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Abstract

In this paper, we obtain the stationary elliptic- and hypédsfunction solutions of the nonlocal reverse-time and
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1 Introduction

In the past several decades, a large number of integrableaanpartial differential equations (NPDES) have been
discovered and most of them are the local models [1]. As aprpical local model, the nonlinear Schrodinger (NLS)

equation [2]
iqe(2,t) 4 Gua(x,t) + oq(z, t)q" (2, t)q(2, t) = 0, (1)

has arisen in various physical contexts to describe theugwal of weakly, quasi-monochromatic wave trains in the
cubic nonlinear media [3], where the asterisk denotes cexnbnjugationg is a complex-valued function af and
t, o = 1 and—1 represent the focusing and defocusing types of nonlineadspectively. In 2013, Ablowitz and

Musslimani [4] proposed the nonlocal reverse-space neatiSchrodinger (RSNLS) equation
iq(2,t) + Qoo (@, 1) + 0q(x,1)q" (—2, t)q(z,t) = 0. (2)

Similar to the NLS equation, Eq. (2) is integrable in the setigt it has the Lax pair and an infinite number of
conservation laws, and its initial-value problem can berestblby the inverse scattering transform (IST) [4]. The
difference between such two equations lies in that the isolitynamics of Eq. (2) is non-locally dependent on the
values ofq at both the positions and—z. As a new and simple integrable model, Eq. (2) was activelglietl from
different mathematical aspects, as seen in Refs. [5-11anMaile, wide classes of explicit solutions were obtained
for botho = 1 ando = —1 cases by some analytical methods [4—6, 12—-28]. For examplas shown that Eq. (2)
with o = —1 admits the exponential, rational, exponential-and-ratigolutions, which can display a rich variety of
elastic soliton interactions on the nonzero background46.,19].

Apart from Eq. (2), Ablowitz and Musslimani [29] also progakthe nonlocal reverse-time NLS (RTNLS) equation

1qe(z,t) + gua(z, t) + oq(z, t)q(x, —t)g(x,t) = 0, 3)
and the nonlocal reverse-space-time NLS (RSTNLS) equation
1qe(x,t) + qua(x, t) + oq(z, t)g(—2, —t)g(x, t) = 0. (4)

Egs. (3) and (4) can arise from the second member of the Atdekaup-Newell-Segur hierarchy respectively with
the nonlocal reverse-time and reverse-space-time rexhs;tand their initial-value problems are solvable by thE IS
and Riemann-Hilbert method [23, 29-31]. Similar to Eq. (&)th the two equations are invariant under the the joint
transformationss — —z, ¢ — —t and complex conjugation [29, 30]. It was shown that the somstof Egs. (3)
and (4) in general exhibit the repeatedly-collapsing bairatut they can still remain bounded or nonsingular for a
certain range of parameter values [9]. For example, via gmd&ux transformation Refs. [32, 33] revealed that Eq. (3)
admits the nonsingular bright-soliton, dark-soliton jdatk-soliton, rogue-wave and breather solutions.

Following the pioneering work of Ablowitz and Musslimangsearchers soon realized that the nonlocal reverse-
space, reverse-time and reverse-space-time reductiopexist in the known Ablowitz-Kaup-Newell-Segur [34],
Kaup-Newell [35] and Wadati-Konno-Ichikawa [36] systen#ss a result, a number of nonlocal integrable NPDEs



were identified in1 + 1 and1 + 2 dimensions as well as in discrete settings [5, 29, 37-45].thAtsame time,
those integrable nonlocal equations have attracted ondrttgrest in physics. For example, Eq. (2) is linked to an
unconventional coupled Landau-Lifshitz system in magsdtirough the gauge transformation [46], it can be derived
as the quasi-monochromatic complex reductions of the cufidinear Klein-Gordon, Korteweg-de Vries and water
wave equations [47], and its stationary solutions can ydetdde class of complex, time-independent parity-tifRg ]
symmetric potentials which may have applications infd¥e-symmetric quantum mechanics and optics [26]. Besides,
several efforts have been made towards the physical réahizaf nonlocal coupling in unconventional settings, £.9.
the nonlinear string where each particle is simultaneocslypled with nearest neighbors and its mirror particle [48]
As we know, the NLS equation possesses the stationary Jacebiptic-function and hyperbolic-function solu-
tions [49, 50], where the former has the bounded periodisaillation in x, while the latter displays the bright- or
dark-soliton profile. Very recently, we constructed theisteary solutions of the RSNLS equation and revealed some
unusual behaviors [26]: (i) The unbounded stationary smistexponentially grow to infinity at — +oo but decay
to zero atr — Foo; (ii) The bounded complex-amplitude solutions obey eitheP7- or anti-P7 symmetry. In
this paper, with the stationary-solution assumption, wi syistematically search the Jacobian elliptic-functionl a
hyperbolic-function solutions of Egs. (3) and (4). Firsg wonnect the RTNLS and RSTNLS equations with the
standard Weierstrass elliptic (WE) equation, that is, Byjig directly reduced to the WE equation while Eq. (4) is
connected with the WE equation based on the reduced equatbitsz-symmetric counterpart. Then, we obtain
that Eqg. (3) has then-, cn- andsn-function solutions, whereas Eq. (4) admits the generailiiaa elliptic-function
solutions (which are exponentially growing at one infinityhave the periodical oscillation in), the boundedin-
andcn-function solutions, as well as th€-shifteddn- andsn-function solutions. Also, we derive the hyperbolic-
function solutions which are degenerated from those Jacodlliptic-function solutions. Specially, we find that the
tanh-function solution of Eq. (3) can exhibit both the daakd antidark-soliton profiles, and the hyperbolic-funatio
solutions of Eq. (4) may exhibit an exponential growth at arfimity or show the gray- and bright-soliton profiles.

Our results indicate the difference of solutions’ behawioEgs. (3) and (4) compared with Egs. (1) and (2).

2 Stationary solutions of the RTNL S equation

In this section, we construct the stationary solutions af(Bin the following form

q(z, 1) = p(x)e’ ™, (5)
whereg(z) represents the amplitude,is a real constant. Substituting the assumption (5) intoByields

d*¢(x)

dz?

— pd(z) + 06’ (x) = 0. (6)

Then, we multiply Eq. (6) b)zd‘fl—(j) and integrate the resulting equation with respeat,tgiving

(2

) - (@) + 506" (w) = Co. )



where(Cy is an integral constant. Through the transformation

2 2
(@) = 3= — ~u(a), ®)
g g
Eq. (7) becomes the standard WE equation
dw(z)\?2 43
(F57) =40’ @) — gawle) - go, ©)
whereg, andgs are given by
_ 4 _ (8 3.2
92 = gH +20Cy, g3 = (27M + 30MCO)- (10)

As we know, Eg. (9) admits the following Jacobian elliptizattion solution [51]:

w(z) =713+ (r2 — T‘3)Sn2(\/’f‘1 —7r3x + xo, M) (m = w) , (12)

=73

wherex is an arbitrary constant i@, andr;’s (1 < i < 3, r1 + 72 + r3 = 0) are the roots of the cubic equation
flr):= 473 — gor — g3 = 0. (12)

In the following, we just consider thaf's (1 < ¢ < 3) are real numbers and satisfy the ordering relatior ro > r3.
At this moment, the coefficientg, and g; are real numbers, and the three roots of Eq. (12) can be giye}ub

—gh+31/20C0 + p2 and—¢p— 5+/20Co + p2 with Cy € R andoCy > —“—22. Then, based on Eq. (11), we obtain
the Jacobian elliptic-function solutions, (> r, > r3) and hyperbolic-function solutions,( = r, > r3) of Eq. (3).

Case 1: Jacobian €lliptic-function solutions

For the general case > r, > r3, we have the following three families of Jacobian elligfticiction solutions:

(i) fri = sp, e = —fp+ 5/20C0 + 42, 13 = — i — $1/20Co + 112, we have theln-function solution in
the form

q= 'LFTU ﬁaldn(alx + g, ml)e“‘t, (13)

wherea; andm; are given by

2+/20C 2
ap =/ K’ , My = oot i (—N2<2UCO<07 p>0). (14)
2—mq uw++/20CH + p?

(i) If ri = —2p+2/20Co + p2, o = 21,75 = — 21— £1/20Cy + 112, we have then-function solution in the
form

q= =S V2mg aaen(aaz + w0, mg)e”‘t, (15)

whereas andms are given by

V20Co + 12
ay = gy = BEVETQO R 00 0 e R). (16)
2my —1 21/20Cy + p?




(iii) If 1= —3p+5v/20C0 + p, 1o = = — 51/20Co + pi2, r3 = %, we have then-function solution in the

form
q= i V2m3 azsn(asz + xo, ms3)et, a7)
whereas andmg are given by
as —H _rEV20CG T e 9o <0, p<0). (18)

3 ms =
1+ mg uw—+/20CH + p?

One should note that sincg can be selected iff, solutions (13), (15) and (17) possess in general the com-
plex amplitudes, regardless of the sign Particularly whenzy € R, all the three solutions have the purely real or
imaginary amplitudes (depending ehand they also solve the NLS equation (1). In fact, the gddabian elliptic-
function solutions with complex amplitudes for Eq. (1) candonstructed in a different way (see the case< 0 in
subsection 3.2.1).

In addition, the constanty must be judiciously selected in avoid that the Jacobiaptaiffunction solutions (13),
(15) and (17) are non-singular. In the compleplane,sn(z, m) has simple poles which are congruenifo’ or to
2K + iK' (mod 4K, 2iK’), cn(z, m) has simple poles which are congruenti¢’ orto2K + iK' (mod 4K, 2K +
2¢K'), anddn(z, m) has simple poles which are congruenii¢’ or to 3i K’ (mod 2K, 4iK"') [51], whereK andK’
are the complete elliptic integrals of the first kind

K K' = K'(m) = K(1—m). (19)

_mm_/% dt
0 v1—msin? t7
Therefore, it requires thaty; # (2n + 1)K’ (n € Z) with 2o; = Im(x() to ensure that solutions (13), (15) and (17)

have no singularity for alt € (—oo, 00).

Case 2: Hyperboalic-function solutions
When particularly taking, = 2 > r3, we havem = 1, so that the Jacobian elliptic functions degenerate to the

hyperbolic functions. As a result, we obtain two familiegperbolic-function solutions as follows:

() If 3u=—tp+ 32000+ p? > —tp — 31/20C, + p?, one immediately have, = ry = fpu, 73 = —2p
(1 > 0), andCy = 0. Then, both solutions (13) and (15) becomesdé-function form

l—o

q =17 \2pusech(x +z0)e™ (1> 0). (20)

(i) f —ip+1y/20C +p® = —ip— 1/20Co + > > Ly, one havey = ry = —2p, r5 = 211 (1 < 0), and

Cy = —%;ﬁ. Then, solution (17) becomes thenh-function form
q:iHTO\/—utanh(\/—u/Z:r—i-xo)ei“t (u<0). (21)

Considering the analyticity of thexch andtanh functions in the complex-plane, we know that solutions (20) and

(21) are both nonsingular if and onlyif; # 2%H 7 (n € Z).



Different from the bright and dark-soliton solutions of Ety), the profiles of solutions (20) and (21) may vary with
the parameter,;. For solution (20), its intensity has just one maximum angtit always displays the bright-soliton
profile on the zero background, as seen in Fig. 1. The solitgplitude can be given byt = /21| sec(zos)| (1 > 0),
which shows that the amplitude increases in the intelival 25t ) but decreases in the interv@%L 7, (n + 1)
with the increment ofro;. Likewise, the intensity of solution (21) has one extremuhoge value is-p tan?(zo;z ).

By calculating the difference between the extremum valuktmtkground amplitude, one can find that solution (21)
represents the dark solitonif,; € [#217, 42t 7] (see Fig. 2) or antidark soliton ifo; € (21, 22=1x) U
(dztly, 228l 7) on the nonzero background (see Fig. 3).

lq? lgP? laP®
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Figure 1: Soliton profile via solu-  Figure 2: Soliton profile via solu- Figure 3: Soliton profile via solu-

tion (20) aty = 1 with zp = %m’. tion (21) aty = —1 with zo = 0. tion (21) aty = —1 with xg = %m

3 Stationary solutions of the RSTNL S equation

3.1 Connection of Eq. (4) with the eliptic equation

Likewise, using the assumption (5), Eq. (4) can be reduced to

d?¢(z)

dz?

= 1o(x) + 06 (x)d(~2) = 0. (22)

Here, because of the nonlinear tesi? (x)¢(—x), Eq. (22) cannot be directly converted into the elliptic &ipn like
Eq. (6). However, we note tha{ —x) also satisfies Eq. (22), that is,

d2o(—x
D io(2) +06*(~)olz) = 0. 29
In the following, we use Egs. (22) and (23) together to eihlihe relationship of Eq. (4) with the elliptic equation.
. . . —x do(x . . .
On one side, we multiply Egs. (22) and (23) respecuvelyzﬂ% and 2%, and integrate their sum with
respect tae, obtaining that

220D WD) o p()o(—) + 06 (@) () = Co, 24

where(y is an integral constant. Again, multiplying Egs. (22) an8)(Bspectively by)(—z) and¢(x) and adding
them to Eq. (24) gives rise to

d?w(z)
da?

— dpw(e) + Bow?(z) = Co,  w(e) = d(x)d(~a). (25)



Further, by multiplying Eq. (25) bﬂ% and integrating the resultant equation once with respect tee arrive at
the elliptic equation foiv(x):

d 2
(%) — 4pw? () + 20w (z) = 2Cyw(x) + Cy, (26)
where( is also an integral constant, andx) obeys the relatiow(z) = w(—x).
On the other side, we multiply Egs. (22) and (23) respectibglo(—z) and¢(x), and then integrate their sub-
traction with respect ta, yielding

)] dg(x)

bla) L2 — o) T = O, @)
where(; is an integral constant. Divided ky (z) or ¢?(—z), Eq. (27) becomes

d fw@)) G w) d [ w(z) _ -Cy  w()

i (75) w5 (F) ~ne Ao 29

Note that Eq. (28) can be regarded as a linear differentigtion with respect ta)(x)/¢? (z) or w(z)/¢*(—x) once

w(x) is solved from Eq. (26) and satisfies the symmetric relati¢n) = w(—=x). Thus, we have
2 2 -1 ds 2 2 r C2ds
¢°(x) = pjw(z)e =0 wty , 7 (—x) = psw(z)e’=o W (29)

In view of ¢?(z)|,— —» = ¢*(—x) and¢?(z)¢?(—z) = w?(x), we obtain thap; andp, obey the relation

= A s (30)
P2

Here, we still need to check i#(z) and¢(—=z) in Eq. (29) satisfy Eq. (22). First, the second-order deéresof
¢(z) is given by

20(x T w(x)\ 2 z) dPw(x
ddd;g ) - 4522(30) 3 - (ddi )) [+ ;if(a?) dda:(Q . (31)

Then, substituting (31) into (22) and removi(ué%) nd d v ””) via Egs. (25) and (26), the resulting equation
reads

d?¢(z)

dz?

— 16(e) + 0% @)ol(~z) = e

¢(z), (32)

wherew(z) = ¢(z)¢(—z) has been used for simplification. Clearly, Eq. (32) shows #tta) and¢(—x) given in
Eg. (29) obey Eq. (22) if and only i, = C3. Therefore, we finally reach the following result:

Proposition 3.1 Assume thatv(z) is an solution of Eq. (26) withv(z) = w(—2), andw? (z) is also a smooth even
function. Then, we have a pair of solutions for Eq. (22):

1 z C2 go 1 @ Co_ g
O(a) = prt(@)e T, g0 = Swk ()t Fo T, (33)
wherep; = e * P22, wiy fandCy = Of. If Cy # 0, ¢(z) and ¢(—=x) are mutually independent, whereas they

coalesce into one solution a, = 0.



Remark 11t should be noted that evenif(z) is a real-valued, even-symmetric solution of Eq. (26), Bg) (nay
not yield thesmoothfunctions for¢(z) and¢(—z). In fact, an obviousecessargondition ensuring the smoothness
of ¢(x) andp(—x) is

w(z) >0 orw(zx) <0 forall z € R. (34)

This is because the sign indefinitenessudf:) may causep(x) and ¢(—x) non-smooth at points where the sign
changes. However, there are still some exceptions evemdition (34) holds. For example, witfl, = —ou? and
Cy = 0, solving Eq. (26) gives the following solution:

w(z) = optanh? (1/ _TH a:) (< 0). (35)

One can check that Eq. (35) satisfies condition (34) for both+1 cases, but its square root cannot yield the smooth

even function.

3.2 Jacobian eliptic-function and hyper bolic-function solutions

Through the transformation

w(e) = 35 = i (@), (36)
(o (o
one can also transform Eq. (26) into the standard WE equation
dwq(x)\2
(T2~ st @) — gonn (a) — g5 (37)
whereg, andgs are given by
B 4, 1 1 8
92—000-1—3# ;g3 = (30uCo+401+27u ) (38)
Thus, we give the Jacobian elliptic-function solution of i) as follows:
To — T
w(x) =20 [% — 1y — (rg —r3)sn?(Vr1 — 13 x,m)} (m =2 3). (39)
T — T3

Here, compared with solution (11), we ignore the constgnbecause the symmetric conditian(z) = w(—x)

restricts thatr, is no longer an arbitrary constant. In section 3.2.2, we aviltuss the possible nonzero choice:gf
Again, we consider that;’s (1 < 7 < 3) are real numbers and obey the ordering relatio ro > r3. Thus, the

coefficientsy, andgs must be real numbers, which means thgiandC are two real constants. Besides, the modular

discriminant should satisfy
27 9
A =gl —27g2 = _ch — (50u00 + 4u3> Cy + C2(u* + 0Cy) > 0, (40)
which holds if and only ifCy, C; andu obey

Q= /(30Cy + 4u2)° > 0, "

—2;“7 (QU/LC() + 8ud + Q) <(C; < —% (QCWC’O +8u3 — Q) .
In the following, we present all the possible Jacobian gdlifunction solutions(r; > ro > r3) and hyperbolic-
function solutiongr, = ro > r3) of EQ. (4) with condition (41).



3.2.1 Jacobian elliptic-function solutions

Based on Egs. (33) and (39), we have the Jacobian elliptiction solutions of Eq. (4) in the form

3(rg—r3)
—30CoT | 22 73) g (2),m
( n—3r3 ) +ipt

2
q= \/O’[?ﬂ —2rg — 2(rg —r3)sn?(y/r1 —r3 x,m)} e 4u=srz)y/ri—ry , (42)

wherem = 2=72, ®(z) = am(y/r1 — r3 z, m) is the Jacobian amplitud#, is the incomplete elliptic integral of the
third kind. According to remark Ly (z) in Eq. (39) must be sign definite for all € R to ensure the smoothness of
solution (42). Because < sn?(/r1 — r3x,m) < 1, it requires that, < %/L orrs > %M- Meanwhile, we notice that

f(r) <0, re(—oo,r3)U(re,r),
f(r) >0, re(rs,r)U(r,o0), (43)
fir)=5, r=31p(C1=0C3),

which shows that the distribution of three root's is dependent op andC, . Next, we judge the range gfwhenC,
is given and discuss the properties of the Jacobian elifptiction solutions in Eq. (42).

lgl® lgI®
40f ;
30
Hl
20f
1
10
-8 -4 0 i T 8 = 0 4 s
Figure 4: Intensity profile of solution (42) withr = 1, Figure 5: Intensity profile of solution (42) witlr = 1,
Co=-3C1=%,C2= /5 andu=1. Co=—%,C1=-2,Cy=V2iandy = 2.

Casel. C1 >0

In this case f(1p) > 0 implies that2y € (r3,r2) U (r1,00). Meanwhile, considering the sign definiteness of
w(x), we know thatgy > 7. Therefore, we have(z) > 0 for o = 1 andw(z) < 0 for 0 = —1. In addition,
C3 = O > (Oindicates thaC; is a real constant. Thus, the intensitygd#, ¢) will grow to co aso sgn(Cs)x — —o0
but decay td) aso sgn(Cy)z — oo in an exponential-and-periodical manner. For exampléy wit= 1, C = —%,
C, = 2—27 andu = 1, we obtainr, = % ro = é andrs = —@. The intensity profile ofj(z, t) is shown in
Fig. 4.

Case2: 1 <0

In this case, becaus® 1) < 0, we know thati ;o € (—oo,r3) U (rz,m1). If 25 < r3, w(z) < 0foro =1 and
w(x) > 0 foro = —1; whereas ifr, < 2y < 71, w(z) > 0for o = 1andw(z) < 0foro = —1. In view thatC,
is a pure imaginary numbe€f = C; < 0), the solution is bounded for al € R. The intensity ofy(x, t) exhibits



the periodical oscillation behavior inbut do not drop to zero at its all minima. For example, whea 1, Cy = —%,
C; = —2andy = 2, we haver; = 5+1—‘éﬁ ro = 5*1—\2/5 andrs = —32. The intensity profile of/(z, ¢) is displayed in
Fig. 5.

Case3: 1 =0

For this case, the three roots fff) are given byg 1, — ¢+ 51/0Co + p2 and— g — 51/0Co + p2. According
to the ordering of the three roots, we obtain two familiesadided Jacobian elliptic-function solutions as follows:

(i) ¥ ri =32 = —3p+ 5/0Co + p2 andrs = —gp — 51/0Co + 12, Eq. (39) gives rise to
w(z) =20 a?dn®(aqz,my), (44)

wherea; andm; are given by

M 2\/0004’#2

2
=4 ]/—, m=—— (—pu°<oCy<0, u>0). 45
1 2y 1 i+ JoCo + 12 (—n 0 K ) (45)
Thus, we obtain thdn-function solution in the form
q= = V2 a, dn(ayz, my)e™, (46)

(i) If ri=—2p+3/0Co+ p2, ry = spandrs = —1p — 1/0Co + 112, Eq. (39) gives rise to
w(r) = 20 my a3 cn?(agx, ms), 47)

whereas andms are given by

C 2
ap = |—H mz:*“r— Vabo £ 4 (cCy > 0, 11 € R). (48)
2mg — 1 2y/0Cy + p?

Thus, we obtain then-function solution in the form
q= = V2mg asen(aox, ma e, (49)

For the third case; = — i+ 31/0Co + p2, 72 = — 1 — 34/0Co + p? andrs = 1, one can also obtain the
sign-definitew(x) as follows:

w(r) = —20m3 a3 sn’(azr, ms), (50)

with

—H e = 1 VICo+ 12 (

2
, —u* < oCy <0, u<0). 51
1+ ms 3 1 — JoCo + 12 K 0 K ) (51)

However, the square root af(x) in Eq. (50) yields no smooth even function, so that one canht#in the smooth
o(x) from Eq. (33).
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3.2.2 K-shifted Jacobian elliptic-function solutions

Forw(x) in Eq. (39), we introduce the complex constaptand impose

sn2(\/r1 — 132 4+ 29, M) = sn2(—\/r1 — 713z + xo, M), (52)

to satisfy the relatiom (z) = w(—2). Based on the properties of the-function, condition (52) holds true if and only
if o =IK+inK'(l,n € Z), whereK andK’ are defined in Eq. (19). In order to avoid the singularity, westriake
n as an even integer. Moreover, the periodicityof(x) implies that the only nonzero value of is K.

WhenC; # 0, we make the shift/r1 —rsxz — /r1 — rsz + K for w(z) in Eq. (39), and then obtain the

K -shifted Jacobian elliptic-function solutions as follows

q\x) 2\/20% —r3— (rg —r3)sn?(vVr1 —rz3z + K, m)}

3009 3(rog—r1) I 771(/1737“1)“@ x i Lt
X e ! {(uffin)(u*f"z) T1—T3 ( p—3ry (z),m)+u*3rl Jﬂ#, (53)

with m = 2= and®(x) = am(y/r1 —rsz,m). Since the sign ofv(z) does not change with th&-shift in z,
thus it has no influence on the smoothness'6f. Like the cases 1 and 2 in section 3.2.1, solution (53) pssses
the similar dynamical properties: @f; > 0 and%u € (r1,00), the intensity of;*) grows toco at one infinity but
decays td) at the other infinity in an exponential-and-periodical mamif C; < 0 and%u € (—oo,r3) U (r2,71),
the intensity ofy(%) displays the periodical oscillation in

WhenC; = 0, we also make the shifi;z — o,z + K; (1 < i < 3) for w(z) in Egs. (44), (47) and (50),

respectively. Then, from the following properties
dn(arz + Kq,mq) = don(—arz + K1, mq),
en(agw + Ko, ma) = —cn(—asz + Ko, ma), (54)
sn(asz + K3, m3) = sn(—asx + K3, ms),
we know that bothin(a; 2 + K7, m1) andsn(asx + K3,mg) are even functions, whereas(asx + K, msg) is an
odd function. That is, thé&-shift changes the parity of the andsn functions, but has no change for tte-function.

Recall thatw? (x) must be even symmetric to ensure thét, ¢) is a smooth function. Therefore, associated with

w(z) in Egs. (44) and (47), we obtain two families of shifted Jaanlelliptic-function solutions:

g5 =i V2, dn(aqz 4+ Kq,mp)et (> 0), (55)
q(K3) — i V2m3 azsn(asz + Kz, m3)e™  (u < 0), (56)

wherea; 3 andm; 3 are defined in Egs. (45) and (51).

3.2.3 Hyperbolic-function solutions

In this subsection, we consider the degenerate cases fibleallacobian elliptic-function solutions in section 3.a2t1
r1 = r9 > r3. Inthose cases, we can exprégsandC; in terms ofry:
4o 16

20 0.2 _ 2 _ 10
CO_ (9T1 M)a C'1 27(

3 w—3r1)%(u + 671). (57)
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As aresultw(x) in Eq. (39) reduces to

1
w(z) =20 [g p + 2r1 — 3ritanh®(v/3r x)} , (58)
wherers has been removed by = —2r;. To maintain the sign definitenessofz), there are the following three

cases:
Casel: 0 <7y < g (p>0)
In this casew(x) > 0 for all z € R andC is a positive real constant. Thus, we obtain the followingaumded

hyperbolic-function solution:

g = Vw@)V(z)e TV STetint (59)

with
1+ 3,/———tanh(y/3r12)
+67
V(z) = e . (60)
1 =3, /ot tanh(y/3r1w)

Note thaty, + 6r > 0 andV (z) is a bounded function sincel < tanh(y/3r;2) < 1 and o < 1. Thus, the
intensity ofg(x, t) will grow exponentially toco asoz — —oo or decay exponentially thasox — co. For example,
by takingCy = — 15, C1 = 32, = + ando = 1 (11 = 1), we illustrate the profile of solution (59) in Fig. 6.
Case2 ri < —¢p (u<0)
In this casew(z) < 0 for all z € R andC} is a negative real constant. Thus, we obtain the followingrioled

hyperbolic-function solution:
q = w(x)V(z)e v %MIHM, (61)

with

1434 #jrglhtanh( 3rix)

Vi) = . (62)

1= 3iy /75 tanh(v/3r12)

Becausg: + 6r; < 0, we have{V(x)e—ia\/ STy ?| = 1. The intensity of(z, t) is given by—w(z), which shows
that solution (61) represents the gray soliton since thélerexhibits a dip under the background but does not drop

to zero at the dip center. With, = —53—5, Ci = —%, w=—4andoc =1 (rn = %) as an example, we depict the

gray-soliton profile via solution (61) in Fig. 7.
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lql? lql?

-8 -4 0 4 -8 -4 0 4 8

Figure 6: Intensity profile of solution (59) withCy

Figure 7: Intensity profile of solution (59) wittCy =

7 _ 5 1 _ 55 _ 484 _ —
—@,0173456,#471&[1(10'—1. —?,017—7,M7—4and0—1.

Case3: 1y = +p (u>0)
In this case, we hav€y, = C; = 0. Then, both solutions (46) and (49) degenerate to the bsgliton solution:
g=i7 V2usech(y/px)e™ (> 0). (63)

In fact, if r; = —%M (1 < 0), one can also obtain the sign-definitéx) as given in Eq. (35). But remark 1 says
that the smooth solution cannot be yielded in such case. Maita by noticing that

) _ cn(z,m)  V1l-m
bn(:c—i-K,m)—W, dn(x—l—K,m)—W, (64)

we can just derive some trivial results (e.g.pr nonzero constant) from th&-shifted Jacobian elliptic-function

solutions in section 3.2.3 at the degeneratipg- ro > r3.

4 Conclusions and discussions

In this paper, with the stationary-solution assumptionhaee connected the RTNLS and RSTNLS equations with the
standard WE equation, and then have derived their Jacobipticefunction and hyperbolic-function solutions. For
the RTNLS equation (3), we have obtained ¢he, cn-, sn-, sech- andtanh-function solutions. All those solutions are
bounded forr € R with the nonsingular conditions, and they contain an aabjtcomplex constant,. Specially, the
tanh-function solution (21) can display both the dark- antidark-soliton profiles, which depends on the imaginary
part of . For the RSTNLS equation (4), we have obtained the genecalbian elliptic-function solutions, the
boundedin- anden-function solutions, as well as th€-shifteddn- andsn-function solutions. Those general Jacobian
elliptic-function solutions include two cases: the unbded case; > 0) exhibits an exponential growth as— o
or —oo, while the bounded cas€’( < 0) displays the periodical oscillation but do not droptat its all minima. At
the degeneratiory, = ro > r3, we have found that the hyperbolic-function solutions aoaentially growing at one
infinity, or show the gray- and bright-soliton profiles. lioahd be noted that theanh-function solution (i.e., the black
soliton) is absent for Eq. (4).

On comparing Egs. (1)—(4), we can draw the following coniclos. (i) The NLS and RSNLS equations, respec-
tively, admit the general bounded and unbounded JacoHiptiefunction solutions, the RSTNLS equation has both

13



two types of solutions, but the RTNLS equation has none ohth@) The NLS, RSNLS and RTNLS equations pos-
sess the boundeth-, cn-, sn-, sech- andtanh-function solutions with the difference lying in their cespondence
to the types of nonlinearity, whereas the RSTNLS equatiajumst thedn-, cn- andsech-function solutions. (iii) An
arbitrary constant, (which belongs tdR, iR andC, respectively) is involved in the solutions of the NLS, RSNL
and RTNLS equations, but such a constant is missing for tHENRS equation. (iv) The traveling-wave solutions can
be obtained from the stationary solutions only for Eqgs. (Ij @&). As a matter of fact, the last two results can be seen
clearly from the Galilean-invariant transformations ofsE¢]L)—(4):

2

ivae _ ivit

NLS: gq(z,t) = §(x + vt +xzp,t)e” 2 1 (v, zg € R),

RSNLS:  g(z,t) — ¢(x + ivt + ixo,t)e%m“u% (v,z09 € R), (65)
RTNLS:  qg(z,t) — ¢(z + zo,t) (zg € C),

ive _ iv2t

RSTNLS:  g¢(z,t) = §(z +vt, t)e” 2 ~ 1

(veC).
For the future study on the RTNLS and RSTNLS equations, wetimethat the obtained solutions can be used as
the seeds to construct the higher-order solutions via thled transformation. Then, one can study the collisions

among multiple solitons or multiple Jacobian elliptic-&tion waves over different nonzero backgrounds [52, 53}. Fo

example, solution (21) withy; = 4”4“ m can yield a new kind of constant-amplitude waves with thelinear phase
varying withz. Some special attention should be paid to the nonlinear \tgmamics on such constant-amplitude
background. In addition, it might be interesting to study gtability problems of those solutions since most of them
have not been reported before.
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