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Abstract

We combine physics-based groundwater reactive transport modeling with ma-
chine learning techniques to quantify hydrogeologic model and solute transport
predictive uncertainties. We train an artificial neural network (ANN) on a
dataset of groundwater hydraulic heads and 3H concentrations generated using
a high-fidelity groundwater reactive transport model. Using the trained ANN
as a surrogate model to reproduce the input-output response of the high-fidelity
reactive transport model, we quantify the posterior distributions of hydroge-
ologic parameters and hydraulic forcing conditions using Markov-chain Monte
Carlo (MCMC) calibration against field observations of groundwater hydraulic
heads and 3H concentrations. We demonstrate the methodology with a model
application that predicts Chlorofluorocarbon-12 (CFC-12) solute transport at a
contaminated site in Wyoming, USA. Our results show that including 3H ob-
servations in the calibration dataset reduced the uncertainty in the estimated
permeability field and infiltration rates, compared to calibration against hy-
draulic heads alone. However, predictive uncertainty quantification shows that
CFC-12 transport predictions conditioned to the parameter posterior distribu-
tions cannot reproduce the field measurements. We found that calibrating the
model to hydraulic head and 3H observations results in groundwater mean ages
that are too large to explain the observed CFC-12 concentrations. The cou-
pling of the physics-based reactive transport model with the machine learning
surrogate model allows us to efficiently quantify model parameter and predic-
tive uncertainties, which is typically computationally intractable using reactive
transport models alone.
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1 Introduction

Predicting the evolution of groundwater quality at contaminated sites is a fore-
most concern for current and future water resource management. Yet, field-scale
contaminant transport that spans decadal to century-long timescales is imprac-
tical to directly measure and remains uncertain (Hammond & Lichtner, 2010;
Dam et al., 2015; Zachara et al., 2013). It is increasingly apparent that aquifer
biogeochemical conditions and contaminant transport dynamics are influenced
by groundwater flow with varying residence times (Manning, Mills, Morrison, &
Ball, 2015; Bea et al., 2013; Visser, Broers, Van Der Grift, & Bierkens, 2009).
For instance, groundwater flow with multi-decadal residence times can impact
contaminant reactive chemistry processes (Green, Böhlke, Bekins, & Phillips,
2010; Liao, Green, Bekins, & Böhlke, 2012) and is requisite understanding to
estimate transport velocity distributions used to predict contaminant flushing
timescales (Manning et al., 2015; Sanford & Pope, 2013; Bohlke & Denver,
1995). Nonetheless, our understanding of groundwater flow and transport at
the field-scale is complicated by the limited observations that are sensitive to
groundwater with decadal and longer residence times (Zell, Culver, & Sanford,
2018; Gardner, Hammond, & Lichtner, 2015). Further investigation on the
role that uncertainties in long-residence time groundwater transport have on
field-scale solute transport predictions and predictive uncertainties is needed.

Physics-based numerical models are among the most powerful tools avail-
able to assimilate long-residence time groundwater into predictions of subsur-
face transport (Steefel, DePaolo, & Lichtner, 2005; Li et al., 2017). Given
that numerical models are imperfect representations of complex groundwater
systems, model calibration using field observations is key to estimate effective
model parameters and make solute transport predictions (Doherty, 2015; Hill
& Tiedeman, 2007). Model calibration against hydraulic head data alone can-
not constrain the groundwater transport velocity fields and leads to poor solute
transport predictive performance (Thiros, Gardner, & Kuhlman, 2021; Portni-
aguine & Solomon, 1998). Augmenting calibration datasets with observations
of solute concentrations has been shown to improve estimates of the parameters
and processes that control solute transport (e.g. Schilling, Cook, & Brunner,
2019). While injection tracer tests provide solute transport information locally
around a well gallery (e.g. Ma et al., 2014), these methods are limited by the
time frames of the field campaign and often cannot constrain field-scale pro-
cesses and parameter heterogeneities. Alternatively, environmental tracers are
naturally applied over timescales that range from years to centuries and act as a
proxy for solute transport that integrates heterogeneity over broad spatial scales
(Cook & Herczeg, 2000; Suckow, 2014). Environmental tracer observations are
commonly assimilated into groundwater model calibration datasets (Sanford,
Plummer, McAda, Bexfield, & Anderholm, 2004; Portniaguine & Solomon,
1998), with many studies reporting subsequent improvements in hydrogeologic
parameter estimates and system hydraulic forecasts (Green et al., 2010; Thiros
et al., 2021; Sanford, 2011; Starn, Green, Hinkle, Bagtzoglou, & Stolp, 2014).
With respect to field-scale solute transport predictions, Curtis, Davis, and Naftz
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(2006) and Åkesson, Bendz, Carlsson, Sparrenbom, and Kreuger (2014) utilize
measured tritium (3H) at contaminated field sites to calibrate hydraulic model
parameters of reactive transport models that simulate uranium and nitrate,
respectively. Despite the prevalence of studies that assimilate environmental
tracer observations into model calibration datasets, quantification of model pa-
rameter and subsequent solute transport predictive uncertainties has received
much less attention.

Theoretical and applied studies have shown that model structural errors,
observation data uncertainty, and calibration non-uniqueness degrade ground-
water model calibration performance and lead to uncertain predictions (Hill &
Tiedeman, 2007; Liu & Gupta, 2007). Calibration non-uniqueness is caused
by the inability of field data to constrain the correlations among groundwa-
ter flow and transport model parameters and processes (Linde, Ginsbourger,
Irving, Nobile, & Doucet, 2017; Doherty & Welter, 2010). Calibration non-
uniqueness manifests in many plausible models that can equally fit observation
data, thus, interpreting a best-fit model is often fraught and leads to poor
predictive performance (Beven, 2006; Hunt, Doherty, & Tonkin, 2007). Quan-
tifying the parameter and resulting model predictive uncertainties, however;
remains a challenging task. Typical groundwater model calibration and un-
certainty quantification using deterministic methods requires the assumption
of model linearization and Gaussian model errors (Tarantola, 2005; Doherty,
2015). However, the non-linearity in the mathematical equations that describe
groundwater solute transport and variably saturated flow calls into question
the application these simplified uncertainty analysis methods. Studies report
parameter uncertainties quantified using using linear approximations can signif-
icantly differ from those estimated using more robust Monte Carlo methods (Zell
et al., 2018; Yoon, Hart, & McKenna, 2013; Gallagher & Doherty, 2007). Im-
proved uncertainty quantification methods are needed to investigate the impact
that including environmental tracer observations that constrain groundwater
flow and transport over long temporal scales has on field-scale solute transport
predictions and predictive accuracy.

Markov chain Monte Carlo (MCMC) is generally considered the most ro-
bust method to perform model calibration and uncertainty analysis (Linde et
al., 2017). However, MCMC analysis is computationally intensive and often
remains intractable to perform using field-scale groundwater flow and transport
models (Yoon et al., 2013; Tonkin & Doherty, 2009). Machine learning based
surrogate models that are trained to emulate the input-output response of the
high-fidelity groundwater flow and transport model can be used to investigate
groundwater system processes and perform uncertainty quantification at a frac-
tion of the computational cost compared to the original physics-based model
(Razavi, Tolson, & Burn, 2012; Asher, Croke, Jakeman, & Peeters, 2015). For
instance, Laloy and Jacques (2019) and Fienen, Nolan, Kauffman, and Feinstein
(2018) compare the ability of multiple surrogate models to emulate physics-
based reactive transport models at the column scale and groundwater flow at
regional scale, respectively. Recent studies extend the use of groundwater flow
and transport surrogate models to perform MCMC analysis to solve the inverse
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problem that identifies groundwater contaminant source regions (Zhou & Tar-
takovsky, 2020; Mo, Zabaras, Shi, & Wu, 2019) and infer subsurface hydraulic
conductivity fields (Mo, Zhu, Zabaras, Shi, & Wu, 2019; Rajabi, 2019; Cui et
al., 2018; Xu, Valocchi, Ye, & Liang, 2017). To our knowledge, no study has ap-
plied surrogate modeling to emulate transport of environmental tracers at the
field scales and performed subsequent solute transport predictive uncertainty
analysis.

In this work, we develop an artificial neural network (ANN) surrogate model
that is trained to simulate groundwater levels and 3H concentrations at a con-
taminated field site near Riverton, WY. We utilize a high-fidelity, physics-based
groundwater flow and transport model to generate the dataset used to train
the surrogate model. Using the trained surrogate model as the forward simula-
tor, we perform MCMC calibration to infer uncertainties in subsurface property
and hydraulic boundary condition parameters, conditioned on field observations
of groundwater levels and 3H observations. Ensembles of groundwater mean
age and Chlorofluorocarbon-12 (CFC-12) predictions evaluated using the high-
fidelity model and samples from the calibrated parameter posteriors are used to
estimate predictive solute transport uncertainties. To investigate the influence
that 3H observations that can constrain groundwater transport at the multi-
decadal timescales has on solute transport predictive performance, we perform
the same MCMC model calibration and predictive analysis using water level
observations alone. Through comparison of the model predictive uncertainties
given the two calibration datasets, we are able to explore the role that long-
residence time groundwater has on solute transport processes at the Riverton
site.

2 Methods

2.1 Site Description

The Riverton site is located ∼3 km south-west of Riverton, WY on the Wind
River Indian Reservation (Figure 1). Contamination at the Riverton site is
sourced from a former Uranium and Vanadium processing mill that was ac-
tive between 1958 and 1963. Despite tailings remediation in 1989 and a risk
assessment that predicted natural flushing of the groundwater contaminants
would occur within 100 years, elevated Uranium concentrations persist within
the shallow alluvial aquifer (DOE, 1998; Dam et al., 2015). A significant amount
of groundwater flow and solute transport research has been performed and is
on-going at the Riverton site to better understand the Uranium plume dynamics
(e.g DOE, 2015; Byrne et al., 2020).

Figure 1:

The Riverton site has an area of ∼7 km2 and is on an alluvial terrace at
∼1500 m elevation within the Wind River Basin. The climate is arid to semi-
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arid with an annual mean temperature of 8 ◦C and precipitation of 200 mm that
predominantly occurs as winter snow and summer rain (DOE, 2015). The sur-
face hydrology is characterized by the Wind River to the north and Little Wind
River to the south. Both the Wind River and Little Wind River experience peak
and base flows in June through July and September through February, respec-
tively. The Wind River Basin is composed of interbedded Eocene age sandstone
and shale layers (DOE, 1998). Groundwater flows in the southeast direction
through three predominant aquifers (DOE, 1998): (1) a 4 to 6 m thick uncon-
fined aquifer comprised of sands, gravel, and silt; (2) a middle semi-confined 5 to
9 m thick sandstone aquifer; and (3) a deep 15 to 20 m thick confined sandstone
aquifer. Confining units are composed of shale and have thicknesses up to 10 m.

2.2 Observation Datasets

Field observation datasets are presented in detail within (Thiros et al., 2021).
The U.S. Department of Energy (DOE) has performed extensive site characteri-
zation at the Riverton site, which includes the installation of numerous ground-
water wells and regular groundwater sampling (DOE, 1998, 2015). Throughout
this work, observation datasets are from 25 wells finished within the shallow
alluvial aquifer. We use a total of 166 water level measurements distributed
among the 25 wells for the years 2015 to 2019. The observed water levels are
point measurements in time and space and were recorded using a water level
tape.

The groundwater 3H and CFC-12 environmental tracer observations are
from two separate datasets. Six groundwater 3H observations from 2015 were
collected and analyzed by DOE-Legacy Management (DOE, 2015). An ad-
ditional 22 groundwater 3H, CFC-12, and dissolved noble gas samples were
collected in 2019 and 2020 during the months ranging from May to Octo-
ber. Sampling was performed following U.S. Geological Survey procedures
(https://water.usgs.gov/lab) and chemical analysis was performed at the
University of Utah Noble Gas Laboratory following procedures presented in
Thiros et al. (2021). CFC-12 concentrations are corrected for excess air calcu-
lated using the measured Ne, Ar, Kr, and Xe aqueous noble gas concentrations
and the closed-equilibrium excess air model (Aeschbach-Hertig, Peeters, Bey-
erie, & Kipfer, 1999). Due to expected microbial degradation of CFC-11 and
CFC-113, we only use CFC-12 concentrations, which are less likely to be bio-
chemically altered (Cook & Herczeg, 2000).

The atmospheric 3H concentration histories for the Riverton site are inferred
from the dataset presented in Michel, Jurgens, and Young (2018) then extended
forward in time to 2020 through regression against the Ottawa timeseries. Simi-
larly, atmospheric CFC-12 concentrations are taken from the compiled northern
hemisphere timeseries in Bullister (2017) then extended to the year 2020 using
measurements made at the NOAA Niwot Ridge Observatory. The atmospheric
CFC-12 concentrations are converted to aqueous concentrations in precipitation
using Henry’s Law at a temperature of 7 ◦C and elevation of 1502 meters.
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2.3 High-Fidelity Forward Model

Transient and 3-D groundwater flow and environmental tracer transport at the
Riverton site is simulated using the PFLOTRAN software (Hammond, Licht-
ner, Lu, & Mills, 2012; Hammond, Lichtner, & Mills, 2014). PFLOTRAN
is a physics-based numerical model that solves the fully distributed Richards’
equation for subsurface water flow and the advection-dispersion equation for
solute transport. Further details on the Riverton site PFLOTRAN model are
presented in (Thiros et al., 2021) and briefly described here.

The numerical model domain has an area of approximately 10 km2 and ex-
tends 19 m into the subsurface (Figure 1). Land surface topography of the model
was derived from a 1 m resolution digital elevation model (DEM). Model hy-
drostratigraphic units were simplified to surficial sand and gravel alluvium and
underlying sandstone layers (Figure 1). Simulated groundwater levels and en-
vironmental tracer concentrations were insignificantly changed when the model
included the deeper confined aquifer. The numerical domain is discretized with
lateral resolution of nominally 20 m × 20 m that is further refined to ∼5 m ap-
proaching the observation well locations. The upper soil and alluvium model
layer is discretized into 3 sub-layers that are each 3 m thick and the lower sand-
stone is a single 10 m thick model layer (Figure 1). The western model boundary
approximates a groundwater flowline and is assigned no flow boundary condi-
tions. A no-flow boundary condition is also applied to the base of the model. All
other model boundaries (described below) are hydrologically active with bound-
ary condition transience applied at monthly timesteps from the years 1950 to
2020.

The northern and southern model boundaries correspond to the Wind River
and Little Wind River, respectively. Hydrostatic boundary conditions that ex-
tend from the base of the model to the water surface elevations are applied for
the length of both rivers. Transient water surface elevations along the length of
the river are extrapolated from the downstream USGS gauging stations using
the linear model

S(l, t) = R · l + S(l = 0, t), (1)

where S(l, t) is the estimated river water surface elevation [L] at time t [T] and
distance upstream from the USGS gauging station l [L]; R is the water surface
elevation slope [L/L]; and S(l = 0, t) is the measured water surface elevation at
the USGS gauging station [L]. Eq. 1 is solved separately for the Little Wind
River (R=lwr) and Wind River (R=wr). While R is varied during the cal-
ibration process, the a priori value is calculated as the average land surface
elevation slopes along the river corridors delineated using the DEM (Table 2).
For times that precede the USGS gauging station measurements, S(l = 0, t)
is approximated as the monthly average of the full measurement records. The
eastern model boundary similarly applies a hydrostatic head boundary condi-
tion throughout the full depth profile. Here, the water table elevation is linearly
interpolated between the estimated Wind River and Little Wind River water
surface elevations given by Eq. 1.

The PFLOTRAN model includes groundwater flow and transport through
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both the variably saturated vadose zone and fully saturated porous media. Wa-
ter infiltration into the soil is approximated as temporally variable and spatially
homogeneous. The infiltration rates I(t) (L/T) that are applied to land surface
using a specified Neumann flux boundary condition are in the form:

I(t) = γ · Ith(t), (2)

where γ is a multiplier that scales the base infiltration rate Ith(t) [L/T]. Ith(t) is
calculated as the difference between precipitation rates measured at the River-
ton, WY airport (∼10 km away) and evapotranspiration rates evaluated using
the Thornthwaite equation (Thornthwaite, 1948). To approximate snowpack
processes, we adjust the measured precipitation totals such that precipitation
accumulates over days with average temperatures below 0 ◦C. The accumulated
water is then applied to observed precipitation totals for the next day with
an average temperature above 0 ◦C. For the variably saturated flow, the van
Genuchten characteristic function (van Genuchten, 1980) is used to relate fluid
pressure to effective saturation and the Mualem relation (Mualem, 1976) is used
to relate effective saturation to relative permeability. The empirical characteris-
tic function fitting parameters m and α are taken from the literature (Dingman,
2015) and previous modeling studies for the Riverton site (DOE, 1998) (Table
1).

The environmental tracer aqueous concentration histories (described in Sec-
tion 2.2) are applied to the hydrologically active boundaries using a Dirichlet
zero-gradient transport boundary condition. This boundary condition applies
a specified concentration (Dirichlet type boundary) for water entering the do-
main and a zero-gradient Neumann flux condition for water discharging from
the domain. We assume that groundwater that enters the sides of the domain
deeper than 6 m (two model layers) below the river surface water elevations
is pre-modern and does not contain CFC-12 nor 3H. While this assumption is
difficult to verify with direct field observations, simulations that applied atmo-
spheric environmental tracer concentrations along the full depth profile below
the rivers introduced an unrealistic amount of tracer concentration into the deep
model layers.

The porosity (nss) and permeability (kss) fields of the sandstone model layer
are assumed homogeneous. The hydrogeologic properties of the shallow soil and
gravel layers are considered spatially homogeneous for porosity (nsoil) and het-
erogeneous for permeability (ksoil). The heterogeneous permeability field is
parameterized using the pilot point method, which only varies permeability at
discrete locations known as pilot points (Doherty, 2003). To limit the number
of parameters, we place 25 pilot points on an unstructured grid with a density
that approximates the observation well density (Figure 1). The 3-D log10 per-
meability field is created by interpolating between pilot points using Ordinary
Kriging with an exponential variogram, unit standard deviation for the sill, and
isotropic correlation lengths of 800 m in the x and y directions and no variation
in the z direction. These correlation lengths were chosen such that all model
cells were within approximately 1 correlation lengths of a pilot point. Hydrody-
namic dispersion is limited to molecular diffusion as model tests that included
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mechanical dispersion had minor impacts on environmental transport compared
to the variance in model calibration parameters and boundary conditions.

Fixed parameters used in the high-fidelity PFLOTRAN model (hereinafter
referred as high-fidelity model) are summarized in Table 1. Uncertain param-
eters (described above) that are varied during surrogate model creation and
MCMC analysis are collected into the vector m:

m = [nsoil, log10 kss, nss, γ, lwr, wr, log10 k
p
soil], (3)

where log10 k
p
soil is the permeability of pilot point number p ∈ [0, 25]. Table 2

shows the parameter prior mean values that are based on previous site charac-
terization (DOE, 1998, 2012, 2015). While the high-fidelity model is spatially
distributed, we simplify our work flow to only record simulated groundwater
levels and 3H concentrations at times and locations that match the observa-
tion dataset (Section 2.2). Let dobs = [ht,x,

3Ht,x] be a vector that contains
the field observations of groundwater levels h [m] and 3H concentrations [TU]
sampled on date t and well location x. Simulated equivalent predictions of dobs

from the high-fidelity model evaluated with parameter vector realization mi are
represented as dsim

i .

2.4 Neural Network Surrogate Model

A single high-fidelity model run takes up to 10 minutes when distributed over
144 computational cores. Scaling these runtimes to a full MCMC calibration
that requires 100000’s of model evaluations performed sequentially quickly be-
comes intractable. To reduce the overall computational expense required by
MCMC model calibration and uncertainty analysis, we train an artificial neural
network (ANN) surrogate model that approximates the input-output response
of the high-fidelity model. Rather than other surrogate modeling techniques
(such as Guassian Processes and Polynomial Chaos Expansion), an ANN was
chosen due to their flexibility in learning strong model non-linearity and high-
dimensional outputs (Asher et al., 2015). While many types of ANN have been
effectively trained to emulate hydrologic problems (see. Shen, 2018), they have
been used less frequently to emulate groundwater solute transport models at
the field scales. In this work, our ANN surrogate model is a deep, but narrow,
multi-layer perceptron (MLP). MLP are built as a sequence of layers, each with
a number of nodes that are fully connected to all nodes in the previous layer
(e.g. Lecun, Bengio, & Hinton, 2015). MLP map from an input parameter layer
to an output prediction layer by constructing a series of transformations in the
form

al = ReLU(al−1Wl + bl), (4)

where al is a vector of node activations in the current layer l, al−1 are the
node activations from the preceding layer, Wl and bl are the trainable weight
matrices and bias vectors, respectively, and ReLU is the Rectified Linear Unit
activation function. The first input layer (a0) of the MLP has 31 nodes, where
each node holds one of the uncertain model parameters in m. The final output
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layer has 194 nodes that correspond predictions of water levels (N=166) and 3H
concentrations (N=28) at all observation well coordinates and sampling times.
Thus, each node in the output layer can be directly compared to its commen-
surate field observation in dobs and the high-fidelity model output vector dsim

i

(described above). Between the input and output layers, the MLP has 4 hidden
layers, each with 1048 nodes. The structure and hyperparameters of the ANN
were determined through manual trail and error tuning. Final water level and
3H predictions from the complete surrogate model evaluated with parameters
θ = W,b are notated as dANN

i .
Training of the MLP refers to tuning the weight and bias parameters in Eq.

4 such that the differences in predictions made by the MLP and the high-fidelity
model are minimized. Thus, the data required to train the MLP is generated
directly from the high-fidelity model. In particular, we assume the uncertain
model parameters in m come from a uniform distribution with upper and lower
bounds given in Table 2. The parameter upper and lower bounds are designed
to reflect the the parameter variations measured at the Riverton site, but are
enlarged to account for unknown model structural errors and to decrease the
likelihood that the trained surrogate model extrapolates during the subsequent
MCMC calibration. We then sample 30000 realizations of m from a quasi-
random Sobol sequence that spans the parameter uniform distributions (Sobol,
1998; Brinkerhoff, Aschwanden, & Fahnestock, 2021). Parameter sampling in
this way has advantages over random sampling in that the entire parameter
space is filled with points that are optimally spread apart, which is critical
when a limited number of model runs are being used. High-fidelity model runs
that did not converge in a reasonable time were terminated and not included in
the training data ensemble. Thus, the final training data ensemble consists of
approximately 25000 parameter realizations mi and the associated high-fidelity
model outputs dsim

i .
The surrogate model is trained to approximate the mapping from mi (fea-

tures) to dsim
i (predictors) by minimizing the mean-squared error (MSE) loss

function

I(θ) =
1

N

N∑
i=0

(dsim
i − dANN

i )2, (5)

where N is the number of training examples. Gradients of Eq 5 with respect to
θ are calculated using reverse mode automatic differentiation within the Ten-
sorflow python library. Minimization of Eq. 5 and optimization of the MLP
parameters θ is then achieved using the ADAM variant of stochastic gradient
descent and a batch size of 64. For all MLP model scenarios (described below)
we train for a total of 2000 epochs and an initial learning rate of 0.1 that is
exponentially decreased every 100 epochs. As a regularization mechanism to
prevent overfitting, we apply dropout at a rate of 10% after the hidden layer
activation functions in each hidden layer. All ANN input features and output
predictors were standardized to have a zero mean and unit variance prior to
training.

Evaluating the performance of the MLP requires that the full 25000 member
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training data ensemble is split into a subset that is used for training and a subset
that is used to validate the MLP predictions. Because the MLP model perfor-
mance can be a function of how the full dataset is partitioned, we train and
validate multiple MLP models using different training-validation splits. In par-
ticular, we train 5 MLP networks that have equivalent architectures, but differ-
ent training and validation sets that are generated using 5-fold cross-validation
applied to the full training data ensemble (e.g. Fienen et al., 2018). In doing
so, all points within the full training ensemble are seen in both the training
and validation sets. The validation root-mean squared errors (RMSE) of the 5
MLP models are averaged to estimate the total MLP accuracy. The final MLP
model that is used for subsequent MCMC analysis is trained using the full 25000
training ensemble dataset.

2.5 MCMC Model Calibrations

Bayesian model calibration is a widely used method to infer the posterior dis-
tribution of uncertain model parameters m given observation data dobs (Linde
et al., 2017). The posterior parameter distribution P (m|dobs), which represents
our updated belief in model parameters after considering both observation data
and prior knowledge regarding parameters, is quantified using Bayes’ theorem

P (m|dobs) ∝ P (dobs|m)P (m), (6)

where P (m) are the prior parameter distributions and P (dobs|m) is the likeli-
hood of the observations given a parameters set. Computing the left-hand side
of Eq. 6 is intractable and must be approximated using numerical methods.
In this work, parameter posterior distributions are quantified using a MCMC
method that directly draws discrete samples from the posterior distributions.

The prior distributions reflect the state of knowledge on the parameters
before considering the observation data. The a priori parameter mean values
are established from previous characterization of the Riverton site (Table 2).
Following (Brinkerhoff et al., 2021), we define the prior uncertainties using scaled
Beta distributions

m−BoundL
BoundU −BoundL

∼ β(α = 2, β = 2), (7)

where BoundL and BoundU are the lower and upper parameter bounds in Ta-
ble 2. Beta distribution priors put higher probability density on values in the
center of the distribution, which corresponds to the a priori parameter mean.
However, these priors are vague enough to allow a range of plausible parameters,
which is important because unknown model structural errors lead to model cali-
bration parameter estimates that are at incommensurate scales with field-based
measurements (Doherty & Welter, 2010). Furthermore, the Beta distributions
priors have zero probability density beyond the upper and lower parameter lim-
its. This is advantageous because the surrogate model will not extrapolate to
parameter values outside the training ensemble upper and lower bounds.
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The likelihood is a measure of goodness of fit between the field observa-
tions and an equivalent model prediction. Evaluating the likelihood provides a
method to falsify parameter samples drawn from the prior distribution using ob-
servation data. Typically, quantifying the likelihood assumes a Gaussian error
model (or data noise distribution) that is parameterized using estimates of the
assumed observation errors (Linde et al., 2017). In this work there is the added
complexity that we are using an imperfect surrogate model to approximate the
high-fidelity model (which is also imperfect) during the MCMC analysis. While
we do not directly account for the epistemic uncertainty in the high-fidelity
model, we incorporate the field observation errors σobs and surrogate model
errors σs into a Gaussian likelihood model of the form

P (dobs|m) ∼ N(dobs, (σobs + σs)) (8)

The field observation errors are treated as a diagonal matrix that includes wa-
ter level errors set to 0.5 m for all measurements and 3H errors that are 5%
of the measured values. Defining the 3H observation errors proportional to
the measured concentration prevents larger concentrations from dominating the
likelihood function. The surrogate model error is taken as the average RMSE
of the 5-fold cross-validation scores obtained during surrogate model training
(section 2.4). Augmenting the observation error with the surrogate modeling
validation error is a similar approach taken by (Xu et al., 2017). We utilize
the computationally-cheap trained surrogate model to evaluate all likelihood
function evaluations.

Bayesian inference of model parameters is achieved by sampling from the
posterior distribution using the Adaptive Differential Evolution Metropolis al-
gorithm (Ter Braak & Vrugt, 2008) implemented within the pyMC3 python
software. This MCMC sampler simulates multiple chains in parallel and uses
past states to inform future jumps, which improves the efficiency compared to
the Metropolis-Hastings algorithm. We run 10 chains in parallel until each chain
contains a total of 100000 samples from the posterior distribution. We evaluate
the Gelman-Rubin R̂ statistic to ensure the Markov Chains are converged on
a posterior distribution (Gelman et al., 2013). We further utilize the Markov
Chain traces to qualitatively evaluate an adequate ’burn-in’ sample size and
exploration of the sample space.

2.6 Posterior Predictive Uncertainties

A goal of this work is to better understand the influence that conditioning
model parameters to observations that are sensitive to residence times up to
70 years has on solute transport predictions and predictive uncertainties. To
evaluate solute transport predictions at the Riverton site, we randomly sample
1000 instances from the parameter posterior distributions and use the original
high-fidelity model to simulate ensembles of the aquifer mean age and CFC-
12 concentrations. Mean age is simulated by transporting ’age mass’ in the
same manner as a conservative solute with a unit strength source term (Goode,
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1996). With this formulation of age transport, we do not simulate the full
residence time distribution, rather, only the first moment of the distribution.
The distribution of mean ages simulated here is not conceptually equivalent
to the residence time distribution that is commonly estimated with the use of
environmental tracers and lumped parameter models (Cook & Herczeg, 2000;
Maloszewski & Zuber, 1982). The predictive mean age distribution represents
an estimate in the uncertainty of mean age given plausible parameter sets. This
distribution captures the variance in average transport behaviors, conditioned to
the observation dataset. Alternatively, residence time distributions are a mea-
sure of the flux weighted residences times of the varying flowpaths contributing
to a sample, given a single model.

3 Results

3.1 Surrogate Model Performance

The surrogate model is a simplification of the high-fidelity model in that it only
predicts groundwater levels and 3H concentrations at locations and times that
match the field observation dataset. Figure 2 shows water level predictions made
by the trained surrogate model, compared to the validation set, for a subset of
6 observation locations and times (out of 166 total). In particular, the left
and right columns contain the three observation locations and times with the
lowest and highest water level validation RMSE, respectively. The surrogate
model best reproduces the validation water levels at well location 789, with
average RMSE and R2 values of 0.06 m and 1.00, respectively. Alternatively,
the highest water level validation inaccuracies occur at well location 700, with
average RMSE and R2 values near 0.35 m and 0.98, respectively. Regressing
a line through the surrogate water level predictions at all 166 observation well
locations and times in the validation set results in an average RMSE and R2

of 0.25 m and 0.99, respectively. The slopes of the best-fit lines through the
validation water levels all approach unity, suggesting there is little bias in the
surrogate model predictions.

Figure 2:

Compared to the water level validation performance, there is considerably
more scatter in the 3H concentration validation accuracy (Figure 3). For all
28 3H observation locations and times, the average RMSE and R2 are 1.03
TU and 0.87, respectively. The highest and lowest validation 3H concentration
RMSE are 0.82 TU and 1.38 TU, which are achieved for wells 853-4 and 722R,
respectively. The commensurate R2 values are 0.84 and 0.78. The slopes of the
best-fit lines for all six 3H observations shown in Figure 3 are ∼0.85, suggesting
a systematic bias in the surrogate model predictions. Comparing the best-
fit lines to the one-to-one prediction lines, it is apparent that the surrogate
model over-predicts 3H concentrations in the 0 to 3 TU range. Alternatively,
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high 3H concentrations (>12 TU) tend to be under-predicted by the surrogate
model. This 3H validation error bias correlates with the majority of the 3H
concentrations in the full training dataset ensemble being in the∼4-10 TU range.
Thus, there are less training examples in low and high regions of the 3H training
ensemble distribution, which likely limits performance in these regions. Tests
that expanded the bounds of the prior model did not lead to systematically lower
or higher 3H concentrations and often resulted problematic model convergence.

Figure 3:

The water level and 3H MLP training 5-fold cross-validation RMSE are
used as a measure of additional model error incurred by using the surrogate
model rather than the high-fidelity model in the calibration process (Section
2.5). Including the surrogate model error in the likelihood function (Eq. 8)
directly increases the posterior parameter variances, which is essential to not
produce overly confident and biased uncertainty estimates for cases when the
surrogate model inaccurately emulates the high-fidelity model. The surrogate
model error is less than 0.25 m for all water level observation locations and
times, which is on a commensurate scale to the assumed measurement errors.
The 3H concentration error introduced by the surrogate model ranges from 14%
to 88% of the respective field observation and has mean of 32%. For the two 3H
observations with measured concentrations that are near 0.5 TU, the surrogate
model error approaches 150% of the observed values.

3.2 Parameter Posteriors

Figure 4:

Using the trained surrogate model as the forward simulator, we test two
separate model calibration scenarios. The first scenario uses only observed wa-
ter levels in the calibration dataset. The second model calibration utilizes both
observed water levels and 3H concentrations and was performed to further inves-
tigate the influence of conditioning solute transport predictions and predictive
uncertainty to observations that are sensitive to long-residence time ground-
water. In particular, the difference in parameter and predictive uncertainties
between the two calibration scenarios represents a measure of observation data
worth and can be used to gain insight on the role of long-residence time ground-
water in solute transport uncertainties at the Riverton site (Zell et al., 2018).
Model calibration and predictive uncertainty quantification methods are consis-
tent between the separate 3H and water level dataset scenarios. The prior and
marginal posterior distributions for select model parameters are shown in Figure
4 and the joint posterior distributions are shown in Figure 5 and Figure 6 for
the calibration datasets that assimilate 3H and water levels only, respectively.
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Model calibration results for the remaining parameters will be discussed below
and shown in SI Figure 3.

Figure 5:

Figure 6:

Comparing the prior and marginal posterior distributions provides insight
on how much the observation dataset constrains the parameter. For both the
sandstone permeability and porosity parameters, there is little difference be-
tween the prior and posterior distributions. This indicates that the sandstone
layer within the high-fidelity model has minimal impact on the simulated water
levels nor 3H concentrations. The sandstone parameter insensitivity is due to
the model simulating much greater fluxes in the lateral directions compared to
vertical directions in the lower sand and gravel and sandstone layers, which are
not significantly impacted by infiltration gradients present at land surface.

For both calibration scenarios shown in Figure 4, the soil porosity posterior
distribution shows a slight increase in the mean value and minor uncertainty
differences compared to the prior. In particular, the maximum a posteriori is
increased to ∼35% relative to the prior of 30%, and the uncertainty spans the
full bounds of the prior. For the calibration scenario that only uses water level
observations, Figure 6 indicates that the soil porosity does not have correla-
tions with the other parameters. Alternatively, the soil porosity has a positive
correlation structure with the infiltration rate parameter when the calibration
assimilates both water level and 3H observations (Figure 5).

Figure 4 indicates that the infiltration rate parameter (γ) posterior distri-
bution is considerably altered compared to the prior when assimilating 3H ob-
servations into the calibration dataset. An infiltration rate parameter of unity
corresponds to the difference between measured precipitation and estimated
evapotranspiration (Eq. 2). The infiltration rate maximum a posteriori is 0.12,
suggesting an infiltration reduction of 88% from the a priori estimate. The un-
certainty in the infiltration posterior parameter ranges from 0.03 to 0.21, which
is significantly reduced compared to the prior distribution. Alternatively, Figure
4 shows that calibration to water levels alone does not lead to comparatively
large uncertainty reductions in the infiltration rate posterior. In particular, the
infiltration rate posterior distribution when only considering water level obser-
vations has a maximum a posteriori of 0.51 and uncertainty regions that closely
align with the prior distribution, indicating the model calibration did little to
constrain the parameter.

In addition to the infiltration rate multiplier parameter, the gradient in the
Little Wind River (lwr) also shows high post-calibration uncertainty reductions
when calibrating to the 3H observations. The maximum a posteriori value is in-
creased to 1.44 [m/km] relative to the DEM-based estimate of 1.10 [m/km]. The
uncertainty in this increase for the Little Wind River gradient is small relative
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to the prior, with lower and upper bounds at 1.40 and 1.50 [m/km], respectively.
Similarly, the maximum a posteriori for the Wind River (wr) gradient parame-
ter is 3.05 [m/km], which is increased relative to the prior of 2.59 [m/km]. The
uncertainty ranges from lower to upper bounds of 2.57 and 3.57, respectively.
The joint posterior distributions (Figure 5) between the Little Wind River and
Wind River gradient parameters do not show a significant correlation struc-
ture. The Little Wind River gradient has minor positive correlation with the
infiltration rate multiplier, which is not the case for the Wind River gradient.
This is likely the result of the proximity of numerous observation wells to the
Little Wind River. The calibration to water levels alone results in river gradient
posterior distributions that closely match those of the 3H calibration scenario
(Figure 4). This suggests that the water levels, rather than 3H observations,
provide the bulk of the information content that constrains these parameters.
However, it is apparent that the Little Wind River gradient parameter has no
correlations with the other calibrated parameters when considering only water
level observations.

Figure 7:

The permeability pilot point parameters shown in Figure 4 are located near
the majority of the observation well locations (see SI Figure 1 for pilot point
numbering) and show posterior distributions that are emblematic of the re-
maining pilot points. Figure 7 depicts the kriged permeability field using the
maximum a posteriori log10 pilot point estimates after assimilation of both
water levels and 3H observations into the calibration. The kriged field was
produced using the same variogram parameters used during the model calibra-
tions. This kriged map corresponds to best estimate of the permeability field
after considering both the prior distributions and field observation data. Across
all 25 pilot points, the log10 permeability range from -12.6 to -9.6 [m2]. Despite
not providing a priori spatial correlation structure within the pilot point prior
distributions, the calibration process identifies broad regions of high and low
permeability. In particular, there is a cluster of pilot point with permeabilities
∼10−12 [m2] in the western region of the observation well field. To the north
and east of the low permeability zone, the permeabilities approach ∼10−10 [m2].
Similarly, high permeabilites are predicted for the pilot points near the Little
Wind River.

In Figure 7, the size of the plotted pilot point is proportional to the standard
deviation of the log10 posterior distribution, which we use as an approximate
measure of the post-calibration parameter uncertainty. Comparing the pilot
point log10 permeability uncertainties with the prior uncertainty of 1.34 m2

indicates that all pilot points experience uncertainty reduction due to the cal-
ibration process. Generally, pilot points with the least uncertainty reductions
are located in the north-east portion of the model domain and do not contain
observation wells within a correlation length. Conversely, the pilot points with
the lowest log10 posterior uncertainties, which reach ∼0.6 m2, are located near
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the observation wells. However, it is apparent that these broad generalizations
of the spatial pilot point permeability uncertainties are not consistent through-
out the whole domain. For instance, pilot point 21 in the south-east of the
model domain is within a correlation length of multiple wells, yet, has one of
the largest posterior uncertainties (Figure 7). Comparison of the permeability
posterior estimates for the two calibration datasets that include and omit 3H
observations shows the pilot point parameter maximum a posteriori estimates
are within approximately 1 order of magnitude. The largest discrepancies be-
tween the two datasets occur for pilot points 13, 15, and 22, which are shown in
Figure 4. It is also apparent that while the pilot point permeability maximum a
posteriori estimates can show significant differences between the two calibration
dataset scenarios, the posterior uncertainty ranges tend to agree (Figures 4 and
SI3).

3.3 Calibration Performance

Figure 8:

The parameter posteriors reflect our prior knowledge regarding parameters
and the fit between model predictions and observed data, as shown in Figure 8.
In Figure 8(A), the 3H residuals evaluated using the maximum a posteriori pa-
rameter estimates (black dots) show considerable scatter and a systematic bias
around the one-to-one line. The model calibrated to 3H observations generally
over-predicts observations that are below 2 TU and under-predicts observations
that are above 4 TU. The uncertainty regions around the maximum a posteriori
predictions captures the one-to-one line, however; this uncertainty is commensu-
rate to the variance within the observation dataset. The uncertainties reflect the
large 3H surrogate model errors included into the likelihood function. The cali-
brated surrogate model accurately reproduces the observed water levels, where
all of the simulation uncertainties capture the one-to-one line (Figure 8(B)).
There are minor observable differences in the water level residuals when 3H
observations are omitted from the calibration dataset (Figure 8(D)). Alterna-
tively, Figure 8(C) shows that the calibration to water levels alone significantly
over-predicts the 3H observations.

3.4 Predictive Distributions

Figure 9:

We use the high-fidelity model and 1000 parameter sets randomly sampled
from the posterior distributions to simulate mean age distributions at four well
locations (Figure 9). For the water level and 3H calibration dataset, the solid
lines in Figure 9 illustrates that the mean age distributions range from ∼0 to
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∼400 years. The median of the mean age distribution for well 855-4 is the
youngest at ∼75 years, while those of wells 859-4 and 860-4 are the highest at
sim150 years. Wells 855-4 and 857-4 contain a large fraction of samples with
mean ages below 50 years and relatively few samples above 200 years. Alterna-
tively, wells 859-4 and 560-4 have distributions shifted towards older mean ages
and contain relatively few samples below 50 years. Using the standard deviation
of the mean age prediction ensembles as a proxy for predictive uncertainty, well
855-4 has lowest uncertainty at 53 years and well 859-4 has the highest at 70
years.

The dashed lines in Figure 9 shows the predictive mean age distributions for
the surrogate model calibration conditioned to water level observations alone.
Compared to including 3H in the calibration dataset, the mean age distributions
are similar for well 855-4 where the median of the distribution is 50 years and
there is an approximate exponential decay in the amount of samples with older
water. Similarly, the mean age distributions at well 857-4 have common shapes,
but calibration against 3H shifts the median of the distributions ∼ 50 years
older. The mean age distributions for wells 859-4 and 860-4 have considerably
different shapes in the 3H and water level calibration scenarios. Calibration to
water levels alone results in a narrow distribution with a mean of ∼ 75 years,
while including 3H into the calibration leads to broad distributions with means
near 150 years.

Figure 10:

To further investigate the predictive mean age distributions, we compare the
3H and CFC-12 field observations against idealized aquifer mixing behaviors.
Figure 10 shows the 3H and CFC-12 concentrations expected in samples assum-
ing no mixing between flow lines (piston-flow model) and mixing that results
in an exponential age distribution (Cook & Herczeg, 2000). For both mixing
models, the mean ages τ are referenced against the sampling year of 2019. Com-
parison of the field observations with the mixing models suggests that both the
piston-flow and exponential residence time distribution can explain the majority
of the observations that are >2 TU. For the piston-flow model, mean ages range
from ∼30 to 45 years, while the exponential model suggests mean ages ranging
from ∼30 to 100 years. Figure 10 also suggests that neither the piston-flow nor
exponential models can explain the 3H observations that are below ∼1 TU.

Figure 11:

We utilize the CFC-12 observation dataset to validate the predictive capa-
bility of our calibrated model. We use CFC-12, rather than Uranium, as the
predictor of interest because we can apply the typically valid assumption of con-
servative transport and we know an approximate input concentration function.
Figure 11(A) shows predictions of CFC-12 concentrations made using the high-
fidelity model and the same 1000 parameter samples used to generate the mean
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age ensemble when calibrating to both 3H concentrations and water levels. The
CFC-12 prediction ensemble means and predictions using the maximum a poste-
riori parameters are significantly less then the field observations. In particular,
the calibrated model predicts CFC-12 concentrations that are generally <0.5
(pmol/kg), while the field observations are between 1 and 2 (pmol/kg). The
lack of high CFC-12 concentration model predictions is consistent with Figure
9 that shows mean age predictions are generally pre-modern (before the year
∼1960). Furthermore, the predictions of CFC-12 concentrations >0 (pmol/kg)
suggests the full age distributions contain a fraction of modern water mixing
with pre-modern water. It is also apparent that for all but 3 wells, the predic-
tive uncertainty does not capture the field observations.

Figure 11(B) shows the CFC-12 concentration predictions and predictive
uncertainties after calibration to water levels alone. Compared to Figure 11(A),
the prediction means are larger and show greater variance when 3H is not utilized
in the calibration process. Sampling from the parameter posteriors conditioned
to water levels alone results in CFC-12 concentration mean predictions that are
generally near 1 (pmol/kg). The uncertainties in these predictions spans up to
100% of the mean in most cases. As a result of the higher mean predictions
and increased variance, calibration to water levels alone captures the majority
of the observed CFC-12 measurements compared to the 3H calibration.

4 Discussion

4.1 Surrogate Modeling Error

Coupling physics-based hydrologic modeling with machine-learning surrogate
models to investigate system processes and perform uncertainty quantification
is a current area of considerable research (Linde et al., 2017; Shen, 2018; Asher
et al., 2015; Razavi et al., 2012). Here, we use an ANN surrogate model trained
to emulate a high-performance reactive transport model to investigate the in-
fluence that groundwater flow with long residence times has on solute transport
predictive uncertainties in a shallow alluvial aquifer. Unlike methodologies that
solely use physics-based models for prediction, the success of our uncertainty
quantification approach is additionally influenced by the uncertainty and accu-
racy of the surrogate model.

It is apparent from Figures 2 and 3 that the trained surrogate model has
greater ability in learning groundwater level responses compared to 3H concen-
trations. This result is consistent with studies that show hydraulic pressure
fields are more diffuse compared to solute concentration fields in heterogeneous
media (Thiros et al., 2021; Voss, 2011). Solute transport has greater sensitivity
to the heterogeneity within the permeability field, which leads to a complex
mapping from model parameters to 3H concentrations that the surrogate model
must learn. While tests showed that the surrogate model training and valida-
tion performance was improved when the soil permeability was parameterized
with a single homogeneous value, the calibrated model poorly matched the 3H
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observation dataset. Degraded surrogate model performance when moving to
a heterogeneous field with a larger number of parameters was also reported in
(Rajabi, 2019). While we expect that the surrogate model validation accuracy
would increase with a larger training set, this was not implemented due to the
computational requirements of running the high-fidelity model. However, we
assume that the error introduced by the surrogate model is less than the total
model error that accounts for the unknown model structural defects (Doherty
& Welter, 2010; Xu & Valocchi, 2015).

4.2 System Characterization

The result that the estimated infiltration rates and uncertainties differ whether
or not 3H is included within the observation dataset represents the insensitivity
of water levels to the infiltration rate parameter. In particular, water level obser-
vations cannot uniquely constrain both permeability and recharge parameters
(Portniaguine & Solomon, 1998). Alternatively, the reduction of the infiltra-
tion rate posterior uncertainties suggests that 3H concentrations in the shallow
aquifer are highly sensitive to the boundary condition flux applied at land sur-
face. This sensitivity helps to explain the seemly discrepant result that studies
such as Starn et al. (2014) and Carroll, Manning, Niswonger, Marchetti, and
Williams (2020) find calibration to environmental tracers significantly constrains
porosity estimates, yet, porosity in this work had little influence on the calibra-
tion. This is due to the transport velocity field in the shallow subsurface being
set by the infiltration rate and the variation in porosity has little influence.

Despite anticipated benefits of calibrating against 3H observations that are
sensitive to both the permeability field and infiltration rate, the model poorly
predicts CFC-12 concentrations (Figure 11). Comparison of the predictive mean
age ensembles for the two calibration dataset scenarios can be used to provide
insight on the processes leading to the observed CFC-12 prediction bias. The
predictive mean age distribution for the 3H calibration scenario contains a higher
proportion of older water relative to the calibration that solely uses water levels.
The mean ages that are greater than ∼70 years can only explain the observed
3H through a mixture of modern (< 70 years) and premodern (> 70 years)
water (Gardner, Susong, Solomon, & Heasler, 2011). In the 3H calibration
scenario, the mean ages often exceed 100 years, which suggests the residence
time distribution contains a significant fraction of pre-modern water. While
constraining the velocity and subsequent groundwater mixing such that there is
a large portion of pre-modern water leads to model predictions that can explain
the observed 3H concentrations, predictions of CFC-12 are systematically low
(Figure 11). This CFC-12 bias is indicative that the fraction of modern, CFC-12
bearing groundwater is too little. This result is unexpected in that both 3H and
CFC-12 are sensitive to groundwater ages up to 70 years old.

Despite the contribution of pre-modern groundwater predicted by the nu-
merical model, the environmental tracer mixing plots suggest that the majority
of samples can be explained with a simple piston-flow model (Figure 10). The
piston-flow model results in single flow paths that do not experience mixing, thus
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does not predict a pre-modern component in the samples. The discrepancy in
the degree of flowpath mixing between the physics and simple lumped param-
eter models suggests that the high-fidelity model does not adequately simulate
simple flow-lines that experience minimal mixing. As a result, we anticipate
that the numerical model must mix a wide range or flowpaths with varying ages
to reconcile the 3H observation dataset. A potential reason for this inability
of the numerical model to simulate piston-flow scenarios is that the model dis-
cretization that is too coarse. A numerical model with large grid cells cannot
resolve isolated flow lines that the piston-flow model suggests, which has been
previously shown for 3H calibrations by Knowling, White, Moore, Rakowski,
and Hayley (2020).

Model structural errors are the result of simplifying and misrepresenting
complex systems (Liu & Gupta, 2007). It has been shown that model struc-
tural errors, in addition to parametric uncertainties, influence model calibration
against environmental tracer information and resulting predictive performance
(Thiros et al., 2021). In particular, calibrated model parameters compensate for
the ubiquitous, yet unknown model structural errors. Thus, the model param-
eter combinations that explain the observed 3H concentrations reflect effective
parameters that do not accurately generalize to predict CFC-12 concentrations.
We anticipate that key model limitations in this work are the assumed struc-
ture of the boundary conditions and subsurface heterogeneity. Infiltration is
expected to vary spatially and is a function of the complex land surface energy-
balance and plant transpiration dynamics that govern evapotranspiration. Our
approach that scales a base infiltration rate timeseries by a multiplier does not
account for the uncertainty in the temporal dynamics of infiltration. Given the
observed sensitivity of 3H simulations to the infiltration rate, this likely imposes
a major assumption that propagates to the calibrated parameters and predictive
uncertainty.

The simplified subsurface lithology represents an important model assump-
tion that is expected to be influencing the transport simulations. It is apparent
that the calibrated model does not accurately capture the full variance of the
3H observations (Figure 8). Similar to findings of Starn and Belitz (2018),
this can be explained by the observed 3H spatial patterns being sensitive to
permeability heterogeneity below what was captured with our pilot point spac-
ing. While increasing the number of pilot points could benefit fitting the low
and high 3H observations, training the surrogate model would require a larger
dataset and computational effort. Despite the indication that the model is
under-parameterized with respect to 3H, water level observations are accurately
matched. This highlights the limitation in using water levels alone to constrain
solute transport predictions.

4.3 Uncertainty Quantification

One of our research objectives was to investigate how uncertainties in long-
residence time groundwater flow propagate to field-scale solute transport pre-
dictions and predictive uncertainties at the Riverton site. While it is typically
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assumed that assimilating more observation data into model calibrations im-
proves model performance, we find that calibrating against 3H observations
degrades predictive accuracy. This finding is in contrast to our hypothesis that
constraining solute transport predictions with observations of solute transport
that span long-residence times will force the model to reconcile a broader spec-
trum of transport processes, leading to improved system characterization and
predictive performance. Rather, our results suggest that due to model structural
errors, calibrated parameters take on very specific roles that do not necessar-
ily represent the true processes and properties of the system. Consequently,
improved model calibration and lower parametric uncertainties does not neces-
sarily translate to improved model predictions. Identifying the different sources
of uncertainties that lead to poor predictive performance is a challenging, yet
critical task.

The robust uncertainty quantification methodology that we employ is a valu-
able step in understanding the model inadequacies that lead to inaccurate pre-
dictions. Within the MCMC calibration framework, we identify the full pa-
rameter sets that are consistent with the field observations and prior parameter
knowledge. Thus, our uncertainty quantification methodology provides some
level of confidence that the poor predictive performance we observe is not de-
rived from the limiting assumptions that often influence model calibrations; such
as model linearization and solely characterizing local minima with a single op-
timal model. Alternatively, we are able to attribute the discrepancies between
model calibration and predictive performance to model structural errors that are
not compensated within the estimated parametric uncertainties. This highlights
challenges in assimilating environmental tracer data into complex groundwater
models and the need to robustly quantify both parametric and predictive uncer-
tainties when evaluating model performance. However, we also highlight that
by assimilating 3H observations and performing uncertainty analysis we are able
to expose the presence of model structural errors with high certainty. Alterna-
tively, the water level observations do not contain adequate information content
to capture the model defects. These insights support studies that show model
structural and conceptual errors can be the dominant source of uncertainty for
complex groundwater models (Enemark, Peeters, Mallants, & Batelaan, 2019).

5 Conclusions

We demonstrate a method that facilitates parameter and predictive uncertainty
quantification of a computationally expensive physics-based groundwater flow
and transport model using a machine learning surrogate model. We train an
artificial neural network surrogate model to approximate the groundwater levels
and 3H concentrations predicted by a reactive transport model as a function of
31 uncertain model parameters. MCMC analysis is then performed using the
trained surrogate model to infer parameter posterior distributions and predic-
tive groundwater mean age and CFC-12 transport uncertainties for a field site
near Riverton, WY. We find that while assimilating 3H observations into the
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model calibration significantly constrains parameter uncertainties, the model
does not predict the observed CFC-12 concentrations. The model parameters
and associated uncertainties that explain the 3H observations predict a larger
fraction of old groundwater compared to what the CFC-12 observations suggest.
The discrepancy between model calibration and predictive performance demon-
strates that model misrepresentations can lead to low parametric uncertainties
that do not translate to improved model predictive performance nor uncertainty
estimates. These finding highlight the need to perform both parametric and pre-
dictive uncertainty analysis when assimilating information rich datasets such as
environmental tracers into complex groundwater models. The methods pre-
sented in this study provide a tool that allows uncertainty quantification using
computationally expensive groundwater flow and transport models.
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Green, C. T., Böhlke, J. K., Bekins, B. A., & Phillips, S. P. (2010). Mixing effects
on apparent reaction rates and isotope fractionation during denitrification
in a heterogeneous aquifer. Water Resources Research, 46 (8), 1–19. doi:
10.1029/2009WR008903

Hammond, G. E., & Lichtner, P. C. (2010). Field-scale model for the
natural attenuation of uranium at the Hanford 300 Area using high-
performance computing. Water Resources Research, 46 (9), 1–31. doi:
10.1029/2009WR008819

Hammond, G. E., Lichtner, P. C., Lu, C., & Mills, R. (2012). CHAPTER
6 PFLOTRAN : Reactive Flow & Transport Code for Use on Laptops
to Leadership-Class Supercomputers. Groundwater Reactive Transport
Models, 5 (2012), 141–159. doi: 10.2174/978160805306311201010141

Hammond, G. E., Lichtner, P. C., & Mills, R. T. (2014). Evaluating the
performance of parallel subsurface simulators: An illustrative example
with PFLOTRAN. Water Resources Research, 50 (1), 208–228. doi: 10
.1002/2012WR013483

Hill, M. C., & Tiedeman, C. R. (2007). Effective Groundwater Model Calibra-
tion: With Analysis of Data, Sensitivities, Predictions, and Uncertainty.
Hoboken, New Jersey: John Wiley & Sons, Ltd.

Hunt, R. J., Doherty, J., & Tonkin, M. J. (2007). Are models too simple?
Arguments for increased parameterization. Ground Water , 45 (3), 254–
262. doi: 10.1111/j.1745-6584.2007.00316.x

Knowling, M. J., White, J. T., Moore, C. R., Rakowski, P., & Hayley, K. (2020).
On the assimilation of environmental tracer observations for model-based
decision support. Hydrology and Earth System Sciences, 24 (4), 1677–1689.
doi: 10.5194/hess-24-1677-2020

Laloy, E., & Jacques, D. (2019). Emulation of CPU-demanding reactive trans-
port models: a comparison of Gaussian processes, polynomial chaos ex-
pansion, and deep neural networks. Computational Geosciences, 23 (5),
1193–1215. doi: 10.1007/s10596-019-09875-y

Lecun, Y., Bengio, Y., & Hinton, G. (2015, 5). Deep learning (Vol. 521) (No.
7553). Nature Publishing Group. doi: 10.1038/nature14539

Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C.,
. . . Beisman, J. (2017). Expanding the role of reactive transport models
in critical zone processes. Earth-Science Reviews, 165 , 280–301. doi:
10.1016/j.earscirev.2016.09.001

Liao, L., Green, C. T., Bekins, B. A., & Böhlke, J. K. (2012). Factors control-
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Table 1: Table of PFLOTRAN model parameters.

Parameter Value Unit Description
3Ht1/2 12.3287 yr Tritium half-life
ω 0.39 - Tortuosity
Dm 10−9 m2/s Molecular Diffusion Coefficient
α 10−4 Pa−1 van Genuchten Parameter
m 0.5 - van Genuchten Parameter
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Table 2: Mean, upper, and lower bounds of the uncertain model parameters.
log10ki refers to the 25 soil pilot point permeabilities.

Parameter Units Mean Lower Upper Description

nsoil − 30.0 20.0 40.0 Soil Porosity
log10kss m2 -15.0 -17.0 -13.0 Sandstone Permeability
nss − 17.5 10.0 25.0 Sandstone Porosity
γ − 1.0 0.0 2.0 Infiltration Multiplier
lwr m/km 1.1 0.6 1.6 Little Wind River Grad.
wr m/km 2.6 1.3 3.9 Wind River Grad.
log10ki m2 -11.0 -14.0 -8.0 Soil Permeability
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