius of the 

spherical microcavity, the Shannon entropy changes from negative to positive. When 

the radius of the GaAs microcavity is larger than

 

100.0 a.u., the Shannon entropy 

changes very small, and approaches to a given value: )( dr rS =11.8689. Also in this 

figure, the red line denotes the Shannon entropy change rS relative to the free 

hydrogen atom. We found when the radius of the GaAs dielectric spherical 

microcavity 0.50 r a.u., the Shannon entropy change is negative. In this case, the 

electron density of the ground state is localized and the electron has no possibilities to 

escape from the GaAs spherical microcavity. However, when the radius of the 

microcavity 0.50 r a.u., the Shannon entropy change becomes positive, which 

suggests that the confinement of the electron density is delocalized. In Fig.3(b), we 

compare the ground state Shannon entropy for the hydrogen atom confined in the 

GaAs dielectric spherical microcavity with the case in the vacuum spherical 

microcavity. It is found when the radius of the spherical microcavity is very small, the 

difference between the two Shannon entropies is very small. With the increase of the 

radius of the spherical microcavity, their difference becomes obvious. The Shannon 

entropy confined by the GaAs dielectric spherical microcavity is larger than the case 

in the vacuum spherical microcavity. 

In Fig.4, we show the variation of the excited state energies for the confined 

hydrogen atom with the radius of the GaAs dielectric spherical microcavity. It can be 

seen that the effect of the spherical microcavity breaks the degeneracy of the angular 

momentum. In a shell with the same principal quantum number n, the energy changes 
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for different angular momentum, nsnp EE  . With the increase of the confinement 

radius, the energy degeneracy is recovered.  

In Fig.5, we show the excited state energy at a given radius of the spherical 

microcavity. In Fig.5(a), the radius of the spherical microcavity is 5.0dr a.u.. The 

order of the excited state energies is: spspspsp EEEEEEEE 55443322  . 

With the increase of the radius of the spherical microcavity, the order of the excited 

state energies will be changed. At some given radius, there are crossings among some 

orbital energies. For example, as we show in Fig.5(d), 0.50dr a.u., the order of the 

excited state energies is: sppsspsp EEEEEEEE 54543322  . The energy 

of the 4p orbit is larger than 5p orbit, which does not appear in the free hydrogen atom. 

As the confinement radius is very large, some of the energy degeneracy is recovered 

as in the free hydrogen atom. As we show in Fig.5(f), 0.300dr a.u., 

spsp EEEE 3322 ,  . In Table 2, we give the calculated values of the excited state 

energy for the confined hydrogen atom with the radius of the GaAs dielectric 

spherical microcavity. 

In Fig.6, we show the variation of the excited state Shannon entropy for the 

hydrogen atom confined in the GaAs dielectric spherical microcavity. It can be seen at 

small radius, the difference of the Shannon entropy corresponds to different excited 

state is small. With the increase of the size of the spherical microcavity, the difference 

becomes apparent. In general, the Shannon entropy for a given excited state gets 

larger with the increase of the radius, such as the 2s, 2p, 3s, 4s, 5p state. However, 

there are some exceptions. The Shannon entropy corresponds to 4p state decreases 
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when the radius is larger than 200a.u. The reason can be analyzed as follows: From 

Table 1, we found for the GaAs dielectric spherical microcavity, the turning radius rc 

for the 4p excited state changes from positive to negative is 278.0203 a.u., which lies 

between 200 a.u. and 300 a.u.. When the radius is less than rc, the energy is positive, 

which suggests that the pressure caused by the spherical microcavity is very large, the 

electron has small possibility to escape from the microcavity, so the Shannon entropy 

is relatively large. However, when the radius is larger than rc, the confinement effect 

caused by the spherical microcavity gets weakened. As a result, the electron has some 

possibility to escape from the microcavity, so the Shannon entropy is decreased. 

   In Fig.7, we fix the radius of the spherical microcavity, and compare the 

Shannon entropy for different excited states. Fig.7(a) shows the variation of the 

Shannon entropy when the radius of the spherical microcavity is very small, 

5.0dr a.u.. Under this condition, the Shannon entropies corresponding to the excited 

state from 2s to 5p state are negative. The order of the Shannon entropy is: 

p
r

p
r

p
r

p
r

s
r

s
r

s
r

s
r SSSSSSSS 23452345  , which is quite different from the order 

of the excited state energies as we show in Fig.5(a). As we increase the radius of the 

spherical microcavity, the Shannon entropies changes from negative to positive and 

the arrangement of the Shannon entropies corresponding to different excited states 

changes accordingly. As the radius is very large, there is degeneracy among some 

different excited states. For example, in Fig.7(f), 0.200dr a.u., the Shannon entropy 

p
r

s
r

p
r

s
r SSSS 5544 ,  , which is similar to the energy degeneracy as  we show in 

Fig.5(f). In Table 3, we give the calculated values of theShannon entropy for the 
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confined hydrogen atom with the radius of the GaAs dielectric spherical microcavity. 

Finally, we show the variation of the ground state energy and the Shannon entropy 

with the relative dielectric constant   and the radius of the spherical microcavity rd. 

The radius of the microcavity is given in each plot. Fig.8(a) shows the variation of the 

ground state energy when the radius of the microcavity is very small, 5.0dr a.u. 

and 0.1dr a.u. The results show that the ground state energy is positive and 

increases with the increase of the relative dielectric constant. In Fig.8(b), the radius of 

the microcavity becomes 10dr a.u. and 30dr a.u. It is shown when the relative 

dielectric constant   is very small, the ground state energy is negative. With the 

increase of  , the energy changes from negative to positive. As we further increase 

the radius of the spherical microcavity, the confinement effect on the ground state 

energy induced by the microcavity gets weakened. For example, in Fig.8(c), the 

difference between the ground state energy confined in the microcavity with the 

radius 50dr a.u. and 100dr a.u. is very small. In Fig.8(d), the radius of the 

spherical microcavity is very large, 300dr a.u. and 500dr a.u., it is found that the 

ground state energy becomes negative and the confinement effect on the ground state 

energy caused by the microcavity is nearly disappeared. The values of the ground 

state energy as a function of the relative dielectric constant   and the radius of the 

microcavity rd  are given in Table 4.  

In Fig.9, we show the variation of the ground state Shannon entropy change with 

the relative dielectric constant   and the radius of the spherical microcavity rd. It can 

be seen that the Shannon entropy change increases with the increase of the relative 
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dielectric constant. For small spherical microcavity radius as we show in Fig.9(a), 

5.0dr a.u. and 0.1dr a.u., the Shannon entropy change increases very slowly with 

the relative dielectric constant, and the entropy change is always negative, which 

suggests that the effect of the spherical microcavity on the confined electron is very 

strong. The electron has no possibilities to escape from the spherical microcavity even  

though the relative dielectric constant is very large, and the electron density of the 

ground state is localized. The Shannon entropy change in the microcavity with the 

radius 0.1dr a.u. is noticeably larger than the case with the radius 5.0dr a.u.. In 

Fig.9(b), the radius of the microcavity is increased to 10dr a.u. and 30dr a.u., the 

Shannon entropy change becomes positive, which suggests that the confinement of 

the electron density gets delocalized. The electron has some possibilities to escape 

from the spherical microcavity due to the quantum tunneling effect. As we further 

increase the size of the spherical microcavity (Fig.9(c)), the difference between the 

Shannon entropy change is very small in the spherical microcavity with small relative 

dielectric constant. When the radius of the spherical microcavity is very large, such as 

in Fig.9(d), 300dr a.u. and 500dr a.u., the Shannon entropy changes are almost 

the same when the relative dielectric constant 40 . The difference between the 

Shannon entropy changes caused by the microcavity only appears at larger relative 

dielectric constant. In Table 5, we give the calculated values of the ground state 

Shannon entropy change as a function of the relative dielectric constant and the radius 

of the spherical microcavity. 

4.Conclusions 
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In general, we present the energy and Shannon entropy for a hydrogen atom 

confined in a dielectric spherical microcavity. It is found that the energy and Shannon 

entropy for a confined hydrogen atom depend sensitively on the radius and the 

relative dielectric constant of the spherical microcavity. Taking the GaAs dielectric 

spherical microcavity as an example, we study the variation of the energy and 

Shannon entropy with the size of the microcavity. We found for smaller size of the 

microcavity, the force and pressure of the microcavity acting on the electron is very 

large, which causes the kinetic energy of the electron to increase due to the 

uncertainty principle in the quantum mechanics. Eventually the spatially confinement  

overcomes the attractive potential between the electron and the hydrogen atom, as a 

result the total energy of the electron becomes positive. However, the Shannon 

entropy change is negative, which suggests that the electron density is localized. With 

the increase of the size of the microcavity, the energy changes from positive to 

negative. On the contrary, the Shannon entropy change changes from negative to 

positive, which suggests the confinement of the electron density gets delocalized. As 

the radius of the microcavity is very large, the energy and Shannon entropy approach 

to a constant value. Another excited result is that the degeneracy of the excited state 

energy is broken due to the confinement of the spherical microcavity. There are 

crossings among some excited energies. At some given radius, the order of the excited 

state energies is different from the case of the free hydrogen atom, the energy of the 

lnE ,  orbit can be larger than lnE ,1  orbit. Our calculation results also suggest that the 

energy and Shannon entropy vary with the relative dielectric constant of the spherical 
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microcavity. This study has some practical applications in metrology and quantum 

information processing, and may provide some guidance for future experimental 

studies for trapping and manipulating of atom and molecule in the microcavity or 

under high pressure environment. 
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Figure and Table captions: 

Fig.1. Comparison of the ground state energy for the hydrogen atom confined in the 

GaAs dielectric spherical microcavity and in the vacuum spherical microcavity. 

Fig.2 The distribution of the ground state electron density s1 in the GaAs dielectric 

spherical microcavity with different radius. The radius of the microcavity is as 

follows:(a) rd=0.5a.u., (b) rd =2.0a.u.,(c) rd =5.0a.u.,(d) rd =10.0a.u., (e) rd =50.0a.u., 

(f) rd =100.0a.u.. 

Fig.3. (a) The black line is the ground state Shannon entropy rS for the hydrogen 

atom confined in the GaAs dielectric spherical microcavity. The red line denotes the 

Shannon entropy change rS relative to the free hydrogen atom. (b) Comparison the 

ground state Shannon entropy rS for the hydrogen atom confined in the GaAs 

dielectric spherical microcavity with the case in the vacuum spherical microcavity.  

Fig.4. Variation of the excited state energies for the confined hydrogen atom with the 

radius of the GaAs dielectric spherical microcavity. 

Fig.5. Comparison of the excited state energies at a given size of the GaAs dielectric 

spherical microcavity. The radius of the spherical microcavity is as follows: 

(a) 5.0dr a.u., (b) 10dr a.u., (c) 30dr a.u., (d) 50dr a.u., (e) 200dr a.u., (f) 

300dr a.u.. 

Fig.6. Variation of the excited state Shannon entropy for the confined hydrogen atom 

as a function of the radius of the GaAs dielectric spherical microcavity. 

Fig.7 Comparison of the excited state Shannon entropy at a given size of the GaAs 

dielectric spherical microcavity. The radius of the spherical microcavity is as follows: 

(a) 5.0dr a.u., (b) 10dr a.u., (c) 30dr a.u., (d) 50dr a.u., (e) 200dr a.u., 
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(f) 300dr a.u.. 

Fig.8 Variation of the ground state energy with the relative dielectric constant and the 

radius of the spherical microcavity. 

Fig.9 Variation of the ground state Shannon entropy with the relative dielectric 

constant and the radius of the spherical microcavity. 

Table 1. The turning radius rc for the first several s, p states.  

Table 2. The excited state energy as a function of the radius of the GaAs dielectric 

spherical microcavity. 

Table 3. The excited state Shannon entropy as a function of the radius of the GaAs 

dielectric spherical microcavity. 

Table 4. The ground state energy as a function of the relative dielectric constant and 

the radius of the microcavity. 

Table 5. The ground state Shannon entropy change as a function of the relative 

dielectric constant and the radius of the spherical microcavity. 
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Table 1.  

rc(a.u.) 

 
1s 2s 3s 4s 5s 2p 3p 4p 5p 

1.0 

13.13 

30.0 

50.0 

80.0 

100.0 

1.8352 

24.0968 

55.0574 

91.7623 

146.8197 

183.5246 

6.1523 

80.7798 

184.5692 

307.6153 

492.1846 

615.2307 

12.9374 

169.8685 

388.1230 

646.8716 

1034.9945 

1293.7431 

22.1901 

291.3560 

665.7029 

1109.5048 

1775.2077 

2219.0096 

33.9102 

445.2410 

1017.3062 

1695.5103 

2712.8165 

3391.0207 

5.0883 

66.8095 

152.6492 

254.4154 

407.0647 

508.8308 

11.9097 

156.3743 

357.2909 

595.4848 

952.7757 

1190.9697 

21.1744 

278.0203 

635.2329 

1058.7216 

1693.9545 

2117.4431 

32.9001 

431.978 

987.0032 

1645.0053 

2632.0085 

3290.0107 
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Table 2.  

rc(a.u.) 2s   2p 3s     3p   4s       4p 5s 5p 

0.5 

10      

30 

50 

100 

200 

300    

78.4821 

0.17341 

0.01372 

0.00291 

-0.00043 

-0.00072 

-0.00072 

40.0990 

0.08672 

0.00641 

0.00101     

-0.00058 

-0.00072 

-0.00072 

177.117 

0.41721 

0.04020 

0.01226 

0.00171 

-0.00017 

-0.00003 

119.0013 

0.28042 

0.02711 

0.00826 

0.00111 

-0.00020 

-0.000030 

315.2481 

0.76042 

0.12673 

0.02568 

0.00494 

0.00055 

-0.00002 

237.3911 

0.57420 

0.05921 

0.01963 

0.00384 

0.00042 

-0.00005 

492.8671 

1.20292 

0.18661 

0.06459 

0.00922 

0.00156 

0.00039 

395.270 

0.96691 

0.10243 

0.03506 

0.00761 

0.00132 

0.00033 

 

 

Table 3.  

rc(a.u.)    2s   2p 3s     3p   4s       4p 5s 5p 

0.5 

10      

30 

50 

100 

200 

300    

-1.6188 

7.3625 

10.6832 

12.297 

14.4905 

15.7557 

15.8341 

-1.1285 

7.84059 

11.0898 

12.5607 

13.4092 

13.9379 

13.9486 

-1.6946 

7.29681 

10.6157 

12.1906 

14.4156 

16.6782 

17.7441 

-1.3925 

7.5882 

10.87199 

12.3957 

14.4782 

13.9205 

14.4962 

-1.7336 

7.2594 

10.5477 

12.1353 

14.3099 

16.563 

17.8995     

-1.51467 

7.47033 

10.7629 

12.2944 

14.3836 

16.5403 

14.0658 

-1.7575 

7.2356 

10.5287 

12.078 

14.2486 

16.4657 

17.7860 

-1.5856 

7.40123 

10.6972 

12.2312 

14.3214 

16.4534 

17.7504 

 

Table 4 

   

r0(a.u.)   
1.0 5.0 10 20 30 40 50 60 80 100 

0.5 

1.0 

10     

30 

50 

100 

300 

500    

14.7480 

2.3740 

-0.4999 

-0.5000 

-0.5000 

-0.5000 

-0.5000 

-0.5000 

18.7597 

4.4428 

-0.0050 

-0.0199 

-0.0200 

-0.0200 

-0.0200 

-0.0200 

19.2506 

4.6899 

0.0237 

-0.0042 

-0.0049 

-0.0050 

-0.0050 

-0.0050 

19.4952 

4.8126 

0.0369 

0.0011 

-0.0008 

-0.0012 

-0.0013 

-0.0013 

19.5766 

4.8534 

0.0411 

0.00264 

0.0002 

-0.0005 

-0.0006 

-0.0006 

19.6173 

4.8738 

0.0432 

0.0034 

0.0007 

-0.0002 

-0.0003 

-0.0003 

19.6417 

4.8860 

0.0444 

0.00381 

0.0009 

-0.0001 

-0.0002 

-0.0002 

19.6579 

4.8940 

0.0453 

0.0041 

0.0011 

0.0014 

-0.0001 

-0.0001 

19.6782 

4.9043 

0.0463 

0.0045 

0.0014 

0.0016 

-0.0001 

-0.0001 

19.6900 

4.9104 

0.0469 

0.0047 

0.0015 

0.0002 

-0.00004 

-0.00005 
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Table 5. 
 

r0 (a.u.)     
1.0 5.0 10 20  30  40 50  60  80  100  

0.5 

1.0 

10      

30 

50 

100 

300 

500     

-5.6151 

-3.6157 

-0.0001 

0.0 

0.0 

0.0 

0.0 

0.0 

-5.5609 

-3.4943 

3.0803 

4.7888 

4.8282 

4.8283 

4.8283 

4.8283 

-5.5547 

-3.4815 

3.2921 

6.0794 

7.3032 

6.9079 

6.9078 

6.9078 

-5.5516 

-3.4752 

3.3721 

6.4915 

7.7717 

9.5312 

8.9872 

8.9872 

-5.5506 

-3.4732 

3.3957 

6.5879 

8.0542 

9.5721 

10.2038 

10.2036 

-5.5501 

-3.4722 

3.4069 

6.6298 

8.0744 

9.8511 

11.0808 

11.0668 

-5.5498 

-3.4716 

3.4135 

6.6531 

8.1204 

9.9880 

11.6968 

11.7363 

-5.5496 

-3.4711 

3.4178 

6.6680 

8.1488 

10.1337 

12.1558 

12.2871 

-5.5498 

-3.4706 

3.4231 

6.6858 

8.1818 

10.1278 

12.7058 

13.1172 

-5.5491 

-3.4704 

3.4263 

6.6960 

8.2005 

10.1998 

12.9872 

14.4943 

 

 

 


