References
- Dangar, Swarup & Asoka, Akarsh & Mishra, Vimal. (2021). Causes and
implications of groundwater depletion in India: A review. Journal of
Hydrology. 596. 10.1016/j.jhydrol.2021.126103.
- Anderson MP. (2005). Heat as a Ground Water Tracer. Ground Water,
43(6), 951-968.
- Asadzadeh, Masoud, Bryan A. Tolson, and Donald H. Burn (2014). ”A new
selection metric for multiobjective hydrologic model calibration.”
Water Resources Research 50, no. 9, 7082-7099.
- Atwell BH, MacDonald RB, Bartolucci LA. (1971). Thermal mapping of
streams from airborne radiometric scanning. Water Resources Bulletin,
7(2), 228-243.
- Auger, A., Bader, J., Brockhoff, D. and Zitzler, E., (2009). Theory of
the hyper volume indicator: optimal μ-distributions and the choice of
the reference point. In Proceedings of the tenth ACM SIGEVO Workshop
on Foundations of genetic algorithms, 87-102.
- Avent, Brendan, Javier González, Tom Diethe, Andrei Paleyes, and Borja
Balle (2020). ”Automatic Discovery of Privacy–Utility Pareto
Fronts.” Proceedings on Privacy Enhancing Technologies 2020, no. 4,
5-23.
- Bassi, Mohamed, Eduardo Souza de Cursi, Emmanuel Pagnacco, and Rachid
Ellaia (2018). ”Statistics of the Pareto front in Multi-objective
Optimization under Uncertainties.” Latin American Journal of Solids
and Structures 15, no. 11.
- Becker MW, Georgian T, Ambrose H, Siniscalchi J, Fredrick K. (2004).
Estimating flow and flux of groundwater discharge using water
temperature and velocity, Journal of Hydrology, 296(1-4), 221-233.
- Belakaria, Syrine, and Aryan Deshwal (2019). Max-value entropy search
for multi-objective bayesian optimization. In International Conference
on Neural Information Processing Systems (NeurIPS).
- Binois, M., Ginsbourger, D., & Roustant, O. (2015). Quantifying
uncertainty on Pareto fronts with Gaussian process conditional
simulations. European journal of operational research, 243(2),
386-394.
- Burkholder BK, Grant GE, Haggerty R, Khangaonkar T, Wamper PJ. (2008).
Influence of hyporheic flow and geomorphology on temperature of a
large, gravel-bed River, Clackamas River, Oregon, USA. Hydrological
Processes, 22, 941-953.
- Calandra, Roberto, Jan Peters, and M. P. Deisenrothy (2014). Pareto
front modeling for sensitivity analysis in multi-objective bayesian
optimization. In NIPS Workshop on Bayesian Optimization, vol. 5.
- Cao, P., Fan, Z., Gao, R., & Tang, J. (2017). A
manufacturing-oriented single point search hyper-heuristic scheme for
multi-objective optimization. In ASME 2017 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. American Society of Mechanical Engineers
Digital Collection.
- Coello, Carlos A. Coello, Gregorio Toscano Pulido, and M. Salazar
Lechuga (2004). ”Handling multiple objectives with particle swarm
optimization.” IEEE Transactions on evolutionary computation 8.3,
256-279
- Constantz J. (1998). Interaction between stream temperature,
streamflow, and groundwater exchanges in alpine streams. Water
Resources Research, 34, 1609-1615.
- Cristea NC, Burges SJ. (2009). Use of Thermal Infrared Imagery to
Complement Monitoring and Modeling of Spatial Stream Temperature.
Journal of Hydrologic Engineering, 14(10), 1080-1090.
- Deb, Kalyanmoy (2001). Multi-Objective Optimization using Evolutionary
Algorithms, John Wiley & Sons, Ltd, Chichester, England.
- Emmerich, Michael TM, and André H. Deutz (2018). A tutorial on
multiobjective optimization: fundamentals and evolutionary methods.
Natural Computing 17, no. 3, 585-609.
- Graillot D, Paran F, Bornette G, Marmonier P, Piscart C, Cadilhac L.
(2014). Coupling groundwater modeling and biological indicators for
identifying river/aquifer exchanges. SpringlerPlus, DOI:
10.1186/2193-1801-3-68
- Handcock RN, Gillespie AR, Cherkauer KA, Kay JE, Burges SJ, Kampf SK.
(2006). Accuracy and uncertainty of thermal infrared remote sensing of
stream temperatures at multiple spatial scales. Remote Sensing of
Environment, 100, 427-440.
- Herbert C, Caissie D, Satish MG, El-Jabi N. (2011). Study of stream
temperature dynamics and corresponding heat fluxes within Miramichi
River catchments (New Brunswick, Canada). Hydrological Processes, 25,
2439-2455.
- Hernández-Lobato, Daniel, Jose Hernandez-Lobato, Amar Shah, and Ryan
Adams (2016). ”Predictive entropy search for multi-objective bayesian
optimization.” In International Conference on Machine Learning, pp.
1492-1501. PMLR.
- Höllermann, Britta, and Mariele Evers (2019). Coping with uncertainty
in water management: Qualitative system analysis as a vehicle to
visualize the plurality of practitioners’ uncertainty handling
routines. Journal of environmental management, 235, 213-223.
- Horn, D., Demircioğlu, A., Bischl, B. et al. (2018) A comparative
study on large-scale kernelized support vector machines. Adv Data Anal
Classif 12, 867–883.
- Kalbus E, Reinstorf F, Schirmer M. (2006). Estimating flow and flux of
groundwater discharge using water temperature and velocity. Hydrology
and Earth System Sciences, 10, 873-887.
- Kay JE, Kampf SK, Handcock RN, Cherkauer KA, Gillespie AR, Burges SJ.
(2005). Accuracy of lake and stream temperatures estimated from
thermal infrared images. Journal of the American Water Resources
Association, 41, 1161-1175.
- Keery J, Binley A, Crook N, Smith JWN. (2007). Temporal and spatial
variability of groundwater-surface water fluxes: Development and
application of an analytical method using temperature time series.
Journal of Hydrology, 336, 1-16.
- Kollat, Joshua B., and Patrick M. Reed (2005). The value of online
adaptive search: a performance comparison of NSGAII, ε-NSGAII, and
εMOEA. International Conference on Evolutionary Multi-Criterion
Optimization. Springer, Berlin, Heidelberg.
- Loheide SP, Gorelick SM. (2006). Quantifying stream – Aquifer
Interactions through the Analysis of Remotely Sensed Thermographic
Profiles and In Situ Temperature Histories. Environmental Science and
Technology, 40(10), 3336-3341.
- Lowry CS, Walker JF, Hunt RJ, Anderson MP. (2007). Identifying spatial
variability of groundwater discharge in a wetland stream using a
distributed temperature sensor. Water Resources Research, 43, W10408.
- Marjit R. and Hopfe C.J. (2009). Multi-objective robust optimization
algorithms for improving energy consumption and thermal comfort of
buildings.
- MATLAB. (20__). version 7.10.0 (R20__a). Natick, Massachusetts:
The MathWorks Inc.
- McDonald MG, Harbaugh AW. (1988). A modular three-dimensional
finite-difference ground-water flow model, 6. U.S. Geological Survey
Techniques of Water-Resources Investigations.
- Paran F, Arthaud F, Bornette G, Graillot D, Lalot E, Marmonier P,
Novel M, Piscart C. (2012). Characterization of exchanges between
Rhône River and groundwater., Research report ZABR Phase 4, AERMC
- Riquelme, Nery, Christian Von Lücken, and Benjamin Baran.(2015)
Performance metrics in multi-objective optimization. Latin American
Computing Conference (CLEI). IEEE.
- Salomon, Ludovic, Charles Audet, Jean Bigeon, and Sébastien Le Digabel
(2018). Review of the quality of approximated Pareto fronts in
multiobjective optimization, Journées de l’optimisation. In JOpt.
- Sophocleous, M. (2002) Interactions between groundwater and surface
water: the state of the science, Hydrogeology
Journal, 10, 52–67.
- Víctor Martínez-Cagigal (2020). Multi-Objective Particle Swarm
Optimization (MOPSO) (The MathWorks Inc.), MATLAB Central File
Exchange. Retrieved October 1, 2020.
- Wawrzyniak V, Piégay H, Poirel A. (2012). Longitudinal and temporal
thermal patterns of the French Rhône River using Landsat ETM+ thermal
infrared images. Aquatic Sciences, 74(3), 405-414.
- Wei Mao, Jinzhong Yang, Yan Zhu, Ming Ye, Jingwei Wu (2017) Loosely
coupled SaltMod for simulating groundwater and salt dynamics under
well-canal conjunctive irrigation in semi-arid areas, Agricultural
Water Management, 192, 209-220.
- Westhoff MC, Savenije HHG, Luxemburg WMJ, Stelling GS, van de Giesen
NC, Selker JS, Pfister L, Uhlenbrook S. (2007). A distributed stream
temperature model using high resolution temperature observations.
Hydrology and Earth System Sciences, 11, 1469-1480.
- Zhang, Qingfu, and Hui Li (2007). MOEA/D: A multiobjective
evolutionary algorithm based on decomposition. IEEE Transactions on
evolutionary computation 11.6, 712-731
- Zitzler, Eckart, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and
Viviane Grunert Da Fonseca. Performance assessment of multiobjective
optimizers: An analysis and review. IEEE Transactions on evolutionary
computation 7, no. 2 (2003): 117-132.