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Abstract 
The droplet size distribution in liquid-liquid dispersions is a complex convolution of impeller speed, 
impeller type, fluid properties, and flow conditions.  In this work, we present three a priori modeling 
approaches for predicting the droplet diameter distributions as a function of system operating 
conditions.  In the first approach, called the two-fluid approach, we use high-resolution solutions to the 
Navier-Stokes equations to directly model the flow of each phase and the corresponding droplet 
breakup/coalescence events. In the second approach, based on an Eulerian-Lagrangian model, we 
describe the dispersed fluid as individual spheres undergoing ongoing breakup and coalescence events 
per user-defined interaction kernels. In the third approach, called the Eulerian-Parcel model, we model a 
sub-set of the droplets in the Eulerian-Lagrangian model to estimate the overall behavior of the entire 
droplet population.  We discuss output from each model within the context of predictions from first 
principles turbulence theory and measured data. 
 

1.0 Introduction 

Liquid-liquid separations and extractions are often performed as batch processes inside 

agitated tanks. (1) Within such systems, droplet formation depends on the physical properties 

of the two fluids, as well as the fluid mechanical environment established by the impeller. (2) 

(3)  In non-coalescing systems, the droplet size distribution and corresponding mean droplet 

diameter shift to smaller values as droplets repeatedly pass though regions of high energy 

dissipation near the impeller. (4) Eventually, after all droplets pass through the trailing vortex, a 

steady-state mean droplet size and system-level droplet size distribution is produced. (5) In 

coalescing systems, the ongoing competition between droplet breakup and droplet coalescence 

produces a steady-state size distribution that varies as a function of position within the tank. 

Successful process design requires accurately predicting these droplet size distributions as a 

function of fluid properties, system topology, and operation conditions. 

 

The importance of these processes has motivated the development of numerical models for 

predicting droplet sizes within agitated tanks. Most of these modeling efforts have focused on a 

hybridization of Reynolds Average Navier-Stokes (RANS) fluid models for describing the 
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continuous phase with population balance models (PBM) for describing droplet break-up and 

coalescence.  (6) Although this time-averaged approach reduces the computational complexity 

of the problem, it presents multiple abstractions and assumptions that are worth inspecting. (7) 

Most importantly, this approach assumes that droplets move through a static, time-averaged 

flow field with a time-independent energy dissipation landscape. In reality, the flow field and 

energy dissipation profiles across a turbulent tank are constantly evolving. (8) For example, 

depending on the instantaneous angular position of the impeller, two droplets at the same 

physical location in the tank but at different times can experience order-of-magnitude 

variations in local energy dissipation rate. Since the droplet size is a non-linear function of 

energy dissipation, the time-averaged input will distort spatiotemporal variations in droplet 

size.  (9)  Moreover, droplets are discrete objects that interact directly with the fluid and other 

droplets to undergo discrete break-up and coalescence events. Recasting this discrete 

population set into a continuous probability density function makes systems with low and/or 

strongly varying particle number densities difficult to handle using RANS-PBM approaches. 

Lastly, among the large number of proposed PBM closure formalisms, (10) the user-defined 

parameters that should be specified to model a specific system are not obvious.  (11)    

 

In this paper we present a set of unified, time-accurate, physics-based modeling approaches for 

predicting the dispersion properties of immiscible fluids in dynamic systems. Of particular 

interest are turbulent, two-fluid systems in agitated tanks with volumes ranging from 0.1 L to 

1000 L and dispersed-phase droplet diameters between 10-1000 micrometers.  Using these 

models, we seek to predict the dispersed phase droplet size distribution as a function of fluid 

properties, operating conditions, and system scale with no reparameterization or model tuning 

between scales or operating conditions. We also seek to eliminate user-defined parameters, 

using only physical properties and expectations from first principles turbulence theory as model 

input. We focus our work on algorithms which are amenable to graphics processing unit-based 

computing. (8)  (12) 
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We begin in Section 2 with a review of the relevant physics driving dispersion processes.  This 

background will act as validation for the models that follow, with respect to the mean droplet 

size and droplet size distribution. In Section 3, we present results from a high-resolution, 

Eulerian-Eulerian simulation of a two immiscible fluid blending simulation in a lab-scale agitated 

tank. This direct two-fluid approach solves the time-accurate Navier-Stokes equations using 

fluid properties and system operating conditions as the only model inputs. The droplet sizes 

predicted from this model, as well as the droplet breakup kinetics, are shown to agree with 

measured data and expectations from turbulence theory. Although the computational memory 

requirements limit the practical application of this approach to fluid volumes below 1-10 L, the 

breakup kinetics can be used to inform more scalable modeling approaches.  

 

In Section 4, we present an Eulerian-Lagrangian (E-L) approach for describing fluid mixing and 

droplet formation. In this approach, the dispersed phase is described using individually tracked 

particles that evolve according to Newton’s second law. Like the direct two-fluid approach, the 

E-L approach can handle fluids with differing density and rheology by calculating a continuous 

dispersed phase volume fraction. Using breakup kernels corroborated by the direct two-fluid 

approach, the E-L model can also handle droplet breakup/coalescence and predict the 

corresponding droplet size distribution. Since the fluid interface between the two fluids is not 

resolved explicitly in the E-L approach, the computational demands of the E-L approach are 

orders-of-magnitude smaller than those of the direct two-fluid approach. However, since all 

droplet dynamics and collisions are resolved explicitly, memory constraints limit the 

applicability of this approach to fluid volumes below 10-100 L.  

 

In Section 5, we present an Eulerian-Parcel (E-P) extension of the E-L model. A droplet parcel is 

a single Lagrangian point object that represents the motion of a larger group of individual 

droplets.  Like the E-L approach, the dispersed phase in the E-P model is described by a set of 

individually tracked parcels that evolve according to Newton’s second law. The approach can 

similarly be used to handle fluids with differing density and rheology by reconstructing a 

continuous dispersed phase volume fraction. In contrast to these models, however, not every 
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droplet in the E-P approach is modeled explicitly.  Rather, changes in the parcel diameter 

inform the parcel number scale---a value that describes the number of real droplets 

represented by the parcel. This coarse-grained approach to droplet tracking reduces the 

computational requirements of the E-P model by multiple orders-of-magnitude relative to the 

E-L model.  The abstractions introduced by the parcel model, however, introduce complexities 

when modeling coalescence. We conclude in Section 6 with comments on generality.   

 

2.0 Dispersion Overview 

In turbulent systems, droplets are formed by dynamic pressure forces stemming from spatial 

variations in the continuous phase fluid velocity.  The size of the resulting droplets, 𝐷௠, is 

related to the length-scale of these velocity variations.  More specifically, 𝐷௠ represents the 

size of the largest droplet for which the stabilizing effects of surface tension exceed the 

stretching effects of the flow. This competition between surface tension and fluid motion can 

be described using the Weber number: (13) 

𝑊𝑒 =
ఘ௨మ஽೘

ఙ
         Eqn. (1) 

where 𝜌 is the density of the continuous phase, 𝜎 is the surface tension between the two fluids, 

and 𝑢ଶ represents the square of the velocity difference in the continuous phase over the length 

𝐷௣. Per Equation 1, breakup is assumed to occur above some critical Weber number. Below this 

critical value, droplets will be stable against the spatial variation in the flow field.   

 

If the droplet is small, such that the surrounding turbulent velocity field is isotropic and 

homogeneous, the velocity of the continuous phase fluid surrounding the droplet can be 

related to the specific energy dissipation rate, 𝜀, such that: (14) 

𝑣 ≈ (𝜀𝐷௠)
భ

య         Eqn. (2) 

Combining Equations 1 and 2 gives:  

𝐷௠ = 𝐶ଵ
ఙ

య
ఱ

ఘ
య
ఱఌ

మ
ఱ

         Eqn. (3) 

where 𝐶ଵ is a constant value related to the critical Weber number. This expression indicates 

that, for a constant surface tension and density, the maximum stable droplet diameter tends to 
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decrease with increasing local energy dissipation rate. Similarly, for a constant energy 

dissipation rate, increasing the surface tension tends to increase the maximum stable droplet 

diameter.  The coefficient 𝐶ଵ is determined experimentally as 0.725. (15) This semi-empirical 

relationship is used frequently in droplet and bubble size distribution correlations. (13) 

 

Measured droplet size data from turbulent liquid-liquid dispersion processes corroborates 

these expectations from first principles turbulence theory. Work by Sprow, who measured the 

droplet diameter distribution produced near a flat blade impeller of a non-coalescing 

isooctane/saltwater emulsion, suggested the following empirical relationship: (5) 

𝑑ଷଶ = 𝐶ଶ
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         Eqn. (4) 

where 𝑑ଷଶ is the Sauter mean diameter of the droplets, 𝜌 is the continuous phase fluid density, 

𝑁 is the impeller speed, and 𝐷 is the impeller diameter. The dimensionless cofactor 𝐶ଶ is a 

function of the system topology and the measurement location relative to the impeller. For 

non-coalescing systems 𝐶ଶ is approximately 0.05. For actively coalescing systems, 𝐶ଶ = 0.05-

0.15 depending on measurement location. (4) 

 

Although Equation 4 is written in terms of operating parameters and is specific to flat blade 

impellers, the functional form follows the theoretical model presented in Equation 3. Recognize 

that, in an agitated tank, the average specific energy dissipation rate around the impeller can 

be estimated from:  

𝜀 ≈ 𝑁ଷ𝐷ଶ.         Eqn. (5) 

Substituting Equation 5 into Equation 4 recovers the empirical relationship presented in 

Equation 3: 

𝐷௠ = 𝐶ଵ
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      Eqn. (6) 

where 𝐶ଷ is a proportionality constant specific to the system topology.  Other reports have 

identified a similar relationship between first-principles turbulence theory and mean droplet 

diameter. (16) 
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In non-coalescing systems, droplet diameters will converge to the minimum diameter 

prescribed by the maximum energy dissipation rate realized in the tank. The time required to 

complete this breakup process will therefore be a function of the recirculation time through 

these high energy dissipation rate regions.  In coalescing systems, the steady-state droplet 

diameter distribution will represent the competition between bubble breakup due to energy 

dissipation rates and bubble coalescence. Both these points will be discussed below.  

 

3.0 Direct Two-Fluid Model 

3.1 Mathematical Description  

To understand and validate the relationships presented in Section 2, we seek to model the 

transient, three-dimensional dispersion process of an immiscible, viscous, two-fluid system 

through direct application of the Naiver-Stokes equations.  At this level, the mechanics of the 

two-fluid system are governed by the conservation of mass and momentum equations:  

∇ ∙ 𝑢ሬ⃗ = 0          Eqn. (7) 

డ௨ሬሬ⃗

డ௧
+ 𝑢ሬ⃗ ∙ ∇𝑢ሬ⃗ = −

ଵ

ఘ
∇𝑝 +

ଵ

ఘ
∇ ∙ [𝜇(∇𝑢ሬ⃗ + ∇்𝑢ሬ⃗ )] +

ଵ

ఘ
𝐹⃗௕ +

ଵ

ఘ
𝐹⃗௦    Eqn. (8) 

where 𝜌 is the density, 𝑢ሬ⃗  is the velocity, 𝑝 is the pressure, 𝜇 is the dynamic viscosity, 𝐹⃗௕ is the 

body force, 𝐹⃗௦ is the surface force, and 𝑡 is time. The density and viscosity at each point in the 

system are defined from: 

𝜌 = 𝜌ଵ + 𝜙(𝜌ଶ − 𝜌ଵ)         Eqn. (9) 

𝜇 = 𝜇ଵ + 𝜙(𝜇ଶ − 𝜇ଵ)          Eqn. (10) 

where subscripts 1 and 2 refer to the continuous and dispersed phases, respectively, and 𝜙 is a 

spatially varying marker function defining the volume fraction of the dispersed fluid. The time-

evolution of 𝜙 is governed by a conservative phase field equation (17). 

 

Equations 7 and 8 are solved using the cumulative lattice Boltzmann method. (18)  This lattice-

based implementation introduces 𝛿௫ and 𝛿௧ as two user-defined simulation parameters. The 

lattice spacing 𝛿௫ defines the spatial resolution of the simulation. Within the direct two-fluid 

approach considered here, this value characterizes the minimum droplet diameter that can be 

resolved explicitly within the flow domain. To maximize the spectrum of droplets that can be 
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captured by the simulation, 𝛿௫ in the direct two-fluid model should be as small as 

computationally practical. The lattice timestep 𝛿௧, which defines the compressibility of the fluid, 

is informed by the CFL condition:  (19) 

𝐶௠ =
௏ೝఋ೟

ఋೣ
< 1          Eqn. (11) 

where 𝑉௥ is a reference velocity (taken here to be the impeller tip speed) and 𝐶௠ is the Courant 

number. In this work, the Courant number was set to 0.05, a value sufficient to keep the 

maximum density fluctuations below 1%.  

 

Fluids interact with the tank walls via a no-slip boundary condition, as enforced via a zero-

velocity bounce back method.  (20)  Fluids interact with the moving impeller via the immersed 

boundary method, which enforces a no-slip velocity boundary condition along the 

impeller/shaft surfaces as they move through the fluid. (21) The free slip boundary condition is 

applied to the top of the fluid domain. Since the systems here are well baffled, a free-surface 

model is not necessary. Turbulence is modeled use large eddy simulation (LES) with a 

Smagorinsky coefficient  𝐶௦  of 0.1. (14)  (22)  The computational models were built and solved 

using M-Star CFD®, a GPU-based computational physics package tailored for chemical 

engineering simulations. (23) 

 

3.2 Model Set-up  

In Figure 1, we present the geometry of the 1 L system used to perform the direct two-fluid 

simulations.  The vessel diameter and height were both 0.1-m with four equally spaced 0.01-m 

baffles attached to the tank wall. The impeller was positioned at the center of the vessel and 

elevated 0.033 m off the tank bottom. We modeled a standard Rushton impeller with a 

diameter of 0.033 m and blade width/height shown in the figure. The impeller speed was set to 

400 RPM.  The lattice spacing was set to 150 𝜇𝑚, which corresponded to about 297 million grid 

points across the simulation domain. This resolution is sufficient to resolve droplets down to 

150 𝜇𝑚, a point discussed in more detail below. We note that this lattice size exceeds the 

resolution required to predict grid-independent impeller power number and bulk flow 

characteristics. (24) (25) 
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Both fluids were assigned a density and viscosity of 1000 kg/m3 and 10-6 m2/s. The surface 

tension between the fluids was set to 0.04 N/m. (26) The initial volume fraction of dispersed 

phase was set to 1.0 within the 0.01 m-diameter sphere, as indicated in Figure 1.  Since the 

system is closed, the total volume of each fluid remains constant for the duration of the 

simulation. The effects of agitation, however, will cause the dispersed fluid to breakup into 

droplets. Recognize that the impeller Reynolds number is 7300, suggesting that the flow field 

inside the vessel will be turbulent. 

 

3.2 Model Output 

In Figure 2, we present a snapshot of the velocity, energy dissipation rate, and dispersed phase 

volume fraction after 10 seconds of agitation. As expected, the fluid respects the no-slip 

boundary condition: adjacent to the tip of the impeller, the fluid velocity is linked to the 

impeller tip speed (0.69 m/s in this case). At the tank wall, the velocity is zero. These results are 

expected, given that we are modeling a fully transient system.  Between these two extremes 

the velocity varies as a function of position relative to the impeller.  

 

The dimensionless impeller power number, 𝑃௢, for this system is calculated from: 

𝑃௢ =
ఛఠ

ఘேయ஽ఱ
          Eqn. (12) 

where 𝜏 is the torque on the impeller, 𝜔 is the angular velocity, 𝑁 is the impeller speed and 𝐷 is 

the impeller diameter. The predicted power input for the system, which represents the 

numerator of Equation 12, is calculated to be 0.052 W. The corresponding power number is 

therefore predicted to be 4.5, a value inline with power numbers for similar systems. (27) 

 

During steady state operating conditions, this input power is equal to the power dissipation 

across the tank. In each lattice voxel 𝑖, the specific energy dissipation rate 𝜀௜  is calculated from: 

  𝜀௜ = 𝜈௜𝑆௜̅
ଶ          Eqn. (13) 
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where 𝜈௜ is the local kinematic viscosity. Note that this local kinematic viscosity includes 

contributions from both the molecular and eddy viscosities. The total power dissipation across 

the tank is calculated from the volume integral of the local energy dissipation rate:  

𝐸௧ = ∭ 𝜌𝜀௜𝑑𝑉         Eqn. (14) 

where 𝜀௜ represents the specific energy dissipation rate at the individual lattice voxel 𝑖 and 𝑑𝑉 

represents the voxel volume. The total energy dissipation calculated using Equation 14 is 0.05 

W, a value within 4% of the input shaft power used in Equation 12. This agreement confirms 

that, to sufficient accuracy, the solver conserves total system energy. 

 

Note that, in the trailing vortex, the energy dissipation rate is on the order of 1-3 W/kg. To 

validate this prediction, we compare this output to experimentally measured dissipation rates 

for similar impellers.  From the measurements of Grenville, the average energy dissipation rate 

in the trailing vortex, 𝜀௠, can be calculated from: (16) 

𝜀௠ =
௉೚ேయ஽య

ସ௪೛
,          Eqn. (15) 

where 𝑤௣ is the width of the impeller blade.  Recognize that Equation 15 presents the scaling 

cofactor for the proportionality relationship originally presented in Equation 5. Using the 

predicted power number of 4.5 and the blade width of 8.25 mm, 𝜀௠ calculated from this 

correlation is 1.4 W/kg. This value is in-line with the range of values presented in Figure 2. 

Above this mean value, however, certain locations within the trailing vortex are predicted to 

realize instantaneous energy dissipation rates approaching 10 W/kg. 

 

This alignment between (i) the predicted/measured power numbers, (ii) the predicted total 

power input/dissipation, (iii) the predicted/measured specific energy dissipation rates in the 

trailing vortex suggest that energy transfer and dissipation are handled properly in the 

simulation.  This agreement is important, as variations in energy dissipation rates are correlated 

to large variations in droplet size. Within the trailing vortex, droplet diameters are on the order 

of 200-300 µm. Further from the impeller, where the energy dissipation rate is order-of-

magnitude smaller, droplet diameters are order-of-magnitude larger.  This pattern suggests 
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that, for coalescing systems, the droplet size distribution is a function of position within the 

tank. This variation has been observed experimentally. (4) 

 

3.3 Droplet Formation and Dynamics  

In Figure 3, we plot the Sauter mean droplet diameter versus the average energy dissipation 

rate along the surface of each droplet. This data represents the aggregation of 23,000 droplets 

individually identified over 5 seconds of steady-state agitation. The shape of this distribution 

function represents the ongoing competition between breakup, coalescence, energy 

dissipation, and impeller pumping. Mechanistically speaking, the evolution of an individual 

droplet through the tank can be explained by tracing it clockwise through the four quadrants of 

this scatter plot.  

 

To begin, consider the top-left quadrant of the distribution, which represents large droplets in 

regions with low energy dissipation rates (near the top and bottom of the tank). The pumping 

action of the impeller draws these large droplets towards the impeller into regions with 

elevated energy dissipation rates. As droplets move near the impeller, the maximum droplet 

diameter stable against the local energy dissipation rate decreases. This imbalance leads to 

breakup into increasingly small daughter particles, driving the droplets towards the bottom-

right quadrant of the distribution.  

 

To contextualize this trajectory, we superimpose Equation 3 onto Figure 3 using the surface 

tension and density specified in the simulation (0.04 N/m and 1000 kg/m3). The variation in 

maximum droplet diameter with energy dissipation, as expected from this first-principles 

model, is consistent with predictions from the direct two-fluid simulation. Within the context of 

this two-fluid model, this relationship between droplet size and energy dissipation is neither 

enforced nor proscribed when modeling fluid motion. The consistency with turbulence theory, 

however, suggests that the simulation is properly capturing the droplet breakup in response to 

changes in the local energy dissipation rate. 
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The pumping action of the impeller eventually pulls droplets into the trailing vortex, which has 

an energy dissipation rate characterized by Equation 15.  Although ephemeral points with 

higher energy dissipation rates exist in the system, Equation 15 is representative of the 

maximum energy dissipation rate realized in the system.  As such, as illustrated in Figure 3, 

Equation 15 characterizes the average energy dissipation rate (and corresponding droplet 

diameter) sampled by the dispersed phase within the trailing vortex. Recognize that Equation 

15 is neither enforced nor proscribed when solving the fluid motion and predicting the two-

fluid dynamics. The agreement, however, between the design correlation and the energy 

dissipation rate sampled by the fluid in the trailing vortex, however, corroborates the 

simulation predictions. 

 

Small droplets exiting the trailing vortex are discharged back up the tank sidewalls to regions 

with lower energy dissipation rates.  Within the context of Figure 2, this motion represents a 

transition from the high-EDR bottom-right quadrant to the low-EDR bottom-left quadrant.  

Note that these small droplets are not produced in the bottom-left quadrant, as the energy 

dissipation rates in these regions are insufficient to form droplets this small. Rather, the 

pumping action of the impeller pushes these small droplets away from the trailing vortex into 

regions with lower energy dissipation rates.  These regions of lower energy dissipation permit 

coalescence and the development of larger droplets. Within the simulation, ongoing 

coalescence in the low EDR regions cause droplets to grow until they return to the top-left 

quadrant. The process then repeats as these droplets are drawn back into the trailing vortex.  

 

The minimum droplet size that can be resolved by the solver is related to the simulation lattice 

spacing 𝛿௫. To understand the effects of this limitation, in Figure 4 we present a histogram of 

the droplet diameter. This plot is generated by integrating the scatter plot presented in Figure 3 

over all energy dissipation rates (i.e. the x-axis).  The droplet size distribution is non-uniform, 

with a most probable droplet diameter of 300 µm and a mean droplet diameter of 600 µm. At 

these operating conditions, most of the droplets are above the numerical floor presented by 

the grid resolution.  If the impeller were operated at a much higher speed---which would be 
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expected to produce smaller droplets---this grid resolution would be insufficient to properly 

resolve the droplet size distribution. This coupling between resolution, droplet size, and 

impeller speed limits the scalability of the direct two-fluid approach, a point we discuss below.   

 

To contextualize this data, we superimpose on this histogram the droplet diameter predicted by 

combining Equations 3 with the maximum energy dissipation rate realized in the trailing vortex 

(~10 W/kg).   We also superimpose the experimental design correlation presented in Equation 

4. We apply a cofactor of 0.1 to this expression, which is in-line with the measured values 

across the tank for coalescing systems. (4) Recognize that the correlation presented in Equation 

4 was developed using a flat-blade impeller as opposed to the Rushton considered in the 

numerical model used here. This difference will bias predictions from the correlation to lower 

droplet sizes. The overall consistency between the mean droplet size predicted from the direct 

two-fluid model, turbulence theory, and literature correlation suggest that the algorithm is 

correctly capturing the competition between energy dissipation and droplet surface tension.  

 

3.4 Examining Breakup  

In addition to predicting the steady-state droplet size distribution, the direct two-fluid model 

can be used to track individual droplets moving through the vessel as they undergo discrete 

breakup events. From this data, it is possible to understand the relative volume fractions of the 

daughter droplets generated during breakup.  In Figure 5, we present a time-integrated plot of 

a single large droplet entering the trailing vortex and breaking up to form many smaller 

droplets. Each line represents an individual daughter droplet with a line thickness 

corresponding to the droplet diameter. This plot corresponds to 2 second of fluid motion, a 

duration sufficient for fluid to enter and fully exit the trailing vortex.  

 

The trajectory of these particles is aligned with the data presented in Figure 3: as the large 

droplet enters the trailing vortex, it breaks-up into many smaller droplets. These smaller 

droplets then exit the trailing vortex and coalesce to form larger droplets in regions of the 

vessel with lower energy dissipation rates. We find that approximately 95% of all breakup 
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events occurred as binary daughter formations, wherein an individual breakup event created 

one (new) additional droplet. This behavior is consistent with experimental observation for the 

low Weber number droplets considered here. (28) 

 

We also present in Figure 5 the daughter droplet volume fractions, 𝑓௩, realized by tracking 

20,000 individual binary droplet breakup events. As expected from the conservation of volume, 

the distribution is symmetric: any volume not in the first daughter droplet must be occupied by 

the second daughter droplet.  The M-shape of this distribution function indicates that most 

breakup events follow an approximately 95%/5% volume split of the initial droplet volume.  

Mechanistically speaking, as a droplet enters regions wherein the local turbulent energy 

dissipation rate exceeds the stabilizing effects of surface tension, the droplet breakup process 

resembles small satellite formation rather than large-scale droplet splitting.  

 

We superimpose on this data the daughter volume fraction predictions from first principles 

turbulence theory. This theoretical model, as presented by Xing et al., uses the Young–Laplace 

and Bernoulli equations to model internal flow through the droplet neck during a breakup 

event. (29) Within this approach, the probability of a droplet of diameter 𝑑 breaking into a 

daughter droplet with breakup fraction 𝑓௩ becomes a function of the surface tension, fluid 

densities, fluid viscosity, and local energy dissipation rate. To calculate the distribution using 

the Unified Breakup Model presented in Figure 5, we used the energy dissipation rate 

computed from Equation 15 and the mean droplet diameter computed from Figure 4. 

 

The key finding from the Unified Breakup Model, which is consistent with distributions in the 

original report by Xing, is that the probability distribution is M-Shaped with a minimum at 0.5 

and a maximum around 0.9. That is, at the operating conditions considered here, droplet 

breakup events tend to be highly asymmetric with one daughter droplet hosting most of the 

initial droplet volume. We recognize that the breakup volume fraction distribution calculated 

from the direct two-fluid model presents a larger variance than predictions from the Unified 

Breakup Model. We also note that the locations of the peaks in the daughter volume fraction 
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probability density function differ by approximately 10%.   The overall shapes of the 

distributions, however, are consistent and contrast the uniform and/or triangle-shaped breakup 

volume fractions realized at higher energy dissipation rates and/or lower surface tensions.  

Motivated by this consistency, the Unified Breakup Model will become an important part of the 

particle-based approaches considered later in Sections 4 and 5.  

 

3.5 Advantages and Disadvantages   

The direct two-fluid model presented in this section reproduces many of the key physics 

measured during experiment and predicted from first principles turbulence theory. The only 

model input parameters are fluid properties, system geometry, and operating conditions. In 

this way, the approach is ideal for developing/understanding two-fluid blending, droplet 

formation, and droplet transport processes. These model outputs can then be used to 

understand the physics driving dispersion of systems with little experimental reference data.  

Moreover, because the volume fraction is continuous and considered at each lattice site, the 

approach can handle arbitrary fluid volume fractions.  

 

Although robust, the approach is limited by resolution and the range of length scales relevant 

to the system. At the smaller end of this range, the simulation must resolve the smallest 

droplets in the system. At the upper end of this range, the simulation must extend the entire 

tank domain. As discussed above, this 1 L system considered here required 297 million lattice 

points to resolve droplet diameters down to 0.15 mm. On a compute node with 8 NVIDIA V100 

GPUs, the two-fluid simulations advanced at approximately 1 billion lattice updates per second. 

For this lab-scale model, this speed corresponded to 10 impeller turns per day of simulation 

time. In principle, the total simulation capacity for this compute node is approximately 500 

million lattice points---2x larger than the system considered here. In practice, however, 

production-sized equipment may have orders-of-magnitude larger operating volumes. 

Moreover, depending on the impeller tip speed and/or shape, the associated droplets sizes may 

be smaller relative to those realized in this system.  These effects increase the required 

resolution and can make a simulation computationally intractable. Thus, although the direct 
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two-fluid model is useful for researching the first-principles physics governing droplet dynamics 

at laboratory scale, a more scalable approach is required to model larger systems.  

 

4.0 Eulerian-Lagrangian Simulations 

4.1 Conceptual Overview 

To overcome the resolution requirements of the direct two-fluid model, we now develop and 

propose a E-L approach for modeling two-fluid mixing and droplet dispersion processes. Within 

this approach, the continuous phase is still modeled as an Eulerian fluid. The dispersed phase, 

however, is modeled using a large number of initially monodisperse, individually tracked 

particles which undergo breakup and pairwise coalescence events. By large number, we imply 

that the particle number density is sufficient to reconstruct a continuous dispersed fluid volume 

fraction across the tank. By initially monodisperse, we imply that the initial droplet diameters 

are all identical but evolve over time to form a steady-state droplet size distribution.  By 

individually tracked we mean that the position and velocity of all particles are tracked in real-

time with breakup and coalescence relationships defined a priori.  

 

4.2 Mathematical Description  

As with the direct two-fluid model, the fluid mechanics of the continuous phase in the E-L 

model are described by the incompressible Navier-Stokes equations. Unlike Equation 8, 

however, fluid model here does not include the surface tension force since the two-fluid 

interface is not resolved explicitly. The Lagrangian dispersed phase particles are described using 

a cherry-pit model. (30) Within this approach, each dispersed phase particle has a rigid core 

that interacts elastically with the rigid cores of other dispersed-phase particles.  The purpose of 

the hard sphere interactions is to ensure that the initial dispersed phase volume remains 

incompressible prior to droplet breakup/dispersion.  Surrounding each rigid core is a fully 

penetrable concentric exterior shell that increases the apparent volume of the particle. The 

purpose of the shell is to allow the dispersed phase volume fraction to overcome the 0.62 limit 

on volume fraction presented by random sphere packing. (31) That is, by accounting for the 
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interstitial region between a random pack of rigid spheres, the dispersed phase volume fraction 

reconstructed from the cherry-pit particles can realize values close to 1.0. 

 

As illustrated in Figure 6, the dispersed phased particles enter the system as a random close 

pack of monodisperse particles within a pre-defined initial volume. The initial total droplet 

diameter within this volume, 𝐷்,௢ represents the maximum diameter of the dispersed phase 

droplets resolved by the simulation. We set this initial value to the simulation lattice spacing, 

which is sufficient to reconstruct a continuous dispersed phase fluid volume fraction.  With this 

initial diameter defined, the total number of dispersed phase particles initially added to the 

system is calculated from: 

𝑁௧,௢ =
థ೑௏೚
ഏ

ల
஽೅,೚

య            Eqn.  (16) 

where 𝜙௙ is the user-set initial volume fraction of the dispersed phase in the pre-defined initial 

volume 𝑉௢. We set 𝜙௙ to 1.0, which implies that the initial injection fluid volume contains 100% 

dispersed phase fluid.  

 

For a given particle diameter, the corresponding rigid core diameter, 𝑑௖ is defined from: 

𝑑௖ = 𝜙௣

భ

య𝐷்,௢           Eqn. (17) 

where 𝜙௣ is the hard sphere packing fraction taken here to be 0.62. The reconstructed 

dispersed phase volume fraction at each fluid voxel 𝑗 is calculated from: 

 𝜙௝ =
∑ ௏ು,೔

೔∈ೕ
೔

௏ೕ
          Eqn. (18) 

where 𝑉௉,௜ is the volume of droplet 𝑖 calculated using 𝐷௉, 𝑉௝ is the volume of voxel 𝑗, and  𝑖 ∈ 𝑗 

is the list of dispersed phase particles with centers of mass contained in voxel 𝑗. The dispersed 

phase volume fraction defined in Equation 18 is calculated at each simulation time step.  

 

The trajectory of each particle is governed by Newton’s second law, such that: 

𝑚௜𝑎⃗௜ = 𝐹⃗௜,௚ + 𝐹⃗௜,௔ + 𝐹⃗௜,௣ + 𝐹⃗௜,஽ + 𝐹⃗௜௝       Eqn. (19) 
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where 𝑚௜ and 𝑎⃗௜ represent the mass and acceleration vector of droplet 𝑖, 𝐹⃗௜,௚ is the gravity 

force, 𝐹⃗௜,௔ is the added mass force,  𝐹⃗௜,௣, is the instantaneous pressure gradient force, and 𝐹⃗௜,஽  

is the instantaneous drag force on the droplet, and 𝐹⃗௜௝  is the collision force between hard rigid 

cores.  The gravity, added mass, pressure gradient, and drag forces are the same as those 

reported in the literature. (32) The collision force is modeled as using a hard-sphere potential 

with a stiffness that limits overlap to less than 1% the droplet diameter. (33) Equation 19 is 

solved for each droplet individually and in tandem with the fluid algorithm using the velocity 

Verlet algorithm. (33) 

 

Droplets perform a neighbor search using a bounding volume hierarchy (BVH) data structure. 

(12) The BVH is a binary tree in which each node stores a bounding box encompassing all nodes 

beneath it. Each droplet traverses the BVH using a binary search algorithm. This approach is 

efficient, has low memory requirements, and easily handles any spatial distribution of droplets. 

Additionally, the algorithms used to construct and traverse the BVH are easily implemented in a 

parallel fashion on GPUs. Using this approach, we find that simulations containing hundreds of 

millions of interacting droplets are practical on multi-GPU desktop computers. 

In accordance with Newton’s third law, droplets are two-way coupled to the fluid, such that a 

body force at each fluid lattice voxel 𝑗, 𝐹⃗௙,௝: 

𝐹⃗௙,௝ = − ∑ ൫𝐹⃗௜,௔ + 𝐹⃗௜,஽൯
௜∈௝
௜         Eqn. (20) 

is superimposed on the fluid lattice voxel 𝑗 containing the set of droplets 𝑖 ∈ 𝑗.  

4.3 Model Set-up  

The impeller and tank topology are the same as the 1 L system presented in Figure 1. We apply 

a lattice spacing of 0.667 mm, which is sufficient to properly resolve flow and energy dissipation 

across the vessel. (24) (25) Since we are only solving for the time-evolution of the continuous 

phase, this 4x coarsening of the lattice spacing generates a computational domain that is 64x 

smaller than the domain used to model the direct two-fluid simulations. Moreover, the 

timestep in these E-L simulations is 4x larger than those applied in the direct two-fluid 
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simulations. The combined effect of these changes is a 256x reduction in runtime the Navier-

Stokes equations. 

 

The initial dispersed phase volume was created by packing the initial volume with 2,000,000 

individual droplets with an initial diameter 𝐷்,௢ of 0.334 mm. The particle core diameter and 

shell thickness were 0.285 mm and 0.0254 mm, which corresponds to a hard sphere packing 

fraction of 0.62 and a dispersed phase volume fraction of 1.0. The particle tracking, breakup, 

and coalescence algorithms active in the E-L model introduce computational requirements that 

are not present in the direct two-fluid model. Thus, although time is saved on the continuous 

phase, new computational bottlenecks are introduced via the particle algorithm. This point is 

discussed in more detail below. 

 

4.2 Reconstructing the Volume Fraction  

We begin by demonstrating how the dispersed phase volume fraction is reconstructed from the 

discrete phase droplet particles. This reconstruction is a pre-requisite for calculating any spatial 

variations in density and viscosity and their corresponding effects on fluid flow. Breakup and 

coalescence are disabled in this simulation, meaning the diameter of the droplets was constant 

throughout the mixing process. As with the direct two-fluid model, both fluids were assigned a 

density and viscosity of 1000 kg/m3 and 10-6 m2/s.  For the purposes of testing the dispersed 

phase reconstruction, the volume of the dispersed fluid was increased to 40 mL (0.05 volume 

fraction) and initially centered at the top of the vessel. 

 

At the start of the simulation, as illustrated in Figure 7, the Lagrangian particles representing 

the dispersed phase are aggregated within the initial fluid volume. As expected, the 

corresponding dispersed fluid volume fraction throughout this region is within a few percent of 

1.0. Because the system is closed, the total volume of the dispersed phase remains equal to the 

initial 40 mL throughout the blending process. With time, however, the pumping action of the 

impeller stretches the dispersed fluid towards the trailing vortex and causes the droplets to 

disperse. After approximately 15 seconds of agitation, particles are uniformly distributed across 
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the vessel. This predicted homogenization timescale is inline with the 14.8 second blend time 

expected from experimental design correlations.  (34) 

 

To further contextualize these results, we present the time-evolution of a weightless dye 

moving through this same system according to the advection-diffusion equation. The 

advection-diffusion equation, which models the conservation of species, can be written as: 

డ௖

డ௧
+ ∇ ⋅ ൫𝑉ሬ⃗ 𝑐൯ = ∇ ⋅ (𝐷∇𝑐)        Eqn. (21) 

Where 𝑐 represents the local species concentration and 𝐷 is the local diffusion coefficient. This 

equation is inherently transient: the left-hand side represents the time rate of species change 

at a given location, while the right-hand side represents fluxes due to diffusion. The velocities at 

each time-step are obtained from the Navier-Stokes equations, which is solved in tandem with 

Equation 21. The dye was added into the vessel at the same location as the dispersed fluid 

particles with an initial concentration of 1 mol/L. The dye is assigned a diffusion coefficient of 

10-9 m2/s, a value typical of binary liquids. (26) 

 

The evolution of the dye concentration field is consistent with the evolution of the Lagrangian 

particles and the evolution of the reconstructed dispersed phase volume fraction.  In principle, 

the consistency between these descriptions is expected, as both particle and scalar motion in 

the tank is dominated by the agitating effects of the impeller.  In practice, this alignment 

reaffirms the ability to reconstruct the time-evolution of continuous fluid variables (i.e. volume 

fraction) using a suitably large number of discrete Lagrangian particles. 

 

4.3 Calculating local fluid properties 

We next examine a similar blending process, but now with density and viscosity differences 

between the two fluids. The impeller speed in this system is set to 100 RPM, intentionally lower 

than the 400 RPM cases considered above. The kinematic viscosity and density of the 

continuous phase are still taken to be 10ି଺ m2/s and 1000 kg/m3.  The kinematic viscosity and 

density of the dispersed phase, however, are now taken to be 10ିସ m2/s and 900 kg/m3. The 

initial dispersed phase volume was again described by 2,000,000 individual droplets with an 
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initial droplet diameter 𝐷்,௢ of 0.334 mm. Particle breakup and coalescence remain disabled in 

this simulation. 

 

In Figure 8, we show the time-evolution of the dispersed phase volume fraction and the 

corresponding fluid density across the tank. At the start of the simulation, the step change in 

volume fraction at the interface between the fluids is apparent. With increasing time, the 

effects of buoyancy cause the dispersed phase to separate. That is, the pumping action of the 

impeller is insufficient to overcome the density difference between the (heavy) continuous 

phase and the (light) dispersed phase. Consequently, a stratified layer of dispersed fluid forms 

at the top of the vessel. As expected, for this non-reacting system with no mass-transfer, this 

stratification process does not change the total volume of the dispersed fluid. Moreover, 

throughout the separation process, the dispersed fluid volume fraction does not exceed 1.0. 

The cherry-pit particles are correctly preserving the incompressibility of the dispersed fluid 

while predicting proper volume fractions.  

 

The stratification of these two fluids at this operating condition is in-line with a priori 

expectations. For two-fluid systems, the competition between fluid motion and fluid buoyancy 

can be characterized using the Richardson number, 𝑅𝑖: (25)  

𝑅𝑖 =
(ఘಹିఘಽ)௚ு

ఘಹேమ஽మ
         Eqn. (22) 

where 𝑔 is the acceleration due to gravity, 𝐻 is the height of the tank, 𝑁 is the impeller speed, 

and 𝐷 is the impeller diameter. For 𝑅𝑖 ≫ 1 , buoyancy effects are expected to dominate, such 

that the two fluids will tend to remain stratified (over timescales relative to the single fluid 

blend time). For 𝑅𝑖 ≪ 1, fluid inertia is expected to dominate, such that the two fluids will 

blend in a timescale that is commensurate with the single fluid blend time.  The Richardson 

number for this system is 32, meaning the fluid is expected to remain stratified. Beyond 

corroborating the basic behavior of the E-L model, this result reaffirms an important point: to 

form droplets, the dispersed fluid must engage with the impeller. If, due to density effects, the 

impeller cannot draw fluid into the trailing vortex, discussions about the droplet size 

distribution are irrelevant. 
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Two topics are worth recognizing before extending the model to handle systems with droplet 

breakup and coalescence. First, because the volume fraction is reconstructed from a discrete 

particle field, the interface presents no spurious numerical diffusion. Thus, even for systems 

with very small quantities of dispersed fluid, there is no premature blending and/or mixing due 

to insufficient control over scalar transport along the interface. Thus, although presented here 

within the context of an immiscible system, this approach can be generally useful when 

predicting the mixing behavior of a small quantity of two fluids where diffusion can be ignored.   

Second, missing from this approach is the cohesive effect of surface tension on the initial 

dispersed fluid during early states of the simulation. As discussed below, the effects of surface 

tension can be directly incorporated into particle breakup and coalescence. The initial dispersed 

injection, however, is represented as a group of many individual droplets. The lack of tension 

between the droplets implies that the initial injection will breakup into its constituent droplets 

more quickly than a continuous fluid. Provided the initial bubbles are large relative to the 

equilibrium droplet size, however, the effects of this initial breakup are not expected to have a 

large influence on the time-evolution of the dispersion process.  

 

4.3 Incorporating Breakup and Coalescence 

The results presented above indicate that dispersed phase particles, as represented by the 

cherry-pit model, can be used to reconstruct the continuous dispersed phase volume fraction. 

From this phase field, dispersions involving fluids with differing densities and viscosities can be 

handled directly within the model. Beyond reproducing the volume fraction, however, the 

particles can undergo breakup and coalescence to predict the time-evolution of the droplet size 

distribution.  Predictions from the direct two-fluid model provide a framework for incorporating 

discrete droplet breakup events into the E-L model.  

 

We now describe the breakup kernel. Motivated by the semi-empirical relationship presented 

in Equation 3, which was corroborated by output from the direct two-fluid model presented in 

Figure 3, we define a critical droplet diameter, 𝑑௠, as: 
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𝑑௠ = 0.725
ఙ

య
ఱ

ఘ
య
ఱఢ

మ
ఱ

.         Eqn. (23) 

This diameter defines the upper bound on the droplet size allowed within a given region of the 

fluid. If a droplet enters a fluid cell wherein the local and instantaneous 𝑑௠ defined by Equation 

23  is smaller than the current droplet diameter, a breakup event is initiated. This breakup 

produces two new droplets. The volume fraction of the first daughter particle is randomly 

sampled from the distribution function generated by the Unified Breakup Model, which is 

calculated on-the-fly using the fluid properties, current droplet diameter, and the energy 

dissipation rate surrounding the droplet. To conserve volume, the volume fraction of the 

second daughter is set to the complement of the first.  

The system modeled here is assumed to be actively coalescing. That is, if two droplets collide, 

they are always assumed to combine into a single droplet with a new volume equal to the total 

volume of the two colliding droplets. In principle, since particle interactions are tracked 

explicitly, more sophisticated rules governing pair-wise coalescence versus a pair-wise bounce 

may be specified. (35) Also, recognize that, within the E-L approach, it is straightforward to 

deactivate droplet coalescence altogether. This deactivation is evoked below when modeling 

electrolytic solutions, which are known to inhibit coalescence at modest (>0.1M) salt 

concentrations. (36)     

 

With these breakup and coalescence models active, we re-ran the 1 L simulation presented in 

Figure 1 at an impeller speed of 400 RPM using the E-L model. The kinematic viscosity and 

density of both fluids were set to 10ି଺ m2/s and 1000 kg/m3.  The surface tension between the 

fluids was set to 0.04 N/m. We superimpose on Figure 4 the steady-state droplet size 

distribution predicted from this E-L simulation after 10 seconds of agitation to that predicted 

from the direct two-fluid simulations.  The shapes of both distribution functions are similar, 

with a most probable particle diameter inline with experimentally measured values for this 

operating condition. This result suggests that the breakup and coalescence models applied 

within the E-L model are sufficiently reproducing the breakup and coalescence physics realized 

in the direct two-fluid model. Because the model can support a much coarser lattice resolution, 
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however, the E-L model computes the steady state droplet size distribution two orders-of-

magnitude faster than the direct two-fluid model.  

 

4.5 Predicting Droplet Size Distributions  

Beyond reproducing results from the direct two-fluid model, the speed improvements 

introduced by the E-L approach allow us to directly model the 2-gallon agitated system used by 

Sprow to develop the design correlation presented in Equation 4. (5) This system, as illustrated 

in Figure 1, is geometrically similar but approximately 8x larger by volume than the systems 

considered in Sections 3 and 4. The tank is agitated by a 0.076 m diameter flat blade impeller. 

Impeller speeds were set to 250, 300 and 500 RPM. The continuous phase was salt water with a 

density of 1005 kg/m3 and a viscosity of 10-6 m2/s. The dispersed phase was iso-octane with a 

density of 692 kg/m3 and a viscosity of 7x10-7 m2/s. The surface tension between the two fluids 

is 0.042 N/m.  The volume fraction of the dispersed phase was set to 0.005.  These parameters 

are consistent with the experiment.  

 

The lattice spacing was again set to 150 points across the tank diameter. The Courant number 

was set to 0.1. These discretization parameters are sufficient to properly resolve the blend 

time, shaft power and energy dissipation in this system. Coalescence was deactivated in the 

simulation, which mimics the non-coalescing environment realized in the experimental 

configuration.  Mechanistically, this response was modeled by only allowing particle diameters 

to decrease. The dispersed phase was reconstructed using 233,016 individual particles with an 

initial diameter set to 2.1 mm (corresponding to 𝐷௉,௢ = Δ𝑥/2). 

 

In Figure 9, we compare the predicted variation in mean droplet diameter with impeller speed 

to the measured data at these same operating conditions. We superimpose on this prediction 

the experimentally derived correlation by Sprow, which was developed in part using this 

measured data.  For each case, the simulated time required to achieve a steady-state droplet 

size distribution was on the order of 1-2 hours (20,000-40,000 impeller turns). This timescale, 

which is consistent with the experimental report, (5) is correlated to the time required for all 
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droplets to equilibrate with the energy dissipation extrema in the trailing vortex. The mean 

droplet diameter predicted from the model is 15-30% higher than the measured data for the 

three operating conditions considered here. Although the bias is noted, the difference is 

consistent with the measurement uncertainty. Moreover, consistent with the measured data 

and with expectations from the design correlation, the mean droplet diameter predicted from 

the simulation decreases as 𝑁ି
ల

ఱ.  In Figure 10, we compare the predicted to measured droplet 

diameter distribution for the 500 RPM operating condition during steady state operating 

conditions.  The data are presented as histograms describing the cumulative volume fraction of 

the dispersed phase. Conceptually speaking, for a specific diameter 𝑑∗ on the 𝑥-axis, the 

corresponding value on the 𝑦-axis is the fraction of the dispersed phase fluid volume contained 

in droplets with diameters smaller than 𝑑∗.  Both the predicted and measured distributions are 

non-symmetric. This behavior is expected for the non-coalescing system here. More specifically, 

the maximum energy dissipation rate within the trailing vortex establishes a maximum 

allowable droplet diameter. Below this maximum allowable diameter, however, variance is 

introduced by the non-uniform daughter volume fractions generated during breakup events.    

 

Although the shape of the predicted distribution is consistent with the measured data, the 

model predicts less variance in droplet diameter than was measured experimentally. Although 

some of this difference may be related to topological differences between the 

modeled/experimental geometry, we suspect that most is related to the droplet breakup 

kernel. As discussed in Section 2 and presented in Figure 3, the Unified Breakup Model presents 

less variance in the daughter droplet diameters than predictions from the direct two-fluid 

model. This under-prediction of daughter droplets with volume fraction extrema has the net 

effect of decreasing the variance in the droplet population.  We recognize that more 

sophisticated/tunable breakup kernels may be developed. The overall agreement between the 

predicted/measured values, however, suggests the Unified Breakup Model is predicting 

satisfactory daughter droplet volume fractions.  
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4.6 Advantages and Disadvantages   

The E-L model approach reproduces many droplet properties expected from the direct two-

fluid model. The approach can be used to reconstruct a continuous dispersed phase volume 

fraction as well as the corresponding variations in liquid density and viscosity. With 

breakup/coalescence active, the approach can reproduce the findings predicted from the direct 

two-fluid model, in terms of the most-probable droplet diameter and droplet size distribution. 

The predicted relationship between impeller speed and droplet diameter is also consistent with 

measured data. Since breakup and coalescence are described via user-defined kernels, it is 

straightforward to isolate the effects of these competing physics on the realized droplet 

distribution. This decomposition is more difficult within the context of a two-fluid model.   

 

Unlike the direct two-fluid model, which is limited by lattice spacing, the E-L approach is limited 

by particle count and particle tracking/breakup/coalescence compute time. On a compute node 

with 4 NVIDIA V100 GPUs, the two-fluid simulation advanced at approximately 200 million 

particle updates per second. This speed corresponds to about 100 impeller turns per day of 

compute time for the 1 L system operating at 400 RPM.  In principle, the total simulation 

capacity on this compute node is approximately 200 million individual droplets. In practice, 

however, only 100 mL of fluid dispersed uniformly into 0.1 mm droplets corresponds to about 

191 million particles. Dispersion of larger fluid volumes into smaller droplets would increase the 

particle population beyond computational practicality. These effects limited our ability to 

reproduce the data measured by Sprow at higher impeller speeds. Thus, although the E-L model 

presents speed and volume improvement over the direct two-fluid model, further 

generalizations are required to extend the approach to handle larger dispersed phase particle 

populations. 

 

5.0 Parcel/Eulerian Simulations 

5.1 Conceptual Overview 
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To extend the E-L model to support systems with a larger number of individual droplets, we can 

further generalize the approach to support droplet parcels. A droplet parcel is a single 

Lagrangian point object that represents the motion of a group of individual droplets. This 

approach has been used previously to investigate granular flows, hydrodynamics in gas-solid 

flows, and fluidized beds. (37) Like individual droplets, a parcel is defined by a parcel density 

and parcel diameter---properties that define its trajectory and dynamics.  In addition to these 

kinematic properties, however, each parcel is further characterized by a parcel number scale. 

This number scale, which quantifies the number of equal-sized droplets contained within the 

parcel, adjusts dynamically during breakup/coalescence events to conserve total droplet 

volume. The dispersed phase in the parcel approach is still modeled using many individually 

tracked Lagrangian objects which undergo breakup and coalescence events. The net effect of 

the coarse graining, however, is a reduction in the number of explicitly tracked particles and 

reduced computational burdens. 

 

5.2 Mathematical Description  

Mechanistically, fluid transport in the E-P model is identical to fluid transport in the E-L model. 

The generalization from droplet particle to droplet parcel, however, requires three key 

adjustments. First, since a parcel contains multiple real droplets, the local fluid volume fraction 

defined must be generalized to become: 

𝜙ௗ,௝  =
∑ ௅೔௏ು,೔

೔∈ೕ
೔

௏ೕ
.         Eqn. (24) 

where 𝐿௜  is the number scale of parcel 𝑖. The second adjustment is to the force on the fluid 

from the parcel. As a modification to Equation 20, the force on the fluid from the parcel is now 

a function of the parcel number scale: 

𝐹⃗௙,௝ = − ∑ 𝐿௜൫𝐹⃗௜,௔ + 𝐹⃗௜,஽൯
௜∈௝
௜ ,        Eqn. (25) 

where 𝑖 ∈ 𝑗 is the set of parcels with centers of mass contained in voxel 𝑗.  

 

The third adjustment is to breakup and coalescence. Droplet breakup, if active, follows the 

approach presented for the E-L model: if a parcel enters a region wherein the local and 

instantaneous 𝑑௠ defined by Equation 23 is smaller than the current parcel diameter, a 



Page 27 of 38 
 

breakup event is initiated. The new parcel diameter is then randomly sampled from the 

distribution function generated by the Unified Breakup Model, which is calculated on-the-fly 

using the fluid properties, the original parcel diameter, and the surrounding energy dissipation 

rate. Within the E-P model, however, a new/explicitly tracked droplet is not generated. Instead, 

to conserve parcel volume, the number scale following a breakup event is modified to: 

  𝐿௜(𝑡) = 𝐿௜,௢ ቀ
ௗ೔,೚

ௗ೔(௧)
ቁ

ଷ

          Eqn. (26) 

where 𝑑௜(𝑡) is the instantaneous parcel diameter (post-breakup), 𝑑௜,௢ is the initial parcel 

diameter, and 𝐿௜,௢ is the initial parcel number scale. Equation 26 ensures that the total droplet 

volume within each parcel is conserved over time.  

 

Droplet coalescence can likewise be active or inactive in the E-P model. Since not all particles 

are tracked explicitly, however, the coalescence kernel must be a function of the local fluid 

properties and/or time-history of the fluid properties sampled by the parcel. The net effect of 

the kernel will be to increase the particle diameter while decreasing the parcel number scale. In 

the limit of actively coalescing systems with droplet mean free paths that are small compared 

to the droplet diameter, instantaneous and local droplet diameters will be equal to the local 𝑑௠ 

defined by Equation 23. For electrolytic solutions or systems with low dispersed phase volume 

fractions, the effects of coalescence can be ignored. Between these two extremes, a user-

defined coalescence relationship must be developed using predictions from a two-fluid model 

and/or measured data.   

 

 5.3 Model Set-up 

We continue with the direct comparison to the measured data by Sprow. (5) The computational 

efficiencies introduced by the E-P approach, however, allow us to model the system at higher 

impeller speeds (which increases the droplet count to populations that exceed what is practical 

using the E-L approach). This system is the same 2 gallon system presented in Figure 1 with the 

same fluid properties. The impeller speeds considered here range from 250 to 2000 RPM---the 

full spectrum considered in the experiment.  
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As with the E-L simulations, the lattice spacing was set to 150 points across the tank diameter, 

which corresponded to a grid spacing of 4.2 mm. The Courant number was set to 0.1. 

Coalescence was deactivated in the simulation, which mimics the non-coalescing chemistry 

realized in the experimental configuration.  Mechanistically, this behavior was modeled by only 

allowing parcel diameters to decrease, as permitted by Equation 23. We set  𝜀 to the 

instantaneous value surrounding each parcel, implying instantaneous droplet breakup due to 

increases in the surrounding local energy dissipation as parcels moved through the vessel. The 

dispersed phase was defined as 233,016 individual parcels, with an initial diameter set to 2.1 

mm. The initial number scale set to 1.0, which corresponds to a total dispersed phase fluid 

volume of 3.6x10-6 m3.  

 

5.4 Model Output 

We superimpose on Figure 9 the steady-state mean droplet diameter as a function of impeller 

speed, as predicted using the E-P model. Since the droplets are represented as parcels, the 

mean droplet diameter across the system is calculated from: 

𝑑̅ =
∑ ௅೔ௗ೔

ಿ೛
೔

∑ ௅೔
ಿ೛
೔

          Eqn. (27) 

where 𝑁௣ is the number of parcels in the system. Each system required approximately 30,000 

impeller turns to reach a steady state droplet distribution, a duration consistent with the E-L 

models. We superimpose on this data the mean droplet diameter measured by Sprow at each 

operating condition, as well as the droplet diameter predicted from the experimentally derived 

design correlation. At each impeller speed, the predicted mean droplet diameter is within 25% 

of the measured value. Consistent with the measured data, the mean droplet diameter 

predicted from the E-P model decreases as 𝑁ି
ల

ఱ.  

 

In contrast to the mean droplet diameters predicted from the E-L model, which were elevated 

relative to expectations from the experimental correlation, the E-P model tends to predict 

smaller mean droplet diameters. This shift is related to differences in the droplet breakup 

process between the two models. Within the E-L approach, a mother droplet will undergo 
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pairwise breakup events until its diameter crosses below the threshold defined in Equation 23.  

Since the volume fraction of the daughter droplet is small relative to the mother droplet, the 

outcome of this process is one (or more) small droplet(s) along with a larger residual droplet 

with a diameter just below the threshold defined by Equation 23. In the E-P approach, all 

droplets represented by the parcel are scaled to the diameter of the smaller daughter; there is 

no large residual droplet with a diameter just below the threshold defined by Equation 23. The 

net effect of this difference is a smaller mean droplet diameter at the end of the breakup 

process. The experimental data, which sits between the predictions from the two methods, 

suggests that the behavior in the physical system may follow a hybridization of these two 

approaches.    

 

In Figure 10, we present the steady state droplet size distributions predicted from the E-P 

model for impeller speeds of 500, 1000 and 2000 RPM. Like the E-L model, the shape of the 

predicted distribution and the corresponding shift with impeller speed are consistent with the 

measured data. The predicted distribution, again, presents less variance in droplet diameter 

relative to the experiment. As with the E-L model, we suspect this difference is related to an 

under sampling of the daughter droplet extrema in the Unified Breakup Model. The overall 

agreement between the predicted and measured mean droplet diameter and droplet size 

distributions, however, reinforce the generality of the modeling approach and associated 

breakup model.  

 

5.5 Advantages and Disadvantages   

Predictions from the E-P model are consistent with predictions from the E-L model. The output 

are likewise consistent with the measured variations in the mean droplet diameter with 

impeller speed and measured variations in the droplet diameter distribution. Like the E-L 

model, the E-P model requires a user-defined breakup kernel.  This kernel can be motivated by 

predictions from two-fluid simulations and/or predictions from the Unified Breakup Model.  

Coalescence is less straightforward in the E-P model, since not all droplets are tracked 

individually. For non-coalescing systems, it is straightforward to deactivate coalescence 
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altogether. For actively coalescing systems or systems with high dispersed phase volume 

fractions, the instantaneous and local droplet diameters can be assumed to be equal to the 

local 𝑑௠ defined by Equation 23. Between these extremes, more sophisticated coalescence 

kernels would need to be developed.  

 

Because the number of tracked objects is limited to a constant number of parcels, the solver 

can advance quickly compared to the E-L model. On two NVIDIA V100 GPUs, each E-P 

simulation was able to predict a steady-state droplet size distribution after only a few hours of 

runtime. This limit on particle count also makes the E-P approach extensible to larger-scale 

vessels. In principle, the number of tracked parcels need only be sufficient to (i) reconstruct a 

continuous dispersed phase fluid volume fraction, and (ii) properly sample the energy 

dissipation landscape/droplet size distribution across the vessel. In most cases, these conditions 

can be mutually satisfied by setting the initial parcel diameter to the simulation lattice spacing. 

The total number of tracked parcels will therefore not exceed the total number of simulation 

lattice points.  Under these conditions, the runtimes of the E-P simulations are expected to be 

order-of-magnitude consistent with the runtimes of a single-phase fluid simulation, which are 

routinely executed at working volumes that exceed 1000 L. (24) 

 

6.0 Qualitative guidance and next steps  

The self-consistency of the three approaches presented here is noteworthy, in terms of 

corroborating expectations from first-principles turbulence theory and reproducing key output 

from experimental data.  Because each model takes a mechanistic approach to droplet 

transport and breakup, a change to the simulation operating conditions and/or scale does not 

require adjustment to the model set-up. Although hardware limitations may inform which 

modeling approach is selected, the predicted droplet size distribution and its variation with 

batch operating conditions are not expected to depend strongly on which modeling approach is 

applied. We also note that, given the generality of the Unified Breakup Model, the approach 

presented here is also extendable to gas-liquid simulations.  This generalization is useful for 

predicting bubbles sizes in gasified bioreactors, and the associated mass transfer rates.   
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Figure 1: Two agitated tank systems considered in this work. Both systems are geometrically similar with approximate fluid 
volumes of 1 liter and 2 gallons, respectively.  The smaller volume vessel is agitated by a Rushton impeller while the larger vessel 
is agitated by a flat blade turbine.   At the start of the simulation, the volume fraction of the dispersed fluid (i.e., the value of 𝜙) 
is set to 1.0 in the region inside the marked sphere. Outside this region, the volume fraction of the dispersed fluid is set to zero.  

 
Figure 2. Output from the direct two-fluid simulation. Left: Instantaneous snapshot of fluid speed. Center: Snapshot of energy 
dissipation rate. Right: Snapshot of droplets. Images generated after 10 seconds of agitation. 

  
Figure 3: Scatter plot of Sauter mean droplet diameter versus surrounding energy dissipation rates. The variation in maximum 
droplet diameter with energy dissipation rate is consistent with expectations from the semi-empirical model presented as 



Page 32 of 38 
 

Equation 3. (15) The energy dissipation rate sampled in the trailing vortex is consistent with experimentally derived design 
correlations, presented as Equation 15.  (16)   

 
Figure 4: Probability density function of droplet diameters for the direct two-fluid simulation and the Eulerian-Lagrangian (E-L) 

simulations for the 1 L system agitated by a Rushton impeller. Superimposed on this data is the mean droplet diameter expected 
from first principles, as well as expectations from the Sprow correlation. (4)  

 
Figure 5: Left: Trajectory of droplets undergoing break-up within the trailing vortex. Right: Predicted histogram of daughter 
droplet volume fractions, 𝑓௩ , following a binary breakup event. Superimposed on this predicted histogram is the daughter 

volume fraction probability distribution function calculated using the Unified Breakup Model.  (29) 

 
Figure 6: Illustration of the cherry-pit particles used in the E-L model and the reconstruction of the dispersed phase fluid volume. 
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Figure 7: Two-fluid blending simulation. Top: Time-evolution of dispersed phase particles used to track the position of the second 
fluid. Center: Dispersed phase volume fraction, as reconstructed from the particle volume fraction. Bottom: Reference scalar 
field, advanced using the advection-diffusion equation.  

 

 
Figure 8: Density-driven stratification process. As expected from the Richardson number, the impeller speed is insufficient to 

overcome the buoyancy force separating the two fluids.  The E-L model is correctly representing the effects of this density 
difference, while preserving incompressibility within the dispersed phase.  
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Figure 9: Variation in mean droplet diameter with impeller speed. Comparisons between design correlation, experimental 
measurement, predictions from the Eulerian-Lagrangian (E-L) method, and the Eulerian-Parcel (E-P) method.  

 

 

  

Figure 10: Variation in droplet size distribution at multiple impeller speeds. Comparisons between experimental measurement 
(EXP), predictions from the Eulerian-Lagrangian (E-L) simulations, and the Eulerian-Parcel (E-P) simulations. 
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List of Symbols 
 
Greek 

𝛿௫  Lattice-spacing 
𝛿௧  Timestep 
𝜀 Specific energy dissipation rate 
𝜇 Dynamic viscosity 
𝜈௘,௜ Eddy viscosity 
𝜌 Density 
𝜌ு Heavy fluid density 
𝜌௅ Light fluid density 
𝜎 Surface Tension 
𝜏 Torque 
𝜏௙ Relaxation time 
𝜙 Volume fraction 
𝜙௝ Dispersed phase volume fraction 
𝜙௣ Hard sphere packing fraction 
𝜔 Angular velocity 
 
Latin 
𝑎⃗௜  Acceleration of particle 
𝐷் Diameter of the dispersed phase droplets 
𝐶௠ Courant number 
𝐶௦ Smagorinsky coefficient 
𝑐 Species concentration 
𝐷 Impeller diameter or Species Diffusion 
coefficient 
𝐷௠ Maximum Diameter 
𝑑௖  Particle core diameter 
𝑑௠ Mean diameter  
𝑑ଷଶ Sauter mean diameter 
𝐸௧ Total energy dissipation rate 
𝐹⃗௕ Body force 
𝐹⃗௜,௔ Added mass force on particle 
𝐹⃗௜,஽ Drag force 
𝐹⃗௜,௚ Gravity force on particle 

𝐹⃗௜௝  Interparticle contact force 
𝐹⃗௜,௣ Pressure gradient force 
𝐹⃗௦ Surface force 
𝑓  Component of the probability density 
function 
𝑓଴ Equilibrium probability density function 
𝑓௩ Droplet daughter volume fraction 
𝑔 Gravity 
𝐻 Fluid height 
𝑘௜௝ Stiffness co-factor 
𝐿௜ Number scale 
𝑀 mobility parameter  
𝑚௜ Mass of particle 
𝑁 Impeller RPM 
𝑁௧ Total number of particles 
𝑛ሬ⃗  Surface normal 
𝑃௢ Impeller power number 
𝑝 Fluid pressure 
𝑆̅  Norm of the strain rate tensor 
𝑢 Speed 
𝑉௢ initial volume of dispersed phase fluid 
𝑉௥ Reference velocity 
𝑣 Velocity  
𝑊 Interface width 
𝑤𝑝 Width of impeller blade 
𝑥⃗ Position 
𝑌 Elastic modulus 
 
Acronyms  
CPU Central Processing Unit 
GPU Graphics Processing Unit 
E-L Eulerian Lagrangian Model 
E-P Eulerian Parcel Model 
PBM Population balance models 
RANS Reynolds Average Navier-Stokes 
𝑊𝑒 Weber Number 
𝑅𝑖 Richardsen Number 
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