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In this paper, we obtain the stationary elliptic- and hyperbolic-function solutions of the nonlocal reverse-time and

reverse-space-time nonlinear Schrödinger (NLS) equations based on their connection with the standard Weierstrass

elliptic equation. The reverse-time NLS equation possesses the boundeddn-, cn-, sn-, sech-, andtanh-function

solutions. Of special interest, thetanh-function solution can display both the dark- and antidark-soliton profiles. The

reverse-space-time NLS equation admits the general Jacobian elliptic-function solutions (which are exponentially

growing at one infinity or display the periodical oscillation in x), the boundeddn- andcn-function solutions, as well

as theK-shifteddn- andsn-function solutions. At the degeneration, the hyperbolic-function solutions may exhibit

an exponential growth behavior at one infinity, or show the gray- and bright-soliton profiles.
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1 Introduction

In the past several decades, a large number of integrable nonlinear partial differential equations (NPDEs) have been

discovered and most of them are the local models [1]. As a prototypical local model, the nonlinear Schrödinger (NLS)

equation [2]

iqt(x, t) + qxx(x, t) + σq(x, t)q∗(x, t)q(x, t) = 0, (1)

has arisen in various physical contexts to describe the evolution of weakly, quasi-monochromatic wave trains in the

cubic nonlinear media [3], where the asterisk denotes complex conjugation,q is a complex-valued function ofx and

t, σ = 1 and−1 represent the focusing and defocusing types of nonlinearity, respectively. In 2013, Ablowitz and

Musslimani [4] proposed the nonlocal reverse-space nonlinear Schrödinger (RSNLS) equation

iqt(x, t) + qxx(x, t) + σq(x, t)q∗(−x, t)q(x, t) = 0. (2)

Similar to the NLS equation, Eq. (2) is integrable in the sense that it has the Lax pair and an infinite number of

conservation laws, and its initial-value problem can be solved by the inverse scattering transform (IST) [4]. The

difference between such two equations lies in that the solution dynamics of Eq. (2) is non-locally dependent on the

values ofq at both the positionsx and−x. As a new and simple integrable model, Eq. (2) was actively studied from

different mathematical aspects, as seen in Refs. [5–11]. Meanwhile, wide classes of explicit solutions were obtained

for bothσ = 1 andσ = −1 cases by some analytical methods [4–6, 12–28]. For example,it was shown that Eq. (2)

with σ = −1 admits the exponential, rational, exponential-and-rational solutions, which can display a rich variety of

elastic soliton interactions on the nonzero background [6,14–19].

Apart from Eq. (2), Ablowitz and Musslimani [29] also proposed the nonlocal reverse-time NLS (RTNLS) equation

iqt(x, t) + qxx(x, t) + σq(x, t)q(x,−t)q(x, t) = 0, (3)

and the nonlocal reverse-space-time NLS (RSTNLS) equation

iqt(x, t) + qxx(x, t) + σq(x, t)q(−x,−t)q(x, t) = 0. (4)

Eqs. (3) and (4) can arise from the second member of the Ablowitz-Kaup-Newell-Segur hierarchy respectively with

the nonlocal reverse-time and reverse-space-time reductions, and their initial-value problems are solvable by the IST

and Riemann-Hilbert method [23, 29–31]. Similar to Eq. (2),both the two equations are invariant under the the joint

transformationsx → −x, t → −t and complex conjugation [29, 30]. It was shown that the solutions of Eqs. (3)

and (4) in general exhibit the repeatedly-collapsing behavior, but they can still remain bounded or nonsingular for a

certain range of parameter values [9]. For example, via the Darboux transformation Refs. [32, 33] revealed that Eq. (3)

admits the nonsingular bright-soliton, dark-soliton, antidark-soliton, rogue-wave and breather solutions.

Following the pioneering work of Ablowitz and Musslimani, researchers soon realized that the nonlocal reverse-

space, reverse-time and reverse-space-time reductions may exist in the known Ablowitz-Kaup-Newell-Segur [34],

Kaup-Newell [35] and Wadati-Konno-Ichikawa [36] systems.As a result, a number of nonlocal integrable NPDEs
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were identified in1 + 1 and 1 + 2 dimensions as well as in discrete settings [5, 29, 37–45]. Atthe same time,

those integrable nonlocal equations have attracted certain interest in physics. For example, Eq. (2) is linked to an

unconventional coupled Landau-Lifshitz system in magnetics through the gauge transformation [46], it can be derived

as the quasi-monochromatic complex reductions of the cubicnonlinear Klein-Gordon, Korteweg-de Vries and water

wave equations [47], and its stationary solutions can yielda wide class of complex, time-independent parity-time (PT )

symmetric potentials which may have applications in thePT -symmetric quantum mechanics and optics [26]. Besides,

several efforts have been made towards the physical realization of nonlocal coupling in unconventional settings, e.g.,

the nonlinear string where each particle is simultaneouslycoupled with nearest neighbors and its mirror particle [48].

As we know, the NLS equation possesses the stationary Jacobian elliptic-function and hyperbolic-function solu-

tions [49, 50], where the former has the bounded periodical oscillation inx, while the latter displays the bright- or

dark-soliton profile. Very recently, we constructed the stationary solutions of the RSNLS equation and revealed some

unusual behaviors [26]: (i) The unbounded stationary solutions exponentially grow to infinity atx → ±∞ but decay

to zero atx → ∓∞; (ii) The bounded complex-amplitude solutions obey eitherthePT - or anti-PT symmetry. In

this paper, with the stationary-solution assumption, we will systematically search the Jacobian elliptic-function and

hyperbolic-function solutions of Eqs. (3) and (4). First, we connect the RTNLS and RSTNLS equations with the

standard Weierstrass elliptic (WE) equation, that is, Eq. (3) is directly reduced to the WE equation while Eq. (4) is

connected with the WE equation based on the reduced equationand itsx-symmetric counterpart. Then, we obtain

that Eq. (3) has thedn-, cn- andsn-function solutions, whereas Eq. (4) admits the general Jacobian elliptic-function

solutions (which are exponentially growing at one infinity or have the periodical oscillation inx), the boundeddn-

andcn-function solutions, as well as theK-shifteddn- andsn-function solutions. Also, we derive the hyperbolic-

function solutions which are degenerated from those Jacobian elliptic-function solutions. Specially, we find that the

tanh-function solution of Eq. (3) can exhibit both the dark-and antidark-soliton profiles, and the hyperbolic-function

solutions of Eq. (4) may exhibit an exponential growth at oneinfinity or show the gray- and bright-soliton profiles.

Our results indicate the difference of solutions’ behaviorof Eqs. (3) and (4) compared with Eqs. (1) and (2).

2 Stationary solutions of the RTNLS equation

In this section, we construct the stationary solutions of Eq. (3) in the following form

q(x, t) = φ(x)ei µt, (5)

whereφ(x) represents the amplitude,µ is a real constant. Substituting the assumption (5) into Eq.(3) yields

d2φ(x)

dx2
− µφ(x) + σφ3(x) = 0. (6)

Then, we multiply Eq. (6) by2dφ(x)
dx and integrate the resulting equation with respect tox, giving

(dφ(x)

dx

)2

− µφ2(x) +
1

2
σφ4(x) = C0, (7)
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whereC0 is an integral constant. Through the transformation

φ2(x) =
2µ

3σ
− 2

σ
w(x), (8)

Eq. (7) becomes the standard WE equation

(dw(x)

dx

)2

= 4w3(x)− g2w(x) − g3, (9)

whereg2 andg3 are given by

g2 =
4

3
µ2 + 2σC0, g3 = −

( 8

27
µ3 +

2

3
σµC0

)

. (10)

As we know, Eq. (9) admits the following Jacobian elliptic-function solution [51]:

w(x) = r3 + (r2 − r3)sn
2(
√
r1 − r3 x+ x0,m)

(

m =
r2 − r3
r1 − r3

)

, (11)

wherex0 is an arbitrary constant inC, andri’s (1 ≤ i ≤ 3, r1 + r2 + r3 = 0) are the roots of the cubic equation

f(r) := 4r3 − g2r − g3 = 0. (12)

In the following, we just consider thatri’s (1 ≤ i ≤ 3) are real numbers and satisfy the ordering relationr1 ≥ r2 ≥ r3.

At this moment, the coefficientsg2 andg3 are real numbers, and the three roots of Eq. (12) can be given by 1
3µ,

− 1
6µ+

1
2

√

2σC0 + µ2 and− 1
6µ− 1

2

√

2σC0 + µ2 with C0 ∈ R andσC0 ≥ −µ2

2 . Then, based on Eq. (11), we obtain

the Jacobian elliptic-function solutions (r1 > r2 > r3) and hyperbolic-function solutions (r1 = r2 > r3) of Eq. (3).

Case 1: Jacobian elliptic-function solutions

For the general caser1 > r2 > r3, we have the following three families of Jacobian elliptic-function solutions:

(i) If r1 = 1
3µ, r2 = − 1

6µ + 1
2

√

2σC0 + µ2, r3 = − 1
6µ − 1

2

√

2σC0 + µ2, we have thedn-function solution in

the form

q = i
1−σ
2

√
2α1dn(α1x+ x0,m1)e

iµt, (13)

whereα1 andm1 are given by

α1 =

√

µ

2−m1
, m1 =

2
√

2σC0 + µ2

µ+
√

2σC0 + µ2
(−µ2 < 2σC0 < 0, µ > 0). (14)

(ii) If r1 = − 1
6µ+ 1

2

√

2σC0 + µ2, r2 = 1
3µ, r3 = − 1

6µ− 1
2

√

2σC0 + µ2, we have thecn-function solution in the

form

q = i
1−σ
2

√
2m2 α2cn(α2x+ x0,m2)e

iµt, (15)

whereα2 andm2 are given by

α2 =

√

µ

2m2 − 1
, m2 =

µ+
√

2σC0 + µ2

2
√

2σC0 + µ2
(σC0 > 0, µ ∈ R). (16)
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(iii) If r1 = − 1
6µ+ 1

2

√

2σC0 + µ2, r2 = − 1
6µ− 1

2

√

2σC0 + µ2, r3 = 1
3µ, we have thesn-function solution in the

form

q = i
1+σ
2

√
2m3 α3sn(α3x+ x0,m3)e

iµt, (17)

whereα3 andm3 are given by

α3 =

√

−µ

1 +m3
, m3 =

µ+
√

2σC0 + µ2

µ−
√

2σC0 + µ2
(−µ2 < 2σC0 < 0, µ < 0). (18)

One should note that sincex0 can be selected inC, solutions (13), (15) and (17) possess in general the com-

plex amplitudes, regardless of the signσ. Particularly whenx0 ∈ R, all the three solutions have the purely real or

imaginary amplitudes (depending onσ) and they also solve the NLS equation (1). In fact, the general Jacobian elliptic-

function solutions with complex amplitudes for Eq. (1) can be constructed in a different way (see the caseC1 < 0 in

subsection 3.2.1).

In addition, the constantx0 must be judiciously selected in avoid that the Jacobian elliptic-function solutions (13),

(15) and (17) are non-singular. In the complexz-plane,sn(z,m) has simple poles which are congruent toiK ′ or to

2K + iK ′ (mod. 4K, 2iK ′), cn(z,m) has simple poles which are congruent toiK ′ or to2K + iK ′ (mod. 4K, 2K +

2iK ′), anddn(z,m) has simple poles which are congruent toiK ′ or to3iK ′ (mod. 2K, 4iK ′) [51], whereK andK ′

are the complete elliptic integrals of the first kind

K = K(m) =

∫ π
2

0

dt
√

1−m sin2 t
, K ′ = K ′(m) = K(1−m). (19)

Therefore, it requires thatx0I 6= (2n+ 1)K ′ (n ∈ Z) with x0I = Im(x0) to ensure that solutions (13), (15) and (17)

have no singularity for allx ∈ (−∞,∞).

Case 2: Hyperbolic-function solutions

When particularly takingr1 = r2 > r3, we havem = 1, so that the Jacobian elliptic functions degenerate to the

hyperbolic functions. As a result, we obtain two families ofhyperbolic-function solutions as follows:

(i) If 1
3µ = − 1

6µ + 1
2

√

2σC0 + µ2 > − 1
6µ − 1

2

√

2σC0 + µ2, one immediately haver1 = r2 = 1
3µ, r3 = − 2

3µ

(µ > 0), andC0 = 0. Then, both solutions (13) and (15) become thesech-function form

q = i
1−σ
2

√

2µ sech(
√
µx+ x0)e

iµt (µ > 0). (20)

(ii) If − 1
6µ + 1

2

√

2σC0 + µ2 = − 1
6µ− 1

2

√

2σC0 + µ2 > 1
3µ, one haver1 = r2 = − 1

6µ, r3 = 1
3µ (µ < 0), and

C0 = −σ
2µ

2. Then, solution (17) becomes thetanh-function form

q = i
1+σ
2
√−µ tanh(

√

−µ/2x+ x0)e
iµt (µ < 0). (21)

Considering the analyticity of thesech andtanh functions in the complexz-plane, we know that solutions (20) and

(21) are both nonsingular if and only ifx0I 6= 2n+1
2 π (n ∈ Z).
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Different from the bright and dark-soliton solutions of Eq.(1), the profiles of solutions (20) and (21) may vary with

the parameterx0I . For solution (20), its intensity has just one maximum and thus it always displays the bright-soliton

profile on the zero background, as seen in Fig. 1. The soliton amplitude can be given byA =
√
2µ
∣

∣ sec(x0I)
∣

∣ (µ > 0),

which shows that the amplitude increases in the interval
[

nπ, 2n+1
2 π

)

but decreases in the interval
(

2n+1
2 π, (n+1)π

]

with the increment ofx0I . Likewise, the intensity of solution (21) has one extremum whose value is−µ tan2(x0I).

By calculating the difference between the extremum value and background amplitude, one can find that solution (21)

represents the dark soliton ifx0I ∈
[

4n−1
4 π, 4n+1

4 π
]

(see Fig. 2) or antidark soliton ifx0I ∈
(

2n−1
2 π, 4n−1

4 π
)

∪
(

4n+1
4 π, 2n+1

2 π
)

on the nonzero background (see Fig. 3).

-6 -3 3 6
x

2

4

|q 2

Figure 1: Soliton profile via solu-

tion (20) atµ = 1 with x0 =
3

4
πi.
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1
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Figure 2: Soliton profile via solu-

tion (21) atµ = −1 with x0 = 0.
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Figure 3: Soliton profile via solu-

tion (21) atµ = −1 with x0 =
3

8
πi.

3 Stationary solutions of the RSTNLS equation

3.1 Connection of Eq. (4) with the elliptic equation

Likewise, using the assumption (5), Eq. (4) can be reduced to

d2φ(x)

dx2
− µφ(x) + σφ2(x)φ(−x) = 0. (22)

Here, because of the nonlinear termσφ2(x)φ(−x), Eq. (22) cannot be directly converted into the elliptic equation like

Eq. (6). However, we note thatφ(−x) also satisfies Eq. (22), that is,

d2φ(−x)

dx2
− µφ(−x) + σφ2(−x)φ(x) = 0. (23)

In the following, we use Eqs. (22) and (23) together to establish the relationship of Eq. (4) with the elliptic equation.

On one side, we multiply Eqs. (22) and (23) respectively by2dφ(−x)
dx and2dφ(x)

dx , and integrate their sum with

respect tox, obtaining that

2
dφ(x)

dx
· dφ(−x)

dx
− 2µφ(x)φ(−x) + σφ2(x)φ2(−x) = C0, (24)

whereC0 is an integral constant. Again, multiplying Eqs. (22) and (23) respectively byφ(−x) andφ(x) and adding

them to Eq. (24) gives rise to

d2w(x)

dx2
− 4µw(x) + 3σw2(x) = C0, w(x) = φ(x)φ(−x). (25)
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Further, by multiplying Eq. (25) bydw(x)
dx and integrating the resultant equation once with respect tox, we arrive at

the elliptic equation forw(x):

(dw(x)

dx

)2

− 4µw2(x) + 2σw3(x) = 2C0w(x) + C1, (26)

whereC1 is also an integral constant, andw(x) obeys the relationw(x) = w(−x).

On the other side, we multiply Eqs. (22) and (23) respectively by φ(−x) andφ(x), and then integrate their sub-

traction with respect tox, yielding

φ(x)
dφ(−x)

dx
− φ(−x)

dφ(x)

dx
= C2, (27)

whereC2 is an integral constant. Divided byφ2(x) or φ2(−x), Eq. (27) becomes

d

dx

(

w(x)

φ2(x)

)

=
C2

w(x)
· w(x)

φ2(x)
, or

d

dx

(

w(x)

φ2(−x)

)

=
−C2

w(x)
· w(x)

φ2(−x)
. (28)

Note that Eq. (28) can be regarded as a linear differential equation with respect tow(x)/φ2(x) orw(x)/φ2(−x) once

w(x) is solved from Eq. (26) and satisfies the symmetric relationw(x) = w(−x). Thus, we have

φ2(x) = ρ21w(x)e
−

∫

x

x0

C2
w(s)

ds
, φ2(−x) = ρ22w(x)e

∫

x

x0

C2
w(s)

ds
. (29)

In view of φ2(x)|x→−x = φ2(−x) andφ2(x)φ2(−x) = w2(x), we obtain thatρ1 andρ2 obey the relation

ρ1 =
1

ρ2
= e−

1
4

∫ x0
−x0

C2
w(s)

ds. (30)

Here, we still need to check ifφ(x) andφ(−x) in Eq. (29) satisfy Eq. (22). First, the second-order derivative of

φ(x) is given by

d2φ(x)

dx2
=

φ(x)

4w2(x)

[

C2
2 −

(dw(x)

dx

)2]

+
φ(x)

2w(x)

d2w(x)

dx2
. (31)

Then, substituting (31) into (22) and removing
(dw(x)

dx

)2
and d2w(x)

dx2 via Eqs. (25) and (26), the resulting equation

reads

d2φ(x)

dx2
− µφ(x) + σφ2(x)φ(−x) =

C2
2 − C1

4w2(x)
φ(x), (32)

wherew(x) = φ(x)φ(−x) has been used for simplification. Clearly, Eq. (32) shows that φ(x) andφ(−x) given in

Eq. (29) obey Eq. (22) if and only ifC1 = C2
2 . Therefore, we finally reach the following result:

Proposition 3.1 Assume thatw(x) is an solution of Eq. (26) withw(x) = w(−x), andw
1
2 (x) is also a smooth even

function. Then, we have a pair of solutions for Eq. (22):

φ(x) = ρ1w
1
2 (x)e

− 1
2

∫

x

x0

C2
w(s)

ds
, φ(−x) =

1

ρ1
w

1
2 (x)e

1
2

∫

x

x0

C2
w(s)

ds
, (33)

whereρ1 = e−
1
4

∫ x0
−x0

C2
w(s)

ds andC2 = C
1
2
1 . If C2 6= 0, φ(x) andφ(−x) are mutually independent, whereas they

coalesce into one solution atC2 = 0.
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Remark 1.It should be noted that even ifw(x) is a real-valued, even-symmetric solution of Eq. (26), Eq. (33) may

not yield thesmoothfunctions forφ(x) andφ(−x). In fact, an obviousnecessarycondition ensuring the smoothness

of φ(x) andφ(−x) is

w(x) ≥ 0 or w(x) ≤ 0 for all x ∈ R. (34)

This is because the sign indefiniteness ofw(x) may causeφ(x) andφ(−x) non-smooth at points where the sign

changes. However, there are still some exceptions even if condition (34) holds. For example, withC0 = −σµ2 and

C1 = 0, solving Eq. (26) gives the following solution:

w(x) = σµ tanh2

(

√

−µ

2
x

)

(µ < 0). (35)

One can check that Eq. (35) satisfies condition (34) for bothσ = ±1 cases, but its square root cannot yield the smooth

even function.

3.2 Jacobian elliptic-function and hyperbolic-function solutions

Through the transformation

w(x) =
2µ

3σ
− 2

σ
w1(x), (36)

one can also transform Eq. (26) into the standard WE equation:
(dw1(x)

dx

)2

= 4w3
1(x)− g2w1(x)− g3, (37)

whereg2 andg3 are given by

g2 = σC0 +
4

3
µ2, g3 = −

(1

3
σµC0 +

1

4
C1 +

8

27
µ3
)

. (38)

Thus, we give the Jacobian elliptic-function solution of Eq. (4) as follows:

w(x) = 2σ
[µ

3
− r3 − (r2 − r3)sn

2(
√
r1 − r3 x,m)

] (

m =
r2 − r3
r1 − r3

)

. (39)

Here, compared with solution (11), we ignore the constantx0 because the symmetric conditionw(x) = w(−x)

restricts thatx0 is no longer an arbitrary constant. In section 3.2.2, we willdiscuss the possible nonzero choice ofx0.

Again, we consider thatri’s (1 ≤ i ≤ 3) are real numbers and obey the ordering relationr1 ≥ r2 ≥ r3. Thus, the

coefficientsg2 andg3 must be real numbers, which means thatC0 andC1 are two real constants. Besides, the modular

discriminant should satisfy

∆ := g32 − 27g23 = −27

16
C2

1 −
(

9

2
σµC0 + 4µ3

)

C1 + C2
0 (µ

2 + σC0) ≥ 0, (40)

which holds if and only ifC0, C1 andµ obey










Ω :=

√

(3σC0 + 4µ2)3 ≥ 0,

− 4
27

(

9σµC0 + 8µ3 +Ω
)

≤ C1 ≤ − 4
27

(

9σµC0 + 8µ3 − Ω
)

.

(41)

In the following, we present all the possible Jacobian elliptic-function solutions(r1 > r2 > r3) and hyperbolic-

function solutions(r1 = r2 > r3) of Eq. (4) with condition (41).
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3.2.1 Jacobian elliptic-function solutions

Based on Eqs. (33) and (39), we have the Jacobian elliptic-function solutions of Eq. (4) in the form

q =

√

σ
[2µ

3
− 2r3 − 2(r2 − r3)sn2(

√
r1 − r3 x,m)

]

e

−3σC2Π

(

3(r2−r3)
µ−3r3

;Φ(x),m

)

4(µ−3r3)
√

r1−r3
+i µt

, (42)

wherem = r2−r3
r1−r3

, Φ(x) = am(
√
r1 − r3 x,m) is the Jacobian amplitude,Π is the incomplete elliptic integral of the

third kind. According to remark 1,w(x) in Eq. (39) must be sign definite for allx ∈ R to ensure the smoothness of

solution (42). Because0 ≤ sn2(
√
r1 − r3 x,m) ≤ 1, it requires thatr2 ≤ 1

3µ or r3 ≥ 1
3µ. Meanwhile, we notice that























f(r) < 0, r ∈ (−∞, r3) ∪ (r2, r1),

f(r) > 0, r ∈ (r3, r2) ∪ (r1,∞),

f(r) = C1

4 , r = 1
3µ (C1 = C2

2 ),

(43)

which shows that the distribution of three rootsri’s is dependent onµ andC1. Next, we judge the range ofµ whenC1

is given and discuss the properties of the Jacobian elliptic-function solutions in Eq. (42).
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Figure 4: Intensity profile of solution (42) withσ = 1,

C0 = −
2

3
, C1 =

2

27
, C2 =

√

2

27
andµ = 1.
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Figure 5: Intensity profile of solution (42) withσ = 1,

C0 = −
8

3
, C1 = −2, C2 =

√

2i andµ = 2.

Case 1: C1 > 0

In this case,f(13µ) > 0 implies that13µ ∈ (r3, r2) ∪ (r1,∞). Meanwhile, considering the sign definiteness of

w(x), we know that13µ > r1. Therefore, we havew(x) > 0 for σ = 1 andw(x) < 0 for σ = −1. In addition,

C2
2 = C1 > 0 indicates thatC2 is a real constant. Thus, the intensity ofq(x, t) will grow to ∞ asσ sgn(C2)x → −∞

but decay to0 asσ sgn(C2)x → ∞ in an exponential-and-periodical manner. For example, with σ = 1, C0 = − 2
3 ,

C1 = 2
27 andµ = 1, we obtainr1 =

√
21−1
12 , r2 = 1

6 andr3 = −
√
21+1
12 . The intensity profile ofq(x, t) is shown in

Fig. 4.

Case 2: C1 < 0

In this case, becausef(13µ) < 0, we know that13µ ∈ (−∞, r3) ∪ (r2, r1). If 1
3µ < r3, w(x) < 0 for σ = 1 and

w(x) > 0 for σ = −1; whereas ifr2 < 1
3µ < r1, w(x) > 0 for σ = 1 andw(x) < 0 for σ = −1. In view thatC2

is a pure imaginary number (C2
2 = C1 < 0), the solution is bounded for allx ∈ R. The intensity ofq(x, t) exhibits

9



the periodical oscillation behavior inx but do not drop to zero at its all minima. For example, whenσ = 1, C0 = − 8
3 ,

C1 = −2 andµ = 2, we haver1 = 5+
√
21

12 , r2 = 5−
√
21

12 andr3 = − 5
6 . The intensity profile ofq(x, t) is displayed in

Fig. 5.

Case 3: C1 = 0

For this case, the three roots off(r) are given by13µ, − 1
6µ+

1
2

√

σC0 + µ2 and− 1
6µ− 1

2

√

σC0 + µ2. According

to the ordering of the three roots, we obtain two families of bounded Jacobian elliptic-function solutions as follows:

(i) If r1 = 1
3µ, r2 = − 1

6µ+ 1
2

√

σC0 + µ2 andr3 = − 1
6µ− 1

2

√

σC0 + µ2, Eq. (39) gives rise to

w(x) = 2 σ α2
1 dn

2(α1x,m1), (44)

whereα1 andm1 are given by

α1 =

√

µ

2−m1
, m1 =

2
√

σC0 + µ2

µ+
√

σC0 + µ2
(−µ2 < σC0 < 0, µ > 0). (45)

Thus, we obtain thedn-function solution in the form

q = i
1−σ
2

√
2α1 dn(α1x,m1)e

iµt. (46)

(ii) If r1 = − 1
6µ+ 1

2

√

σC0 + µ2, r2 = 1
3µ andr3 = − 1

6µ− 1
2

√

σC0 + µ2, Eq. (39) gives rise to

w(x) = 2 σm2 α
2
2 cn

2(α2x,m2), (47)

whereα2 andm2 are given by

α2 =

√

µ

2m2 − 1
, m2 =

µ+
√

σC0 + µ2

2
√

σC0 + µ2
(σC0 > 0, µ ∈ R). (48)

Thus, we obtain thecn-function solution in the form

q = i
1−σ
2

√
2m2 α2cn(α2x,m2)e

iµt. (49)

For the third caser1 = − 1
6µ+ 1

2

√

σC0 + µ2, r2 = − 1
6µ− 1

2

√

σC0 + µ2 andr3 = 1
3µ, one can also obtain the

sign-definitew(x) as follows:

w(x) = −2 σm3 α
2
3 sn

2(α3x,m3), (50)

with

α3 =

√

−µ

1 +m3
, m3 =

µ+
√

σC0 + µ2

µ−
√

σC0 + µ2
(−µ2 < σC0 < 0, µ < 0). (51)

However, the square root ofw(x) in Eq. (50) yields no smooth even function, so that one cannotobtain the smooth

φ(x) from Eq. (33).
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3.2.2 K-shifted Jacobian elliptic-function solutions

Forw(x) in Eq. (39), we introduce the complex constantx0 and impose

sn2(
√
r1 − r3x+ x0,m) = sn2(−

√
r1 − r3x+ x0,m), (52)

to satisfy the relationw(x) = w(−x). Based on the properties of thesn-function, condition (52) holds true if and only

if x0 = lK+ i nK ′(l, n ∈ Z), whereK andK ′ are defined in Eq. (19). In order to avoid the singularity, we must take

n as an even integer. Moreover, the periodicity ofsn2(x) implies that the only nonzero value ofx0 isK.

WhenC1 6= 0, we make the shift
√
r1 − r3x → √

r1 − r3x + K for w(x) in Eq. (39), and then obtain the

K-shifted Jacobian elliptic-function solutions as follows:

q(K) =

√

2σ
[µ

3
− r3 − (r2 − r3)sn2(

√
r1 − r3 x+K,m)

]

× e
− 3σC2

4

[

3(r2−r1)

(µ−3r1)(µ−3r2)
√

r1−r3
Π
(

m(µ−3r1)
µ−3r2

;Φ(x),m
)

+ x
µ−3r1

]

+i µt
, (53)

with m = r2−r3
r1−r3

andΦ(x) = am(
√
r1 − r3 x,m). Since the sign ofw(x) does not change with theK-shift in x,

thus it has no influence on the smoothness ofq(K). Like the cases 1 and 2 in section 3.2.1, solution (53) possesses

the similar dynamical properties: IfC1 > 0 and 1
3µ ∈ (r1,∞), the intensity ofq(K) grows to∞ at one infinity but

decays to0 at the other infinity in an exponential-and-periodical manner; if C1 < 0 and 1
3µ ∈ (−∞, r3) ∪ (r2, r1),

the intensity ofq(K) displays the periodical oscillation inx.

WhenC1 = 0, we also make the shiftαix → αix + Ki (1 ≤ i ≤ 3) for w(x) in Eqs. (44), (47) and (50),

respectively. Then, from the following properties

dn(α1x+K1,m1) = dn(−α1x+K1,m1),

cn(α2x+K2,m2) = −cn(−α2x+K2,m2),

sn(α3x+K3,m3) = sn(−α3x+K3,m3),

(54)

we know that bothdn(α1x +K1,m1) andsn(α3x +K3,m3) are even functions, whereascn(α2x +K2,m2) is an

odd function. That is, theK-shift changes the parity of thecn andsn functions, but has no change for thedn-function.

Recall thatw
1
2 (x) must be even symmetric to ensure thatq(x, t) is a smooth function. Therefore, associated with

w(x) in Eqs. (44) and (47), we obtain two families of shifted Jacobian elliptic-function solutions:

q(K1) = i
1−σ
2

√
2α1 dn(α1x+K1,m1)e

iµt (µ > 0), (55)

q(K3) = i
1+σ
2

√
2m3 α3sn(α3x+K3,m3)e

iµt (µ < 0), (56)

whereα1,3 andm1,3 are defined in Eqs. (45) and (51).

3.2.3 Hyperbolic-function solutions

In this subsection, we consider the degenerate cases for allthe Jacobian elliptic-function solutions in section 3.2.1at

r1 = r2 > r3. In those cases, we can expressC0 andC1 in terms ofr1:

C0 =
4σ

3
(9r21 − µ2), C1 =

16

27
(µ− 3r1)

2(µ+ 6r1). (57)
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As a result,w(x) in Eq. (39) reduces to

w(x) = 2σ
[1

3
µ+ 2r1 − 3r1tanh

2(
√
3r1 x)

]

, (58)

wherer3 has been removed byr3 = −2r1. To maintain the sign definiteness ofw(x), there are the following three

cases:

Case 1: 0 < r1 < 1
3µ (µ > 0)

In this case,w(x) > 0 for all x ∈ R andC1 is a positive real constant. Thus, we obtain the following unbounded

hyperbolic-function solution:

q =
√

w(x)V (x)e−σ

√

µ+6r1
3 x+iµt, (59)

with

V (x) =





1 + 3
√

r1
µ+6r1

tanh(
√
3r1x)

1− 3
√

r1
µ+6r1

tanh(
√
3r1x)





σ
2

. (60)

Note thatµ + 6r1 > 0 andV (x) is a bounded function since−1 < tanh(
√
3r1x) < 1 and

√

r1
µ+6r1

< 1
3 . Thus, the

intensity ofq(x, t) will grow exponentially to∞ asσx → −∞ or decay exponentially to0 asσx → ∞. For example,

by takingC0 = − 7
192 , C1 = 5

3456 , µ = 1
4 andσ = 1 (r1 = 1

16 ), we illustrate the profile of solution (59) in Fig. 6.

Case 2: r1 < − 1
6µ (µ < 0)

In this case,w(x) < 0 for all x ∈ R andC1 is a negative real constant. Thus, we obtain the following bounded

hyperbolic-function solution:

q =
√

w(x)V (x)e−iσ

√

−µ−6r1
3 x+iµt, (61)

with

V (x) =





1 + 3i
√

−r1
µ+6r1

tanh(
√
3r1x)

1− 3i
√

−r1
µ+6r1

tanh(
√
3r1x)





σ
2

. (62)

Becauseµ + 6r1 < 0, we have
∣

∣V (x)e−iσ

√

−µ−6r1
3 x

∣

∣ = 1. The intensity ofq(x, t) is given by−w(x), which shows

that solution (61) represents the gray soliton since the profile exhibits a dip under the background but does not drop

to zero at the dip center. WithC0 = − 55
3 , C1 = − 484

27 , µ = −4 andσ = 1 (r1 = 1
2 ) as an example, we depict the

gray-soliton profile via solution (61) in Fig. 7.
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Figure 6: Intensity profile of solution (59) withC0 =

−
7

192
, C1 =

5

3456
, µ =

1

4
andσ = 1.
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Figure 7: Intensity profile of solution (59) withC0 =

−
55

3
, C1 = −

484

27
, µ = −4 andσ = 1.

Case 3: r1 = 1
3µ (µ > 0)

In this case, we haveC0 = C1 = 0. Then, both solutions (46) and (49) degenerate to the bright-soliton solution:

q = i
1−σ
2

√

2µ sech(
√
µx)eiµt (µ > 0). (63)

In fact, if r1 = − 1
6µ (µ < 0), one can also obtain the sign-definitew(x) as given in Eq. (35). But remark 1 says

that the smooth solution cannot be yielded in such case. Meanwhile, by noticing that

sn(x+K,m) =
cn(x,m)

dn(x,m)
, dn(x+K,m) =

√
1−m

dn(x,m)
, (64)

we can just derive some trivial results (e.g.,0 or nonzero constant) from theK-shifted Jacobian elliptic-function

solutions in section 3.2.3 at the degenerationr1 = r2 > r3.

4 Conclusions and discussions

In this paper, with the stationary-solution assumption, wehave connected the RTNLS and RSTNLS equations with the

standard WE equation, and then have derived their Jacobian elliptic-function and hyperbolic-function solutions. For

the RTNLS equation (3), we have obtained thedn-, cn-, sn-, sech- andtanh-function solutions. All those solutions are

bounded forx ∈ R with the nonsingular conditions, and they contain an arbitrary complex constantx0. Specially, the

tanh-function solution (21) can display both the dark- and antidark-soliton profiles, which depends on the imaginary

part of x0. For the RSTNLS equation (4), we have obtained the general Jacobian elliptic-function solutions, the

boundeddn- andcn-function solutions, as well as theK-shifteddn- andsn-function solutions. Those general Jacobian

elliptic-function solutions include two cases: the unbounded case (C1 > 0) exhibits an exponential growth asx → ∞
or −∞, while the bounded case (C1 < 0) displays the periodical oscillation but do not drop to0 at its all minima. At

the degenerationr1 = r2 > r3, we have found that the hyperbolic-function solutions are exponentially growing at one

infinity, or show the gray- and bright-soliton profiles. It should be noted that thetanh-function solution (i.e., the black

soliton) is absent for Eq. (4).

On comparing Eqs. (1)–(4), we can draw the following conclusions: (i) The NLS and RSNLS equations, respec-

tively, admit the general bounded and unbounded Jacobian elliptic-function solutions, the RSTNLS equation has both
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two types of solutions, but the RTNLS equation has none of them. (ii) The NLS, RSNLS and RTNLS equations pos-

sess the boundeddn-, cn-, sn-, sech- andtanh-function solutions with the difference lying in their correspondence

to the types of nonlinearity, whereas the RSTNLS equation has just thedn-, cn- andsech-function solutions. (iii) An

arbitrary constantx0 (which belongs toR, iR andC, respectively) is involved in the solutions of the NLS, RSNLS

and RTNLS equations, but such a constant is missing for the RSTNLS equation. (iv) The traveling-wave solutions can

be obtained from the stationary solutions only for Eqs. (1) and (4). As a matter of fact, the last two results can be seen

clearly from the Galilean-invariant transformations of Eqs. (1)–(4):

NLS : q(x, t) → q̃(x + vt+ x0, t)e
− ivx

2 − iv2t
4 (v, x0 ∈ R),

RSNLS: q(x, t) → q̃(x+ ivt+ ix0, t)e
vx
2 + iv2t

4 (v, x0 ∈ R),

RTNLS : q(x, t) → q̃(x + x0, t) (x0 ∈ C),

RSTNLS: q(x, t) → q̃(x+ vt, t)e−
ivx
2 − iv2t

4 (v ∈ C).

(65)

For the future study on the RTNLS and RSTNLS equations, we mention that the obtained solutions can be used as

the seeds to construct the higher-order solutions via the Darboux transformation. Then, one can study the collisions

among multiple solitons or multiple Jacobian elliptic-function waves over different nonzero backgrounds [52, 53]. For

example, solution (21) withx0I = 4n+1
4 π can yield a new kind of constant-amplitude waves with the nonlinear phase

varying withx. Some special attention should be paid to the nonlinear wavedynamics on such constant-amplitude

background. In addition, it might be interesting to study the stability problems of those solutions since most of them

have not been reported before.
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