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Abstract

The degree of rate control quantitatively identifies the kinetically relevant (some-

times known as rate-limiting) steps of a complex reaction network. This concept relies

on derivatives which are commonly implemented numerically, e.g. with finite differ-

ences. Numerical derivatives are tedious to implement, and can be problematic, and

unstable or unreliable. In this work, we demonstrate the use of automatic differentia-

tion in the evaluation of the degree of rate control. Automatic differentiation libraries

are increasingly available through modern machine learning frameworks. Compared to

the finite differences, automatic differentiation provides solutions with higher accuracy

with lower computational cost. Furthermore, we illustrate a hybrid local-global sensi-

tivity analysis method, the distributed evaluation of local sensitivity analysis (DELSA),

to assess the importance of kinetic parameters over an uncertain space. This method

also benefits from automatic differentiation to obtain high-quality results efficiently.

1 Introduction

Complex reaction systems involving multiple reaction steps are common in the real world.

Quantifying the influence of each reaction in a complex system is an important step to
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better understand what controls the kinetic behavior of the overall rate or to improve the

reaction system to meet a desired target by adjusting the reaction conditions or catalysts.

For example, we can increase the rate of the rate-determining step to increase the net reaction

rate. Among various tools, the degree of rate control (DRC) is a versatile concept proposed

by Campbell to measure the kinetic contribution of each reaction steps to a target reaction

rate1,2. There are many applications of this concept in the research areas of catalysis and

microkinetic modeling3–7. These applications involve the investigation of the relationship

between the reaction conditions and the rate-determining step3, using the degree of rate

control to screen the catalysts5, exploring the mechanism of reactions3,4 and so forth. The

kinetic DRC is defined as the derivative of the rate with respect to the energy of the transition

state or the forward kinetic rate constant given the corresponding equilibrium constant is

fixed:

XRC,i =
ki
r

(
∂r

∂ki

)
kj 6=i,Ki

=

(
∂ ln r

∂ ln ki

)
kj 6=i,Ki

(1)

where r is the net rate of the production of interest, ki is the forward kinetic constant of

step i and Ki is the equilibrium constant of step i. The thermodynamic version of the DRC

extends the application of this concept to the free energy of the intermediate species in the

reaction system, which is mathematically defined as

XTRC,n =

(
∂ ln r

∂−G0
n

RT

)
G0

m6=n,G
0,TS
i

(2)

where G0
m is the free energy of species m, G0,TS

i is the transition-state energy of step {i}.

Several variants of the DRC have been proposed to fulfill different purposes, including the

DRC for selectivity8, for transient kinetics,2,9,10 and for uncertain parameters11.

From a practical perspective, a simple and common way to assess the DRC is using finite

difference (FD) approximations for the derivatives9,10,12. These are fairly straightforward to

implement and only require a few more lines of code in addition to the original simulation
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code. Mathematically, the centered difference approximation is formulated by

XRC,i =
ki
r

(
∂r

∂ki

)
kj 6=i,Ki

≈ ki
r

δr

δki
(3)

where δki is the perturbation applied on ki and δr is the change of the net reaction

rate resulted from the perturbation of ki. Although the finite difference approximation is a

popular choice because of its ease of understanding and implementation, one must be careful

to choose the magnitude of the perturbation. The change of the kinetic constant should be

small enough such that the response of the net reaction is linear, but not so small that goes

beyond the precision limitation of the computer9.

Formally, there is a trade-off between the truncation error and the rounding error in

this approach. The scale of the truncation error is O(δ) for the first-order derivative, which

prefers small δ. However, when the δ is smaller than the precision limitation, then the value

is no longer reliable. In addition, FD requires O(n) rounds of function calls or forward

simulations to get the derivatives of n parameters, which is time consuming for large size

of parameters. For example, Bjarne et al. took 300 CPU-hours to conduct the sensitivity

analysis when investigating the mechanism of CO2 hydrogenation on Ni(111) using finite

difference method12.

To avoid these issues, sensitivity analysis methods like the direct sensitivity analysis

and the adjoint sensitivity analysis13 are usually adopted by common differential equation

solvers14–16 to provide the derivative of the numerical solution to the parameters for differen-

tial equations. The direct sensitivity analysis converts the solution sensitivity with respect

to the parameters of differential equations into n extra (number of parameters) differen-

tial equations, which are solved simultaneously with the original differential equations. The

adjoint sensitivity analysis requires the definition of some scalar functional of the numer-

ical solution and the parameters. Then the sensitivities are given by an integration. For

the mathematical details, one could refer to the introduction of these two methods in the

chemical kinetic systems by Sandu17.
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To be applied in the calculation of the DRC, the partial derivatives of the reaction

rate to the concentrations and the kinetic parameters still needs to be solved, since the

sensitivity analysis methods only provide the derivatives of the numerical solution (commonly

the concentration or coverages in the chemical kinetic systems) to the parameters. One of the

tools to integrate these derivatives is automatic differentiation (AD),18,19 which automatically

evaluates the derivatives of a function that is built on a set of atomic operations and functions

(e.g., addition, multiplication, exp, log, etc.). The derivatives are generated by chain rule

based on the derivatives of these elementary operations. For the DRC case, the numerical

integration and post functions from the kinetic constants to the reaction rate could be

regarded as a sequence of the atomic operations and functions. Thus, the derivatives of the

reaction rate to the kinetic constants could be evaluated by the chain rule applied on this

sequence of basic operations. In addition, AD calculates the derivatives simultaneously with

the function evaluations, which makes it more efficient compared to the finite difference or

direct sensitivity analysis.

In this work, we adopt AD to the evaluation of the DRC. In section 2.1, we introduce

the working mechanism of the AD to obtain the derivatives of a function automatically. In

section 3, we illustrate three case studies to check the correctness of the AD and to show

its advantages over FD. Specifically, we take the hypothetical reaction scheme from Foley’s

non-steady DRC work as a simple case10. For a slightly more complicated example, we

use the water-gas shift reaction adopted from Motagamwala’s maximum rate work20. Fi-

nally, we show the application of AD to calculate the DRC of a more complex mechanism,

the propylene partial oxidation on Cu(100),21 which involves 17 elementary steps. Fur-

ther more, we demonstrate the utilization of the distributed evaluation of local sensitivity

analysis (DELSA)22 to deal with the uncertain range of the kinetic parameters, which is a

hybrid local-global sensitivity analysis method to identify the important parameters and the

importance distribution over an uncertain range.
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2 Methodology

2.1 Automatic Differentiation

Automatic differentiation has two modes to generate the derivatives: the forward mode and

the reverse mode18,19. In the forward mode, the computational graph starts with the input

variables, and grows along the elementary operations and functions applied on the input

variables. During the forward expansion, the function evaluations and derivative calculations

take place simultaneously. In the reverse mode, there are two rounds of evaluations. The

first one is the forward evaluation of the function values starts from the input variables.

The second round is the back-propagation of the derivatives from the function output to the

input.

We use the example y = ln (3x1 − 2x2) + x1x2 with (x1, x2) = (1, 1) as a prototype

example to illustrate the workflow of the AD. The computational graph is shown in Figure

1. The details of the forward AD and the reverse mode are shown in Table 1 and Table 2.

The comparison between the forward and the reverse mode is clear in Table 1 and Table 2.

In the forward mode, all derivatives of the intermediate and the final results with respect

to a specified input variable (x1 in this case) are calculated in one forward propagation.

However, in the reverse mode, the derivative of a specified scalar output with respect to all

the intermediate and input variables are obtained in one backward propagation. Thus, the

forward mode is suitable for the functions with fewer input dimensions, while the reverse

mode is more efficient for the functions with fewer output dimensions.

Similar to the example above, AD could also be applied on the numerical integration of

the ODE systems. Consider the initial-value problem

θ̇ = f(θ,k,K, t), θ(k,K, t = 0) = θ0 (4)

where θ is the state vector, f is the state derivative vector, k and K are the parameters

of this ODE system, and θ 0 is the initial state vector. For the sake of simplicity, we assume

5
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Figure 1: Computational graph for the example y = ln (3x1 − 2x2) + x1x2. Each blue node
contains the corresponding variable and the operation that applied on its parent node(s).
For instance, w3 is the result of the multiplication between a constant 3 and another node
variable w1.

Table 1: Forward AD for the example y = ln (3x1 − 2x2)+x1x2. Left side shows the forward
function evaluations. Right side shows the derivative of ∂y

∂x1
. Head dot means ∂

∂x1

Function evaluation Derivative calculation (from top to bottom)
w1 = x1 = 1 ẇ1 = ẋ1 = 1
w2 = x2 = 1 ẇ2 = ẋ2 = 0
w3 = 3w1 = 3 ẇ3 = 3ẇ1 = 3
w4 = 2w2 = 2 ẇ4 = 2ẇ2 = 0
w5 = w3 − w4 = 1 ẇ5 = ẇ3 − ẇ4 = 3
w6 = lnw5 = 0 ẇ6 = 1

w5
ẇ5 = 3

w7 = w1w2 = 1 ẇ7 = w1ẇ2 + ẇ1w2 = 1
w8 = w6 + w7 = 1 ẇ8 = ẇ6 + ẇ7 = 4
y = w8 = 1 ẏ = ẇ8 = 4
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Table 2: Reverse AD for the example y = ln (3x1 − 2x2) +x1x2. Left side shows the forward
function evaluations. Right side shows the back-propagation of the derivative of ∂y

∂x1
.

Function evaluation Derivative calculation (from bottom to top)

w1 = x1 = 1 ∂y
∂x1

= ∂y
∂w1

∂w1

∂x1
= 4

w2 = x2 = 1 ∂y
∂x2

= ∂y
∂w2

∂w2

∂x2
= −1

w3 = 3w1 = 3 ∂y
∂w1

= ∂y
∂w1

+ ∂y
∂w3

∂w3

∂w1
= 4

w4 = 2w2 = 2 ∂y
∂w2

= ∂y
∂w2

+ ∂y
∂w4

∂w4

∂w2
= −1

w5 = w3 − w4 = 1 ∂y
∂w3

= ∂y
∂w5

∂w5

∂w3
= 1

∂y
∂w4

= ∂y
∂w5

∂w5

∂w4
= −1

w6 = lnw5 = 0 ∂y
∂w5

= ∂y
∂w6

∂w6

∂w5
= 1

w7 = w1w2 = 1 ∂y
∂w1

= ∂y
∂w7

∂w7

∂w1
= 1

∂y
∂w2

= ∂y
∂w7

∂w7

∂w2
= 1

w8 = w6 + w7 = 1 ∂y
∂w6

= ∂y
∂w8

∂w8

∂w6
= 1

∂y
∂w7

= ∂y
∂w8

∂w8

∂w7
= 1

y = w8 = 1 ∂y
∂w8

= ∂y
∂y

∂y
∂w8

= 1

the explicit forward Euler method is used to solve this ODE. Thus, the update equation is

θn+1 = θn + hf(θn,k,K, tn) (5)

where h is the step size. Therefore, to get the derivative of θn+1 with respect to k, we

have

dθn+1

dk
=
dθn
dk

+ h
df(θn,k,K, tn)

dk
(6)

In the forward AD, the derivative of the terms at the RHS of Eq 6 with respect to k

is propagated to the LHS. In the reverse AD, the derivative of θn+1 with respect to the

LHS is back propagated to the variables in the RHS. In both modes, the derivatives of the

ODE solution with respect to the parameters could be obtained automatically. Even if there

are post operations applied on the ODE solution (e.g., conversion of the concentrations to

reaction rates), the derivatives of the final results to the parameters can be calculated in an

end-to-end way as long as these operations are in the same computational graph. We note

that some ODE solvers may have the step size (h) that is dependent on the parameters, in

7
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this case, the derivative of the step size with respect to the parameters are enforced to be

zero during the implementation23.

In the past decade, various AD packages have been developed for applications in machine

learning19. Typical examples include Pytorch24 and Jax25 in Python, and ForwardDiff26 in

Julia. To integrate the AD into the solution of an ODE system, the ODE solver should be

compatible to these AD packages and the operations and functions in the ODE solver should

be included in the computational graph of the AD packages. There are several modules sat-

isfying these requirements such as the torchdiffeq27 for Pytorch, the DifferentialEquations28

for ForwardDiff and the PyBaMM29 for Jax. In this work, we use the ForwardDiff and

DifferentialEquations in the Julia language since they provides various differentiable

ODE solvers that could handle various non-stiff and stiff problems.

2.2 Distributed Evaluation of Local Sensitivity Analysis

Distributed evaluation of local sensitivity analysis (DELSA)22 is a hybrid local-global sen-

sitivity analysis method to measure the distribution of parameter sensitivity across the pa-

rameter space with low computational cost. Basically, it is an extension to local sensitivity

analysis that takes the uncertainty of the parameters into account. The importance of a

parameter over the parameter space is measured by a local sensitivity statistic like the me-

dian or the mean of a set of samples drawn from the parameter space. Local sensitivity

analysis is then conducted on each parameter sample. This makes DELSA much cheaper to

get the detailed distribution of the importance over the parameter space than the Sobol’s

indices which is a popular global sensitivity analysis method based on the variance decom-

position30,31. Mathematically, the first-order sensitivity measure for jth parameter at sample

i is defined as

Sij =

∣∣∣ yiθij ∣∣∣2 s2j
V (yi)

(7)

8
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where Sij is the sensitivity measure for the parameter θij at sample i, yi is the model

output or an element of the model output of sample i, sj is the prior variance of θj, and

V (yi) is the total variance of the model output yi, which can be evaluated using the first-

order-second-moment method32:

V (yi) =

(
∂yi
∂θ

)T (
XTωX

)(∂yi
∂θ

)
(8)

where X is a matrix of (nobs + nprior) rows and nparam columns. nobs, nprior, nparam are

the number of observations, the number of prior information equations and the number of

parameters respectively. In the application of DELSA, there is no observation and the prior

information is the variance of each parameter. Therefore, nobs = 0 and nprior = nparam,

and each row of X has zeros except for one which indicates the parameter associated with

the prior information. ω is a diagonal matrix contains the reciprocal of the prior variance

of each parameter. More details of the structure of X and ω could refer to the related

works22,32,33.

Intuitively, the sensitivity measure Sij captures the contribution of θij to the total un-

certainty of the output yi. The parameters with more contribution to the uncertainty are

considered more important. This sensitivity measure gives similar importance evaluation to

the Sobol’s method30 for the uncertain parameters in the previous reports22,34. In addition,

DELSA could be easily integrated to the original local sensitivity implementation which is

the DRC with automatic differentiation in our work.

3 Results and Discussion

We firstly show that AD can reproduce the DRC results of previous reports10,20 in the first

two simple cases. Then, we compare the performance of the FD and the AD on another more

complicated reaction mechanism of propylene oxidation21. Lastly, we show the application

of AD to deal with uncertain parameters by manually introducing an uncertain range for

9
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the kinetic constants in the propylene oxidation case.

3.1 Case I: Hypothetical Two-Step Reaction

We first consider the hypothetical reaction mechanism in Table 310.

Table 3: Hypothetical Two-Step Catalytic Reaction (case I).10

Step id Elementary Step ki k−i
1 A+ ∗ ↔ A∗ 10−5 0
2 A ∗+B → C + ∗ 1 NA

which leads to the following differential equations (Eqs 9 - 10):

1

L

θA∗(t)

dt
= k1aA(t)θ∗(t)− k−1θA∗(t)− k2aB(t)θA∗(t) (9)

1

L

θ∗(t)

dt
= −k1aA(t)θ∗(t) + k−1θA∗(t) + k2aB(t)θA∗(t) (10)

where θi are the coverages, ai are the thermodynamic activities and L is the number of

active sites. The net reaction rate is defined as the rate to produce C per active site:

rC(t)

L
= k2aB(t)θA∗(t) (11)

The analytical solution for rC(t)/L is

rC(t)

L
=

k1aAk2aB
k1aA + k−1 + k2aB

(
1− e−(k1aA+k−1+k2aB)t

)
+ k2aBθA∗,0e

−(k1aA+k−1+k2aB)t (12)

where θA∗,0 is the coverage of A∗ at t = 0.

According to the settings in the original paper10, aA = 1, aB(t < 0) = 1 and

10
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aB(t ≥ 0) = 3. Since k−1 is set as 0 and k1 � k2, thus

rC(t)

L
= (k1aA)

(
1− e−(k2aB)t

)
+ k2aBθA∗,0e

−(k2aB)t (13)

which has the corresponding DRC as:

XRC,1 =
k1L

rC(t)
aA
(
1− e−(k2aB)t

)
(14)

XRC,2 =
k2L

rC(t)

[
k1aAaBte

−(k2aB)t + aBθA∗,0e
−(k2aB)t − k2a2BθA∗,0te−(k2aB)t

]
(15)

We note that this transient DRC is based on the definition of Eq 1, which is different

from the modified version proposed by Bhan10. Upon Eq 14 - 15, notice that at t = 0+,

XRC,1 is 0 and XRC,2 is 1. As t → ∞, XRC,1 grows to 1 and XRC,2 decreases to 0. The

solutions from the analytical form and the AD are shown in Figure 2, in which the solution

of the AD perfectly matches the analytic solution over the whole time range. The DRC in

the Figure 2 does not obey the sum of kinetic DRC equaling one because the rate during the

transient process also depends on the time, apart from the kinetic constants. This issue is

discussed in more detail in the non-steady DRC paper10. The main message conveyed by this

simple example is that the AD is practically equivalent to having the analytical derivatives

to evaluate the transient DRC defined by Eq 1, but without the need to analytically derive

the expressions or to approximate them with finite differences.

3.2 Case II: Redox mechanism for water-gas shift

Case I was a hypothetical example and it only contained two steps with manually set kinetic

parameters, which is relatively simple. In case II, we consider a more complicated reaction

mechanism for the water-gas shift reaction20 which is listed in Table 4. The pressures for

the gas-phase species PCO, PH2O, PH2 , PCO2 are 0.07 atm, 0.21 atm, 0.38 atm, and 0.085

11
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Figure 2: Degree of rate control for the hypothetical reaction of case 1 evaluated by analytic
solution and automatic differentiation.
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atm, respectively. The target net rate is of the production of the hydrogen, which could be

expressed as (Eq 16):

rH2 = k7θ
2
H∗ − k−7

PH2

P
θ2∗ (16)

For this reaction system, the DRC evaluated by the AD are shown in Figure 3. Among

the 7 steps of this reaction mechanism, only two steps are identified as important to the net

rate. Step 4 (dissociation of OH∗) has a DRC of 0.88 while step 5 (formation of CO2∗) has

a DRC of 0.12. The other 5 steps have little influence on the net rate of the whole reaction

system. This result is consistent to the calculation of the original paper20 and illustrates the

reliability of the AD to evaluation the DRC of a moderately complicated reaction system.

Table 4: Redox mechanism for water-gas shift (case II).20

Step id Elementary Step Keq,i ki
1 CO + ∗ ↔ CO∗ 2.15× 102 1.33× 108

2 H2O + ∗ ↔ H2O∗ 5.93× 10−5 2.01× 1011

3 H2O ∗+∗ ↔ H ∗+OH∗ 6.28× 10−2 2.64× 106

4 OH ∗+∗ ↔ H ∗+O∗ 1.18× 10−5 5.24× 101

5 CO ∗+O∗ ↔ CO2 ∗+∗ 1.03× 103 2.05× 105

6 CO2∗ ↔ CO2 + ∗ 1.92× 105 1.48× 1012

7 2H∗ ↔ H2 + 2∗ 4.50× 101 5.32× 102

3.3 Case III: Propylene Partial Oxidation

Our third case is the propylene partial oxidation21, which could be an environmentally

friendly route to produce propylene oxide. Its 17 elementary steps and corresponding kinetic

constants are shown in Table 5. The partial pressures for the gas-phase species PC3H6 and

PO2 are 0.1 bar and 0.05 bar respectively. The reaction simulation temperature is 500 K.

The net rate of interest is the desorption of propylene oxide, which is the sum of the step 13

and 14 (Eq 17):

rPO = k13θPO1∗ − k−13
PPO
P

θv∗ + k14θPO2∗ − k−14
PPO
P

θv∗ (17)

13
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Figure 3: Degree of rate control for the water-gas shift reaction (case II).20
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The DRC results for this case are shown in Figure 4, where the adsorption of propylene

as the III type and the desorption of PO2∗ have the major positive contribution to the

generation of PO(g). These positive DRCs are reasonable since the adsorption of propylene

provides the material to produce PO(g) and the desorption of PO2∗ directly generates

PO(g). On the other side, the desorption of O2∗ hinders the production of PO(g) since

this step results in more v∗ produced and more O∗ and O1∗ consumed, which benefits the

negative direction of step 13 and 14.

Table 5: Elementary steps for the propylene partial oxidation (case III)21. Ea and E−r
a are the

activation energies for the forward and reverse directions. A and A−r are the pre-expotential
factor of the forward and reverse reactions. v represents the oxygen vacancy.
Step id Elementary Step Ea(eV ) A E−r

a (eV ) A−r

1 C3H6(g) + ∗ ↔ C3H6(I)∗ 0.00 1.87× 108 0.42 1.00× 1013

2 C3H6(g) + ∗ ↔ C3H6(II)∗ 0.00 1.87× 108 0.57 1.00× 1013

3 C3H6(g) + ∗ ↔ C3H6(III)∗ 0.00 1.87× 108 0.58 1.00× 1013

4 C3H6(I) ∗+O∗ ↔ C3H5 ∗+OH∗ 0.36 8.03× 1012 1.40 8.93× 1012

5 C3H6(II) ∗+O∗ ↔ OMP1∗ 0.59 1.17× 1013 1.10 1.78× 1013

6 C3H6(III) +O∗ ↔ OMP2∗ 0.31 1.28× 1013 0.95 1.92× 1013

7 C3H5 ∗+O∗ ↔ C3H4O ∗+H2O∗ 0.30 1.14× 1013 1.19 7.14× 1012

8 C3H5O ∗+OH∗ ↔ C3H4O ∗+H2O∗ 0.54 1.09× 1013 1.72 1.54× 1013

9 OMP1∗ ↔ PO1 ∗+∗ 0.62 4.10× 1013 0.83 1.53× 1013

10 OMP2∗ ↔ PO2 ∗+∗ 0.77 3.24× 1013 0.89 1.31× 1013

11 H2O∗ ↔ H2O(g) + v∗ 0.76 1.00× 1013 0.00 2.85× 108

12 C3H4O∗ ↔ C3H4O(g) + v∗ 0.10 1.00× 1013 0.00 1.62× 108

13 PO1∗ ↔ PO(g) + v∗ 0.90 1.00× 1013 0.00 1.59× 108

14 PO2∗ ↔ PO(g) + v∗ 0.96 1.00× 1013 0.00 1.59× 108

15 O2 ∗+v∗ ↔ O ∗+O1∗ 0.00 1.00× 1013 1.43 1.00× 1013

16 2O1∗ ↔ O2 ∗+∗ 0.00 1.00× 1013 1.18 1.00× 1013

17 O2∗ ↔ O2(g) + ∗ 1.36 1.00× 1013 0.00 2.14× 108

We then compare the DRC calculation results using FD and AD in this case. The

temperature is set as 350 K in this comparison. We evaluate the transient DRC defined

by Eq 1 using the FD and the AD methods separately. The transient DRC for step 3, 4,

14, and 17 are shown in Figure 5. Different perturbation magnitudes (10−4, 10−11, 10−14)

are used in the FD method. There is an optimal choice of the perturbation size to reduce

the truncation error and the rounding error. A large perturbation size suffers from the
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Figure 4: Degree of rate control for the propylene partial oxidation reaction (case III).21
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truncation error resulting from the nonlinearity of the target function, which is the transient

part from t = 0 to t = 5. Too small of a perturbation size makes the solution affected

by the rounding error due to the limited precision for floating numbers. In this case, 10−11

is the best perturbation size among these candidates, whose result is the most aligned with

the solution of the AD method. Case III illustrates that although with finite difference it is

possible to get a reliable transient DRC for a complicated system, it highly depends on the

choice of the perturbation size. This issue does not hold for the automatic differentiation

since there is no truncation error during the derivative evaluation process of the AD.

Figure 5: Transient degree of rate control evaluated by the finite difference and automatic
differentiation for the propylene partial oxidation reactions 3, 4, 14 and 17 (case III)21.
Different perturbation sizes are used in the FD method as indicated in the legend.
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3.4 Degree of Rate Control for Uncertain Parameters

It is common to consider an uncertain space of the kinetic parameters instead of the exact

values in the real-world catalyst applications. To illustrate the usage of the DELSA22 to

measure the importance of the parameters over a space, we hypothetically add an uncer-

tainty range to the forward kinetic constant of each elementary step of the case III, which

corresponds to an uncertain range of [-0.03 eV, 0.03 eV] on the forward activation energy.

We assume the log of the kinetic parameters are uniformly distributed in the candidate

space. The samples are drawn using the quasi-random Sobol sequence35 which more evenly

samples the space than a uniform distribution would. According to the definition of the

DELSA importance measure (Eq 7), the importance of a kinetic parameter kij to the net

rate of sample i could be measured by:

Skij =

∣∣∣ ∂ ln ri∂ ln kij

∣∣∣2
kim6=ij ,Kj

s2j

V (ln ri)
(18)

where sj is the variance of the uniform distribution of kj. Among the 17 parameters,

only 3 parameters are found to be important (with the average DELSA importance measure

> 0.1) over the potential space. Their distributions are shown in Figure 6. It is notable that

the important steps identified by DELSA (step 3, 14 and 17) are different from the local

DRC (step 1, 4, 5, 17). This is because DELSA considers the contribution of a parameter

over the whole space instead of a local point. An important parameter at local scope (e.g.,

step 1) could have small contribution from a global perspective. A trivial parameter locally

(e.g., step 14) is possible to be a significant step globally. In addition, DELSA provides

the distribution of the importance across the parameter space. For example, the histogram

of step 14 has two peaks near 0 and 1, which means that for about half of the samples,

step 14 has no effect on the net rate (with 0 importance measure), but for the other half of

the samples, step 14 is the most important parameter (with 1 importance measure). High

quality distributions rely on more samples in the potential space, which could be expensive
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for finite differences and difficult to ensure the results are accurate. Using the automatic

differentiation, DELSA could be performed with higher accuracy and lower computational

cost.

Figure 6: DELSA results for 3 important steps (3, 14 and 17) in the propylene oxidation
reaction21.

4 Conclusion

The degree of rate control is a versatile concept in heterogeneous catalysis. We discussed the

application of automatic differentiation (AD) in the evaluation of the derivatives needed to

evaluate the DRC. We also compared the AD method to the commonly used finite difference

(FD) method. Compared to FD, AD provides a faster and more accurate solution. There is

no need to choose the optimal perturbation size in AD which is a critical step in FD to obtain

a reliable result. In three cases with various complexity, we demonstrated the correctness of

the AD method. In addition, we illustrated that AD could be used to perform the DELSA

method, which is a hybrid local-global sensitivity analysis method to measure the importance

of parameters over an uncertain space. With AD, DELSA could be conducted accurately

and efficiently.
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