References
1 Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435 , 1098-1101 (2005).
2 Lovley, D. R. & Holmes, D. E. Electromicrobiology: The ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology 19 , doi.org/10.1038/s41579-41021-00597-41576 (2021).
3 Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic co-culture of anaerobic bacteria.Science 330 , 1413-1415 (2010).
4 Liu, X. et al. Power generation from ambient humidity using protein nanowires. Nature 578 , 550-554 (2020).
5 Fu, T. et al. Self-sustained green neuromorphic interfaces.Nature Communications 12 , 3351 (2021).
6 Lovley, D. R. & Yao, J. Intrinsically conductive microbial nanowires for ‘green’ electronics with novel functions. Trends in Biotechnology 39 , 940-952 (2021).
7 Lovley, D. R. & Walker, D. J. F. Geobacter protein nanowires.Frontiers in microbiology 10 , 2078 (2019).
8 Lovley, D. R. & Holmes, D. E. Protein Nanowires: The electrification of the microbial world and maybe our own. J Bacteriol202 , e00331-00320 (2020).
9 Liu, X., Walker, D. J. F., Nonnenmann, S., Sun, D. & Lovley, D. R. Direct observation of electrically conductive pili emanating from Geobacter sulfurreducens. mBio 12 , e02209-21 (2021).
10 Gu, Y. et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Naturehttps://doi.org/10.1038/s41586-021-03857-w (2021).
11 Liu, X., Zhou, S. & Lovley, D. R. A pilin chaperone required for the expression of electrically conductive Geobacter sulfurreducens piliEnvironmental microbiology 21 , 2511-2522 (2019).
12 Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108 , 15248–15252 (2011).
13 Tan, Y. et al. The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter. Frontiers in microbiology 7 , 980 (2016).
14 Ing, N. L., Nusca, T. D. & Hochbaum, A. I. Geobacter sulfurreducens pili support ohmic electronic conduction in aqueous solution.PCCP 19 , 21791-21799 (2017).
15 Wang, F. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell177 , 361–369 (2019).
16 Ueki, T. et al. Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synthetic Biology8 , 1809-1817 (2019).
17 Vargas, M. et al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens mBio 4 , e00105-13. (2013).
18 Liu, X. et al. A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but Is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80 , 1219-1224 (2014).
19 Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T. & Lovley, D. R. Conductivity of individual Geobacter pili. RSC Advances6 , 8354-8357 (2016).
20 Steidl, R. J., Lampa-Pastirk, S. & Reguera, G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nature Communications 7 , 12217 (2016).
21 Tan, Y. et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity.mBio 8 , e02203-16 (2017).
22 Izallalen, M. et al. Going wireless? Additional phenotypes of a pilin-deficient mutant weaken the genetic evidence for the role of microbial nanowires in extracellular electron transfer. 108th Annual Meeting of the American Society for Microbiology (2008).
23 Yalcin, S. E. et al. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nature Chemical Biology 16 , 1136–1142 (2020).