References
- Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of
mycophenolate in solid organ transplant recipients. Clin Pharmacokinet
2007; 46:13-58.
- Tett SE, Saint-Marcoux F, Staatz CE, Brunet M, Vinks AA, Miura M et
al. Mycophenolate, clinical pharmacokinetics, formulations, and
methods for assessing drug exposure. Transplant Rev 2011; 5:47-57.
- Lamba V, Sanhavi K, Fish A, Altman RB, Klein TE. PharmGKB summary:
mycophenolic acid pathway. Pharmacogenet Genomics 2014; 24:73-79.
- Dalla Vecchia Genvigir F, Cerda A, Dominguez Crespo Hirata T, Hirata
MH, Dominguez Crespo Hirata R. Mycophenolic acid pharmacogenomics in
kidney transplantation. J Transl Genet Genom 2020; 4:320-355.
- Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK,
Lemaitre F et al. Personalized therapy for mycophenolate: consensus
report by the International association on therapeutic drug monitoring
and clinical toxicology. Ther Drug Monit 2021; 43:150-200.
- Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X et al.
International transporter consortium: membrane transporters in drug
development. Nat Rev Drug Discov 2010; 9:215-236.
- Giacomini KM, Balimane PV, Cho SK, Eadon M, edeki T, Hillgren KM et
al. International transporter consortium commentary on clinically
important transporter polymorphisms. Clin Pharmacol Ther 2013;
94:23-26.
- Foher AE, Brackman DJ, Giacomini KM, Altman RB, Klein TE. Pharm GKB
summary: very important pharmacogene information for ABCG2 .
Pharmacogenet Genomics 2017; 27;420-427.
- Kondo C, Suzuki H, Itoda M, Ozawa, Sawada, Kobayashi D et al.
Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 2004;
21:1895-1903.
- Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y
et al. Major SNP (Q141K) variant of human ABC transporter ABCG2
undergoes lysosomal and proteosomal degradations. Pharm Res 2009;
26:469-479.
- Miura M, Kagaya H, Satoh S, Inoue K, Saito M, Habuchi T, Suzuki T.
Influence of drug transporters and UGT polymorphisms on
pharmacokinetics of phenolic glucuronide metabolite of mycophenolic
acid in Japanese renal transplant recipients. Ther Drug Monit 2008;
30:559-564.
- Trkulja V, Lalić Z, Nađ-Škegro S, Lebo A, Granić P, Lovrić M et al.
Effect of cyclosporine on steady-state pharmacokinetics of MPA in
renal transplant recipients is not affected by the MPA formulation:
analysis based on therapeutic drug monitoring data. Ther Drug Monit
2014; 36:456-464.
- Božina N, Lalić Z, Nađ Škegro S, Borić-Bilušić A, Božina T, Kaštelan
Ž, Trkulja V. Steady-state pharmacokinetics of mycophenolic acid in
renal transplant patients: exploratory analysis of the effects of
cyclosporine, recipients’ and donors’ ABCC2 gene variants and their
interactions. Eur J Clin Pharmacol 2017; 73:1129-1140.
- Hu DG, Meech R, Lu L, McKinnon RA, Mackenzie PI. Polymorphisms and
haplotypes of the UDP-glucuronosyltransferase 2B7 gene promoter. Drug
Metab Dispos 2014; 42:854-862.
- Pearl J. Causality: models, reasoning and inference.
2nd ed. Cambridge, Cambridge University press, 2009.
- Knol MJ, VanderWeele TJ. Recommendations for presenting analyses of
effect modification and interaction. Int J Epidemiol 2016; 42:514-520.
- VenderWeele TJ, Rothman KJ, Lash TL. Confounding and confounders. In:
Lash TL, VanderWeele TJ, Haneuse S, Rothman KJ (eds) Modern
epidemiology, 4th edn. Wolters Kluwver, Philadephia,
2021, pp 610-667.
- Textor J, van der Zander B, Gilthorpe MS, Liskiewicz M, Elliot GTH.
Robust causal inference using directed acyclic graphs: the R package
“dagitty”. Int J Epidemiol 2016; 45:1887-1894.
- R Core Team. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, 2020.
- Endrenyi L, Gritsch S, Yan W. Cmax/AUC is a clearer measure than Cmax
for absorption rates in investigations of bioequivalence. Int J Clin
Pharmacol Ther Toxicol 1991; 29:394-399.
- Ho DE, Imai K, King G, Stuart EA. MatchIT: nonparmetric preprocessing
for parametric causal inference. J Stat Software 2011; 42:1-28.
https://doi.org/10.18637/jss.v042.i08
- Hansen BB, Olsen Klopfer S. Optimal full matching and related designs
via network flows. J Computational Global Stat 2006; 15:609-627.
- King G, Nielsen R. Why propensity scores should not be used for
matching. Polit Anal 2019; 27:435-454.
- Goodrich B, Gabry J, Ali I, Brilleman S. rstanarm: Bayesian applied
regression modeling via Stan. R package version 2.21.3, 2022,
https://mc-stan.org/rstanarm/
- Gaunt TR, Rodríguez S, Day IN. Cubic exact solutions for the
estimation of pairwise haplotype frequencies: implications for linkage
disequilibrium analyses and a web tool “CubeX”. BMC
Bioinformatics . 2007; 8(1):428.
https://doi.org/10.1186/1471-2105-8-428
- VanderWeele TJ, Ding P. Sensitivity analysis in observational
research: introducing the E-value. Ann Intern Med 2017; 167: 268-274.
- Schneeweiss S. Sensitivity analysis and external adjustment for
unmeasured confounders in epidemiological database studies of
therapeutics. Pharmacoepidemol Drug Saf 2006; 15:291-303.
- Haine D. The episensr package: basic sensitivity analysis of
epidemiological results. doi: 10.5281/zenodo.4554553, R package
version 1.1.0, https://dhaine.github.io/episensr
- Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with
R: a practical tutorial. Evid Based Ment Health 2019;22:153-160.
- Friedrich JO, Adhikari NKJ, Beyene J. The ratio of means method as an
alternative to mean differences for analyzing continuous outcome
variables in meta-analysis: a simulation study. BMC Med Res
Methodology 2008; 8:32 doi: 10.1186/1471-2288-8-32.
- Boumar R, Hessenlink DA, van Schaik RHN, Weimar W, van der Heiden I,
de Fijter JW et al. Mycophenolic acid-related diarrhea is not
associated with polymorphisms in SLCO1B nor with ABCB1 in renal
transplant recipients. Pharmacogen Genom 2012; 22:399-407.
- van Schaik RHN, van Agteren M, de Fijter JW, Hartmann A, Schmidt J,
Budde K et al. UGT1A9 -275T>A/-2152C>T
polymorphisms correlate with low MPA exposure and acute rejection in
MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther
2009; 86:319-327.
- Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM,
Marquet P. The role of organic antion-transporting polypeptides and
their common genetic variants in mycophenolic acid pharmacokinetics.
Clin Pharm Ther 2010; 87:100-108.
- Geng F, Jiao Z, Dao YJ, Qiu XY, Ding JJ, Shi Xj et al. The association
of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the
pharmacokinetics of mycophenolic aid and its phenolic glucuronide
metabolite in Chinese individuals. Clinic Chimica Acta 2012;
423:683-690.
- Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue et al. Influence
of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic
acid pharmacokinetics in Japanese renal transplant recipients. Eur J
Clin Pharmacol 2007; 63:1161-1169.
- Bernard O, Cuillemette C. The main role of UGT1A9 in the hepatic
metabolism of mycophenolic acid and the effectsof naturally occurring
variants. Drug Metab Dispos 2004; 32:775-778.
- Kuypers DR, Naesens M, Vermeire S, Vanrentghem Y. The impact of
uridine diphosphate-glucuronosyltrasferase 1A9 (UGT1A9) gene promoter
region single-nucleotide polymorphisms T-275A and C-2152T on early
mycophenolic acid dose-interval exposure in de novo renal allograft
recipients. Clin Pharmacol Ther 2005; 78:351-361.
- Zhao W, Fakhoury M, Deschenes G, Roussey G, Brochard K, Niaudet P et
al. Population pharmacokinetics and pharmacogenetics of mycophenolic
acid following administration of mycophenolate mofetil in de novo
pediatric renal transplant patients. J Clin Pharmacol 2010;
50:1280-1291.
- Yang CI, Shen CC, Liao GY, Yong S, Feng LJ, Xia Q et al. Genetic
polymorphisms in metabolic enzymes and transporters have no impact on
mycophenolic acid pharmacokinetics in adult kindey transplant patients
co-treated with tacrolimus: a population analysis. J Clin Pharm Ther
2021; 00:1-12.doi:10.1111/jcpt.13488
- UGT alleles Nomenclature. Available at
https://www.pharmacogenomics.pha.ulaval.ca/ugt-alleles-nomenclature/
(last accessed July 11, 2022)
- Takuathung MN, Sakuludomkan W, Koonrungsesomboon N. The impact of
genetic polymorphisms on the pharmacokinetics and pharmacodynamics of
mycophenolic acid: systematic review and meta-analysis. Clin
Pharmacokinet 2021; 60:1291-1302.
- Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of
genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug
disposition and potential clinical implications: update of the
literature. Clin Pharmacokinet 2015; 54:709-735.
- Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2 and ABCC3 drug
transporter polymorphisms and their impact on drug bioavailability:
what is our current understanding. Exp Opinion Drug Metab Toxicol
2021; 17:369-396.
- Geng F, Jiao Z, Dao YJ, Qiu XY, Ding JJ, Shi Xj et al. The association
of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the
pharmacokinetics of mycophenolic aid and its phenolic glucuronide
metabolite in Chinese individuals. Clinic Chimica Acta 2012;
423:683-690.
- Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB.
PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet
Genomics 2013; 23:563-585.
- Gupta A, Dai Y, Vethanayagam RR, Herber MF, Thummel KE, Unadkat JD et
al. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of
the human breast cancer resistance protein (ABCG2) and reverse
resistance to mitoxantrone and topotecan. Cancer Chemother Pharmacol
2006; 58:374-383.
- Bakhsheshian J, Hall MD, Robey RW, Herrmann MA, Chen JQ, Bates SE,
Gottesman MM. Overlapping substrate and inhibitor specificity of human
and murine ABCG2. Drug Metab Dispos 2013; 41:1805-1812.
- Li LQ, Chen DN, Li CJ, Li QP, Chen Y, Fang P et al. Impact of UGT2B7
and ABCC2 genetic polymorphisms on mycophenolic acid metabolism in
Chinese renal transplant recipients. Pharmacogenomics 2018;
19:1323-1334.
- Dalla Vecchia Genvigir F, Campus-Salazar AB, Rosso Felipe C,
Tedesco-Silv Jr H, Medina-Pestana JO, de Quateli Doi S et al.CYP3A5*3 and CYP2C8*3 variants influence exposure and
clinical outcomes of tacrolimus-based therapy. Pharmacogenomics 2020;
21:7-21.
Table 1 Single nucleotide polymorphisms genotyped in the 68
included renal transplant recipients and donors.