References

(1) Cui, H.; Grace, J. R. Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects. Chem. Eng. Sci.2007 , 62 (1–2), 45–55.
(2) Pinto, F.; Franco, C.; André, R. N.; Tavares, C.; Dias, M.; Gulyurtlu, I.; Cabrita, I. Effect of Experimental Conditions on Co-Gasification of Coal, Biomass and Plastics Wastes with Air/Steam Mixtures in a Fluidized Bed System. In Fuel ; Elsevier, 2003; Vol. 82, pp 1967–1976. https://doi.org/10.1016/S0016-2361(03)00160-1.
(3) Xue, Y.; Zhou, S.; Brown, R. C.; Kelkar, A.; Bai, X. Fast Pyrolysis of Biomass and Waste Plastic in a Fluidized Bed Reactor. Fuel2015 , 156 (September), 40–46. https://doi.org/10.1016/j.fuel.2015.04.033.
(4) Gao, X.; Yu, J.; Lu, L.; Li, C.; Rogers, W. A. Development and Validation of SuperDEM-CFD Coupled Model for Simulating Non-Spherical Particles Hydrodynamics in Fluidized Beds. Chem. Eng. J.2021 , 420 , 127654. https://doi.org/10.1016/j.cej.2020.127654.
(5) Daghooghi, M.; Borazjani, I. The Effects of Irregular Shape on the Particle Stress of Dilute Suspensions. J. Fluid Mech.2018 , 839 , 663–692. https://doi.org/10.1017/jfm.2018.65.
(6) Clift, R., Grace, J.R., Weber, M. E. . Bubbles, Drops and Particles ; Academic Press, 1978. https://doi.org/10.1017/S0022112079221290.
(7) Gao, X.; Yu, J.; Li, C.; Panday, R.; Xu, Y.; Li, T.; Ashfaq, H.; Hughes, B.; Rogers, W. A. Comprehensive Experimental Investigation on Biomass-Glass Beads Binary Fluidization: A Data Set for CFD Model Validation. AIChE J. 2020 , 66 (2), 1–18. https://doi.org/10.1002/aic.16843.
(8) Lu, L.; Gao, X.; Shahnam, M.; Rogers, W. A. Coarse Grained Computational Fluid Dynamic Simulation of Sands and Biomass Fluidization with a Hybrid Drag. AIChE J. 2020 , 66 (4), 1–10. https://doi.org/10.1002/aic.16867.
(9) Zhang, Y.; Jin, B.; Zhong, W.; Ren, B.; Xiao, R. Characterization of Fluidization and Segregation of Biomass Particles by Combining Image Processing and Pressure Fluctuations Analysis. Int. J. Chem. React. Eng. 2009 , 7 . https://doi.org/10.2202/1542-6580.2045.
(10) Lu, L.; Yu, J.; Gao, X.; Xu, Y.; Shahnam, M.; Rogers, W. A. Experimental and Numerical Investigation of Sands and Geldart A Biomass Co-Fluidization. AIChE J. 2020 , 66 (6). https://doi.org/10.1002/aic.16969.
(11) Buist, K. A.; Jayaprakash, P.; Kuipers, J. A. M.; Deen, N. G.; Padding, J. T. Magnetic Particle Tracking for Nonspherical Particles in a Cylindrical Fluidized Bed. AIChE J. 2017 , 63(12), 5335–5342. https://doi.org/10.1002/aic.15854.
(12) Fotovat, F.; Ansart, R.; Hemati, M.; Simonin, O.; Chaouki, J. Sand-Assisted Fluidization of Large Cylindrical and Spherical Biomass Particles: Experiments and Simulation. Chem. Eng. Sci.2015 , 126 , 543–559. https://doi.org/10.1016/j.ces.2014.12.022.
(13) Chen, X.; Zhong, W.; Heindel, T. J. Using Stereo XPTV to Determine Cylindrical Particle Distribution and Velocity in a Binary Fluidized Bed. AIChE J. 2019 , 65 (2), 520–535. https://doi.org/10.1002/aic.16485.
(14) Vollmari, K.; Jasevičius, R.; Kruggel-Emden, H. Experimental and Numerical Study of Fluidization and Pressure Drop of Spherical and Non-Spherical Particles in a Model Scale Fluidized Bed. Powder Technol. 2016 , 291 , 506–521. https://doi.org/10.1016/j.powtec.2015.11.045.
(15) Pal, N. R.; Pal, S. K. A Review on Image Segmentation Techniques.Pattern Recognit. 1993 , 26 (9), 1277–1294. https://doi.org/10.1016/0031-3203(93)90135-J.
(16) Yin, S.; Zhong, W.; Song, T.; Lu, P.; Chen, Y. Clusters Identification and Meso-Scale Structures in a Circulating Fluidized Bed Based on Image Processing. Adv. Powder Technol. 2019 ,30 (12), 3010–3020. https://doi.org/10.1016/j.apt.2019.09.008.
(17) Jiang, Z.; Hagemeier, T.; Bück, A.; Tsotsas, E. Experimental Measurements of Particle Collision Dynamics in a Pseudo-2D Gas-Solid Fluidized Bed. Chem. Eng. Sci. 2017 , 167 , 297–316. https://doi.org/10.1016/j.ces.2017.04.024.
(18) Yevick, A.; Hannel, M.; Grier, D. G. Machine-Learning Approach to Holographic Particle Characterization. Opt. Express2014 , 22 (22), 26884. https://doi.org/10.1364/OE.22.026884.
(19) Rodellar, J.; Alférez, S.; Acevedo, A.; Molina, A.; Merino, A. Image Processing and Machine Learning in the Morphological Analysis of Blood Cells. Int. J. Lab. Hematol. 2018 , 40(February), 46–53. https://doi.org/10.1111/ijlh.12818.
(20) Lai, Z.; Chen, Q. Reconstructing Granular Particles from X-Ray Computed Tomography Using the TWS Machine Learning Tool and the Level Set Method. Acta Geotech. 2019 , 14 (1), 1–18. https://doi.org/10.1007/s11440-018-0759-x.
(21) Guo, Q.; Ye, M.; Yang, W.; Liu, Z. A Machine Learning Approach for Electrical Capacitance Tomography Measurement of Gas–Solid Fluidized Beds. AIChE J. 2019 , 65 (6). https://doi.org/10.1002/aic.16583.
(22) McCoy, J. T.; Auret, L. Machine Learning Applications in Minerals Processing: A Review. Miner. Eng. 2019 , 132 , 95–109. https://doi.org/10.1016/j.mineng.2018.12.004.
(23) Hussain, R.; Alican Noyan, M.; Woyessa, G.; Retamal Marín, R. R.; Antonio Martinez, P.; Mahdi, F. M.; Finazzi, V.; Hazlehurst, T. A.; Hunter, T. N.; Coll, T.; Stintz, M.; Muller, F.; Chalkias, G.; Pruneri, V. An Ultra-Compact Particle Size Analyser Using a CMOS Image Sensor and Machine Learning. Light Sci. Appl. 2020 , 9 (1). https://doi.org/10.1038/s41377-020-0255-6.
(24) Shao, S.; Mallery, K.; Hong, J. Machine Learning Holography for Measuring 3D Particle Distribution. Chem. Eng. Sci.2020 , 225 , 115830. https://doi.org/10.1016/j.ces.2020.115830.
(25) Li, C.; Gao, X.; Rowan, S.; Hughes, B.; Harris, J.; Rogers, W.Experimental Investigation on the Binary/Ternary Fluidization Behavior of Geldart D Type Spherical LDPE, Geldart D Type Cylindrical Wood and Geldart B Type Sand Particles ; 2021. https://doi.org/10.2172/1776642.
(26) Tucker, J. R.; Shadle, L. J.; Benyahia, S.; Koepke, M. E.; Mei, J.; Guenther, C. Improvement in Precision, Accuracy, and Efficiency in Standardizing the Characterization of Granular Materials. InProceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition ; 2013; pp 1–9.
(27) Epstein, N.; Grace, J. R. Spouted and Spout-Fluid Beds: Fundamentals and Applications ; Epstein, N., Grace, J. R., Eds.; Cambridge University Press: Cambridge, 2010; Vol. 9780521517. https://doi.org/10.1017/CBO9780511777936.
(28) Otsu, N. A Threshold Selection Method from Gray-Level Histograms.IEEE Trans. Syst. Man. Cybern. 1979 , 9 (1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076.
(29) Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K. W.; Schindelin, J.; Cardona, A.; Seung, H. S. Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification.Bioinformatics 2017 , 33 (15), 2424–2426. https://doi.org/10.1093/bioinformatics/btx180.
(30) Ouellette, N. T.; Xu, H.; Bodenschatz, E. A Quantitative Study of Three-Dimensional Lagrangian Particle Tracking Algorithms. Exp. Fluids 2006 , 40 (2), 301–313. https://doi.org/10.1007/s00348-005-0068-7.
(31) Thielicke, W.; Stamhuis, E. J. PIVlab-Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB. Publ. under BSD Licens. Program. with MATLAB 2014 , 7 (0.246), R14.
(32) Mathur, K. B.; Gishler, P. E. A Technique for Contacting Gases with Coarse Solid Particles. AIChE J. 1955 , 1 (2), 157–164. https://doi.org/10.1002/aic.690010205.
(33) Sutanto, W.; Epstein, N.; Grace, J. R. Hydrodynamics of Spout-Fluid Beds. Powder Technol. 1985 , 44 (3), 205–212. https://doi.org/10.1016/0032-5910(85)85001-4.
(34) He, Y.-L.; Lim, C. J.; Grace, J. R. Spouted Bed and Spout-Fluid Bed Behaviour in a Column of Diameter 0.91 M. Can. J. Chem. Eng.1992 , 70 (5), 848–857. https://doi.org/10.1002/cjce.5450700505.
(35) Stewart, P. S. B.; Davidson, J. F. Slug Flow in Fluidised Beds.Powder Technol. 1967 , 1 (2), 61–80. https://doi.org/10.1016/0032-5910(67)80014-7.
(36) He, Y.-L.; Qin, S.-Z.; Lim, C. J.; Grace, J. R. Particle Velocity Profiles and Solid Flow Patterns in Spouted Beds. Can. J. Chem. Eng. 1994 , 72 (4), 561–568. https://doi.org/10.1002/cjce.5450720402.
(37) Olazar, M.; San José, M. J.; Izquierdo, M. A.; de Salazar, A. O.; Bilbao, J. Effect of Operating Conditions on Solid Velocity in the Spout, Annulus and Fountain of Spouted Beds. Chem. Eng. Sci.2001 , 56 (11), 3585–3594. https://doi.org/10.1016/S0009-2509(01)00022-7.
(38) Karlsson, S.; Niklasson Björn, I.; Folestad, S.; Rasmuson, A. Measurement of the Particle Movement in the Fountain Region of a Wurster Type Bed. Powder Technol. 2006 , 165 (1), 22–29. https://doi.org/10.1016/j.powtec.2006.03.014.