= 0.963) and the ordination obtained by the non-metric multidimensional scaling (Figure 7).
 
Discussion
Microhabitat use
Our results show that L. etheridgei does not select positively for any microhabitats found in the Polylepis forests; thus, this lizard can be considered a generalist in its habitat use (Vivas, Robles, and Halloy, 2019). The rocks, small rocks and uncovered land have been associated with the thermoregulatory behaviour of quilmes, L. ramirezae (Robles and Halloy, 2008) and L. tenuis (Victoriano et al., 2008). However, the absence of selective use for such resources may indicate that L. etheridgei does not use them actively for thermoregulation, which could support the idea that this lizard is a thermal generalist (Llanqui, 2020). The microhabitats’ thorny bushes and non thorny bushes could serve as refuges, shelters or foraging sites. For instance, L. multimaculatus prefers tussocks of grass for shelters (Kacoliris, Williams, and Molinari, 2010); L. quilmes has been found in rocks close to shrubs (Robles and Halloy, 2008), and L. lemniscatus has been found in herbaceous patches (Jaksić, Núnñez, and Ojeda, 1980). However, L. etheridgei was indifferent to scrubland, thorny bushes and non thorny bushes so that they could be used indistinctly as refuges, shelters or foraging sites. This could be supported by our field observations of cavities used by L. etheridgei, which were encountered under different substrates such as rocks, thorny bushes, non thorny bushes and scrubland. Contrary to our expectations, Polylepis trees were avoided by L. etheridgei (negative selection). As there is no microhabitat positively selected by L. etheridgei, and this species may even avoid Polylepis trees, then it is questionable as to why it inhabits these forests. Considering that L. etheridgei also inhabits sites where Polylepis trees are absent (Laurent, 1998), we suggest that L. etheridgei is inhabiting Polylepis forests perhaps simply because they occur within its elevational range. It could also imply that L. etheridgei is able to tolerate variation in habitat structure, which is consistent with our conclusion that species is a generalist. Moreover, this could explain there being almost no differences in microhabitat selection in El Simbral and Tuctumpaya as well as the apparentolerance to fragmentation of the Polylepis forests.
 
Daily activity pattern
The activity peak of L etheridgei: from 9:00 to 10:59 h, is identical to that recorded for L. qalaywa (Chaparro et al., 2020), a species found near the distribution of L. etheridgei. Therefore, it is likely that both species would have a similar degree of solar radiation exposure and, accordingly, show a similar behaviour pattern. The second activity peak occurs after midday: 13:00 to 13:59 h, and is similar to that of L. evaristoi, a sister species of L. etheridgei (Gutiérrez et al., 2018). The drop in activity between 11:00 to 11:59h supports a bimodal pattern for L. etheridgei. Bimodal activity patterns have also been recorded in L. darwinii (Videla and Puig, 1994), L. koslowski (Belver, Kozykariski, and Avila, 2010), L. multimaculatus (Vega, Bellagamba, and Fitzgerald, 2000) and L. occipitalis (Bujes and Verrastro, 2006, 2008). In particular, a bimodal activity with a drop around midday, like in L. etheridgei, has been recorded for L. arambaresis (Liz et al., 2019), L. constanzae and L. nigroroseus (Labra, Soto-Gamboa, and Bozinovic, 2001), and this is thought to be a strategy in avoiding overheating. Throughout the day, there was no significant difference between the number of active and inactive individuals. Thus, there were no particular hours where active individuals were more abundant than inactive or vice versa, which is probably not valid in the late afternoon when the number of inactive lizards is logically greater than active ones. However, the actual number of inactive individuals could have been underestimated by the fact that the lizards would tend to seek shelter during periods of inactivity, and thus would be harder to detect. This would likely have been near-surface shelter between periods of high activity, however deeper refuges may have been sought later in the day, further reducing detectability. The lack of differences between active and inactive individuals would suggest that the variation between the Polylepis forests, particularly the abundance cover, appears not to affect the activity patterns of L. etheridgei significantly. The range of daily activity of L. etheridgei was shorter in El Simbral than in Tuctumpaya, where the former began activity later (9:00h) than in Tuctumpaya (8:00h), and ended earlier (16:00 vs 17:59h). This result contradicts our expectation that the Tuctumpaya population would have a shorter daily activity range due to a higher cover of trees than in El Simbral, limiting access to solar radiation. Polylepis trees occupy rough terrains with areas where the sunlight reaches late in the day, while windy conditions can affect the body temperature of lizards (see Bujes and Verrastro, 2008); thus, both could be involved in the variability of the starting hour of activity.
 
Diet
Lygaeidae: Hemiptera was found to be the most important dietary component for L. etheridgei, and this is the only item that was selected for positively in bothPolylepis forests. Even though Hemiptera does not seem to be a typical choice in the diet of Liolaemus (Halloy, Robles, and Cuezzo, 2006), it has been recorded as an important item in the diet of L. eleodori (Astudillo et al., 2015), L. quilmes, L. ramirezae (Halloy, Robles, and Cuezzo, 2006; Robles and Halloy, 2008) and L. ruibali (Villavicencio, Acosta, and Cánovas, 2005). Formicidae has been recorded as an important component in the diet of several Liolaemus species (Halloy, Robles, and Cuezzo, 2006) such as L. koslowskyi (Aun and Martori, 1998); L. wiegmannii (Martori, Aun, and Orlandini, 2002); L. elongatus (Quatrini, Albino, and Barg, 2001); L. pseudoanomalus (Kozykariski, Belver, and Avila, 2011); L. cuyanus (Moreno Azócar and Acosta, 2011); L. irregularis, L. albiceps, L. multicolor and L. yanalcu, (Valdecantos, 2011). However, Formicidae was avoided by L. etheridgei and seems not to be an essential prey for this lizard.Interestingly, Mella et al., (2010) reported the avoidance of Formicidae and a positive selection for Lygaeidae in L. puna (= L. barbarae), although plant material was not found in the diet as it was in L. etheridgei. It is worth noting that L. etheridgei belongs to the Eulaemus subgenus while L. puna (=barbarae) belongs to the Liolaemus subgenus (Lobo, Espinoza, and Quinteros, 2010), so this could be a case of ecological convergence. The avoidance of Cicadelidae, Drosophilidaeand Tephritidae could be due to their high mobility which makes predation difficult despite their abundance, but more comprehensive studies are needed to assess this.
 
Based on the percentage of plant material found, L. etheridgei can be classified as herbivorous, which contradicts the classification of this lizard as mainly arthropophagous by Olivera-Jara et al., (2020). L. etheridgei would therefore belong to the 9.5% of species within the Eulaemus subgenus, considered herbivores (Cabrera and Scrocchi Manfrini, 2020). Analysis of diet within each forest found L. etheridgei to be herbivorous in Tuctumpaya and omnivorous in El Simbral, although the latter showed a percentage of plant consumption close to the critical value that separates omnivorous from herbivorous (Figure 5). Intraspecific variation in plant consumption has also been recorded for L. elongatus (Quatrini, Albino, and Barg, 2001). Although we recommend additional surveys to confirm the diet of L. etheridgei, we think that herbivory or an intermediate consumption of plant material is evident. There are several Liolaemus species with an intermediate consumption of plants: L. alticolor, L. jamesi and L. signifier (Valencia, Veloso, and Sallaberry, 1982; cited in Semhan, Halloy, and Abdala, 2013), L. eleodori (Astudillo et al., 2015), L. pictus (Vidal and Sabat, 2010), L. polystictus (Olivera Jara and Aguilar, 2020), amongst others (see Abdala et al., 2012). Semhan et al., (2013) point out the existence of a continuum between carnivory-omnivory-herbivory; accordingly, we suggest that L. etheridgei is not in any extreme but biased towards herbivory. Regarding the tendency for herbivory, L. etheridgei would be a “widely foraging” species (Huey and Pianka, 1981) as it would need to move in order to reach plants. We also noticed a sit-and-wait foraging strategy, which is suitable for catching highly mobile prey (e.g., Diptera), and this aligns with the foraging behaviours observed by Pearson (1954) in Liolaemus populations from Arequipa, Peru. Therefore, we suggest that L. etheridgeiis an intermediate forager with a tendency to sit-and-wait, as has previously been proposed for L. wiegmanni (Aun, Martori, and Rocha, 1999). Plant consumption could be associated with Lygaeidae as they are Hemiptera which extract sap from plants. Thus, we outline two scenarios: 1) Plant products are essential for L. etheridgei, and it has to consume insects associated with them, and therefore this species is mainly herbivorous or 2) L. etheridgei mainly consumes arthropods (e.g., Lygaeidae), but consumes vegetation accidentally while catching them. A more complex scenario would be that both plant material and Lygaeidae are consumed because they are of similarimportance. As expected, we found the trophic niche breadth in Tuctumpaya to be higher than in El Simbral. However, the Permanova analysis showed no animalian dietary differences between the El Simbral and Tuctumpaya populations; moreover, Pianka’s overlap index indicated a high overlap in diet. This led us to believe that the current fragmentation of these forests does not affect the diet of L. etheridgei significantly.
 
Final remarks
Given the complexity of studying the multiple ecological aspects of L etheridgei, we outline some variables that could affect our results. Firstly, several Liolaemus species shift their ecology in response to seasonality, including microhabitat use (Simonetti, 1984), daily activity patterns (Videla and Puig, 1994; Vega, Bellagamba, and Fitzgerald, 2000; Bujes and Verrastro, 2006, 2008; Belver, Kozykariski, and Avila, 2010; Cabrera and Scrocchi, 2014; Liz et al., 2019), and diet composition (Pincheira-Donoso, 2012). Therefore, we believe that variations in the ecology of the L. etheridgei inhabiting Polylepis forests would likely occur through different seasons as the weather conditions change dramatically from summer to winter. Secondly, it is also plausible that juvenile individuals show different patterns in microhabitat selection, daily activity patterns (Carothers, Marquet, and Jaksic, 1998; Cabrera and Scrocchi, 2014) and diet (see Duarte Rocha, 1998; Rocha, 1999). Finally, reproductive state and sex have also been recognised to potentially lead to differences in activity patterns (Duarte Rocha, 1998; Cabrera and Scrocchi, 2014) and diet (Semhan, Halloy, and Abdala, 2013). We would encourage future studies to consider the above factors to improve our understanding of L. etheridgei and Liolaemus species in general.
Acknowledgements
This study was supported by IdeaWild. We give thanks to our field assistants Oscar Calachua, Raquel Asto, Erick Huamani, Marco Delgado, Robert Cornejo, Jesús Postigo, María Huaranca, Italo Revilla and Paola Medina. Likewise, I thank César Chávez Villavicencio and José Perez Z. fort their useful comments. 
 
Ethics statement
All research was conducted according to Peruvian national and regional guidelines DS Nº009-2013-MINAGRI. All biological specimens were deposited in Museo de Historia Natural de la Universidad San Agustín de Arequipa, and used for research according to permit Resolución de Dirección General Nº 509-2018-MINAGRI-SERFOR-DGGSPFFS.
 
Author contribution
Irbin B. Llanqui: Conceptualization (lead); Formal analysis (lead); Investigation (equal); Methodology (equal); Writing-original draft (equal); Writing-review & editing (equal). Bryn Edwards: Investigation (equal); Methodology (equal); Writing-original draft (equal), Writing-review & editing (equal). Evaristo Lopez Tejeda: Investigation (equal), Methodology (equal), Supervision (lead), Writing-original draft (equal), Writing-review & editing (equal)
 
Data accessibility
Raw data: Dryad, https://doi.org/10.5061/dryad.31zcrjdnj
 
Conflict of interest
The authors declare no conflict of interest. 
 
References
Abdala, C.S., Acosta, J.L., Acosta, J.C., Álvarez, B.B., Avila, L.J., Blanco, M.G., Bonino, M., Boretto, J.M., Brancatelli, G., Breitman, M.F., Cabrera, M.R., Cairo, S., Corbalán, V., Hernando, A., Ibargüengoytía, N.R., Kacoliris, F., Laspiur, A., Montero, R., Morando, M., Pelegrin, N., Hernán, C., Pérez, F., Quinteros, A.S., Semhan, R.V., Tedesco, M.E., Vega, L., Zalba, S.M., Herpetología, I. De, Miguel, F., Ciencias, L.-C. De, Universidad, I.M.L. (2012): Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuad. Herpetol. 26: 215–248.
Abdala, C.S., Quinteros, A.S., Semhan, R.V., Arroyo, Bulacios, L.A., Schulte, J., Paz, M.M., Ruiz-Monachesi, M.R., Aguilar-Kirigin, A.J., Poblete, R.G., Faundez, P.V., Valdés, J., Portelli, S., Santa Cruz, R., Aparicio, J., Garcia, N., Langstroth, R. (2019): Unravelling interspecific relationships among highland lizards: first phylogenetic hypothesis using total evidence of the Liolaemus montanus group (Iguania: Liolaemidae). Zool. J. Linn. Soc. 1–29.
Aguilar-Puntriano, C., Ramírez, C., Castillo, E., Mendoza, A., Vargas, V.J., Sites, J.W. (2019): Three New Lizard Species of the Liolaemus montanus Group from Perú. Diversity 11: 161.
Aguilar, C., Wood, P.L., Belk, M.C., Duff, M.H., Sites Jr., J.W. (2017): Different roads lead to Rome: Integrative taxonomic approaches lead to the discovery of two new lizard lineages in the Liolaemus montanus group (Squamata: Liolaemidae). Biol. J. Linn. Soc. 120: 448–467.
Aho, K.A. (2014): Foundational and applied statistics for biologists using R. Boca Raton, Florida, CRC Press.
Anderson, M.J. (2001): A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26: 32–46.
Astudillo, G. V., Acosta, J.C., Villavicencio, H.J., Córdoba, M.A. (2015): Ecología trófica y dimorfismo sexual del lagarto endémico Liolaemus eleodori (Iguania: Liolaemidae) del Parque Nacional San Guillermo, San Juan, Argentina. Cuad. Herpetol. 29: 27–39.
Aun, L., Martori, R. (1998): Reproducción y dieta de Liolaemus koslowskyi Etheridge 1993. Cuad. Herpetol. 12: 1–9.
Aun, L., Martori, R., Rocha, C. (1999): Variacíon estacional de la dieta de Liolaemus weigmanni (Squamata: Tropiduridae) en un agroecosistema del sur de Córdoba, Argentina. Cuad. Herpetol. 13: 69–80.
Belver, L.C., Kozykariski, M.L., Avila, L.J. (2010): Diferencias sexuales y etarias en la actividad diaria y estacional de una población de Liolaemus koslowskyi(Liolaemini). Cuad. Herpetol. 24: 71–79.
Borcard, D., Gillet, F., Legendre, P. (2011): Numerical Ecology with R. Springer.
Borror, D.J., Long, D.M. de, Triplehorn, C.A. (1981): An introduction to the study of insects. Philadelphia, USA, Saunders College Publications.
Bujes, C.S., Verrastro, L. (2006): Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae) in the coastal sand dunes of Rio Grande do Sul, Brazil. Brazilian J. Biol. 66: 945–954.
Bujes, C.S., Verrastro, L. (2008): Annual activity of the lizard Liolaemus occipitalis (Squamata, Liolaemidae) in the coastal sand dunes of southern Brazil. Iheringia. Série Zool. 98: 156–160.
Cabrera, M.P., Scrocchi, G.J. (2014): Patrones de actividad y abundancias de una población de Liolaemus espinozai Abdala , 2005 (Iguania: Liolaemidae) en el campo El Arenal, Catamarca, Argentina. Acta Zoológica Mex. 30: 459–471.
Cabrera, M.P., Scrocchi Manfrini, G.J. (2020): Ecología trófica de Liolaemus espinozai Abdala, 2005 (Sauria: Liolaemidae) en Campo El Arenal, Catamarca, Argentina. Cuad. Herpetol. 34: 17–31.
Calenge, C. (2006): The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197: 516–519.
Carothers, J.H., Marquet, P.A., Jaksic, F.M. (1998): Ecología térmica de un ensamble de lagartijas Liolaemus a los largo de un grediente altitudinal andino en Chile. Rev. Chil. Hist. Nat. 71: 39–50.
Chaparro, J.C., Quiroz, A.J., Mamani, L., Gutiérrez, R.C., Condori, P., la Riva, I. De, Herrera-Juárez, G., Cerdeña, J., Arapa, L.P., Abdala, C.S. (2020): An endemic new species of Andean lizard of the genus Liolaemus from southern Peru (Iguania: Liolaemidae) and its phylogenetic position. Amphib. Reptil. Conserv. 14: 47–63.
Duarte Rocha, C.F. (1998): Ontogenetic shift in the rate of plant consuption in a tropical lizard (Liolaemus lutzae). J. Herpetol. 32: 274–279.
Espinoza, R.E., Wiens, J.J., Tracy, C.R. (2004): Recurrent evolution of herbivory in small, cold-climate lizards: Breaking the ecophysiological rules of reptilian herbivory. Proc. Natl. Acad. Sci. 101: 16819–16824.
García-De la Peña, C., Gadsden, H., Palomo-Ramos, R., Gatica-Colima, A.B., Lavín-Murcio, P.A., Castañeda, G. (2012): Spatial segregation of microhabitats within a community of lizards in Médanos de Samalayuca, Chihuahua, Mexico. Southwest. Nat. 57: 430–434.
Gutiérrez, R., Villegas, L., López, E., Quiróz, A. (2010): Anfibios y reptiles de la Reserva Nacional Salinas y Aguada Blanca, Perú. In: Diversidad Biológica de La Reserva Nacional de Salinas y Aguada Blanca, p. 219–228. Zeballos, H., Ochoa, J.A., López, E., Eds. Arequipa, Desco, Profonanpe, Sernanp,.
Gutiérrez, R.C., Chaparro, J.C., Vásquez, M.Y., Quiroz, A.J., Aguilar-Kirigin, Á., Abdala, C.S. (2018): Descripción y relaciones filogenéticas de una nueva especie de Liolaemus (Iguania: Liolaemidae) y notas sobre el grupo de L . montanus de Perú. Cuad. Herpetol. 32: 81–99.
Halloy, M., Robles, C., Cuezzo, F. (2006): Diet in two syntopic neotropical lizard species of Liolaemus (Liolaemidae): interspecific and intersexual differences. Rev. Española Herpetol. 20: 47–56.
Hart, R.K., Calver, M.C., Dickman, C.R. (2002): The index of relative importance: An alternative approach to reducing bias in descriptive studies of animal diets. Wildl. Res. 29: 415–421.
Huamani-Valderrama, L., Quiroz, A., Gutiérrez, R., Aguilar-Kirigin, A., Huanca-Mamani, W., Valladares-Faundez, P., Cerdeña, J., Chaparro, J.C., Santa-Cruz, R., Abdala, C.S. (2020): Some color in the desert: description of a new species of Liolaemus (Iguania: Liolaemidae) from southern Peru, and its conservation status. Amphib. Reptile Conserv. 14: 1–30.
Huey, R.B., Pianka, E.R. (1981): Ecological consecuances of foraging mode. Ecology 62: 991–999.
Jaksić, F.M., Núnñez, H., Ojeda, F.P. (1980): Body proportions, microhabitat selection, and adaptative radiation of Liolaemus lizards in Central Chile. Oecologia 45: 178–181.
Jost, L. (2006): Entropy and diversity. Oikos 113: 363–375.
Kacoliris, F., Williams, J., Molinari, A. (2010): Selection of key features of vegetation and escape behavior in the sand dune lizard (Liolaemus multimaculatus). Anim. Biol. 60: 157–167.
Kozykariski, M.L., Belver, L.C., Avila, L.J. (2011): Diet of the desert lizard Liolaemus pseudoanomalus (Iguania: Liolaemini) in northern La Rioja Province, Argentina. J. Arid Environ. 75: 1237–1239.
Krebs, C.J. (1999): Ecological Methodology. Benjamin/Cummings Ser. Life Sci. 650.
Labra, A., Soto-Gamboa, M., Bozinovic, F. (2001): Behavioral and physiological thermoregulation of Atacama desert-dwelling Liolaemus lizards. Ecoscience 8: 413–420.
Laurent, R.F. (1998): New forms of lizards of the subgenus Eulaemus of the genus Liolaemus (Reptilia: Squamata: Tropiduridae) from Peru and Northern Chile. Acta Zoológica Lilloana 44: 1–26.
Liz, A.V., Santos, V., Ribeiro, T., Guimaraes, M., Verrastro, L. (2019): Are lizards sensitive to anomalous seasonal temperatures ? Long-term thermobiological variability in a subtropical species. PLoS One 14: 1–16.
Llanqui, I.B. (2020): Aspects of the thermal ecology of Liolaemus etheridgei Laurent, 1998 (Reptilia: Liolaemidae) from the Andes of Peru. Herpetol. Notes 13: 941–946.
Lloyd, H., Marsden, S.J. (2008): Bird community variation across Polylepis woodland fragments and matrix habitats: Implications for biodiversity conservation within a high Andean landscape. Biodivers. Conserv. 17: 2645–2660.
Lobo, F., Espinoza, R.E., Quinteros, S. (2010): A critical review and systematic discussion of recent classification proposals for liolaemid lizards. Zootaxa 30: 1–30.
Manly, B.F.J., McDonald, L., Thomas, D.L., McDonald, T.L., Erickson, W.P. (2002): Resource Selection by Animals: Statistical Design and Analysis for Field Studies. New York, Kluwer Academic Publishers.
Martin, G.R., Twigg, L.E., Robinson, D.J. (1996): Comparison of the diet of feral cats from rural and pastoral Western Australia. Wildl. Res. 23: 475–484.
Martori, R., Aun, L., Orlandini, S. (2002): Relaciones térmicas temporales en una población de liolaemus koslowskyi. Cuad. Herpetol. 16: 33–45.
McDiarmid, R.W., Foster, M.S., Guyer, C., Gibbons, W., Chernoff, N. (2012): Reptile Biodiversity. Standard Methods for Inventory and Monitoring. Los Angeles, USA, University of California Press.
Mella, J., Tirado, C., Cortés, A., Carretero, M. (2010): Seasonal variation of prey consumption by Liolaemus barbarae, a highland lizard endemic to northern Chile. Anim. Biol. 60: 413–421.
Mendoza, W., Cano, A. (2011): Diversidad del género Polylepis (Rosaceae, Sanguisorbeae) en los Andes peruanos. Rev. Peru. Biol. 18: 197–200.
Mendoza, W., Cano, A., Vento, R. (2010): Bosques de Polylepis (Polylepis) de la Reserva Nacional Salinas y Aguada Blanca, Arequipa y Moquegua, Perú. In: Diversidad Biológica de La Reserva Nacional de Salinas y Aguada Blanca, p. 167–173. Arequipa, Perú, Profonanpe, Sernanp,.
Montori, A. (1991): Alimentación de los adultos de tritón pirenaico Euproctus asper (Dugès, 1852), en el prepirineo de la Cerdanya (España). Rev. Española Herpetol. 5: 23–36.
Moreno Azócar, L., Acosta, J.C. (2011): Feeding Habits of Liolaemus cuyanus (Iguania: Liolaemidae) from the Monte Biogeographic Province of San Juan, Argentina. J. Herpetol. 45: 283–286.
Mueller-Dombois, D., Ellenberg, H. (1974): Aims and methods of vegetation ecology. New York, USA, John Wiley & Sons.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. (2013): Package ‘vegan’. R Packag. Ver. 2.0–8 254.
Olivera Jara, D.A., Aguilar, C.A. (2020): Dieta de la lagartija neotropical Liolaemus polystictus (Squamata: Liolaemidae) de los andes centrales, Huancavelica, Perú. Rev. Peru. Biol. 27: 339–348.
Pearson, O.P. (1954): Habits of the lizard Liolaemus multiformis multiformus at high altitudes in southern Peru. Copeia 2: 111–116.
Pincheira-Donoso, D. (2012): Intraspecific predation in the Liolaemus lizard radiation: a primer. Anim. Biol. 62: 277–287.
Pinkas, L. (1971): Food habits study. Fish Bull. 152: 5–10.
Quatrini, R., Albino, A., Barg, M. (2001): Variación morfológica y dieta en dos poblaciones de Liolaemus elongatus Koslowsky, 1896 (Iguania: Tropiduridae) del noroeste patagónico. Rev. Chil. Hist. Nat. 74: 639–651.
R Core Team (2019): R: A Language and Environment for Statistical Computing.
Robles, C.I., Halloy, M. (2008): Seven-year relative abundance in two sintopic neotropical lizards, Liolaemus quilmes y L. ramirezae (Liolaemidae), from nortwestern Argentina. Cuad. Herpetol. 22: 73–80.
Rocha, F.C.D. (1999): Home range of the tropidurid lizard Liolaemus lutzae: Sexual and body size differences. Rev. Bras. Biol. 59: 125–130.
Semhan, R.V., Halloy, M. (2016): Diet and reproductive states in a high altitude neotropical lizard species, Liolaemus ramirezae (Iguania: Liolaemidae). J. Herpetol. 50: 589–593.
Semhan, R.V., Halloy, M., Abdala, C.S. (2013): Diet and reproductive states in a high altitude neotropical lizard, Liolaemus crepuscularis (Iguania: Liolaemidae). South Am. J. Herpetol. 8: 102–108.
Simonetti, J. (1984): Utilización de refugio por Liolaemus nigromaculatus: compromiso entre riesgos de predación y necesidades termorregulatorias. Stud. Neotrop. Fauna Environ. 19: 47–51.
Uetz, P., Hošek, J. (2022): The Reptile Database.
Valdecantos, M.S. (2011): Coexistencia entre especies: competencia, agresión o indiferencia en lagartijas de la puna del género Liolaemus (Squamata: Iguania: Liolaeminae). Universidad Nacional de Córdoba.
Valencia, J., Veloso, A., Sallaberry, M. (1982): Nicho trófico de las especies de los herpetozoos del transecto Arica Chungara. Contribución sistemática al conocimiento de la herpetofauna del extremo norte de Chile. In: El Hombre y Los Ecosistemas de Montaña, p. 269–291. Veloso, A., Bustos, E., Eds. Oficina Regional de Ciencias y Tecnologia de la UNESCO,.
Vega, L.E., Bellagamba, P.J., Fitzgerald, L. a (2000): Long-term effects of anthropogenic habitat disturbance on a lizard assemblage inhabiting coastal dunes in Argentina. Can. J. Zool. 78: 1653–1660.
Victoriano, P.F., Ortiz, J.C., Benavides, E., Adams, B.J., Sites, J.W. (2008): Comparative phylogeography of codistributed species of Chilean Liolaemus(Squamata: Tropiduridae) from the central-southern Andean range. Mol. Ecol. 17: 2397–2416.
Vidal, M.A., Sabat, P. (2010): Stable isotopes document mainland-island divergence in resource use without concomitant physiological changes in the lizard Liolaemus pictus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 156: 61–67.
Videla, F., Puig, S. (1994): Estructura de una comunidad de lagartos del monte. Patrones de uso espacial y temporal. Multequina 3: 99–112.
Villavicencio, H.J., Acosta, J.C., Cánovas, M.G. (2005): Dieta de Liolaemus ruibali Donoso barros (Iguania: Liolaemidae) en la Reserva de usos múltiples Don Carmelo, San Juan, Argentina. Multequina 14: 47–52.
Vivas, G.L., Robles, C., Halloy, M. (2019): Substrate use and its effect on body temperature in two syntopic Liolaemus lizards in northwestern Argentina. Basic Appl. Herpetol. 33: 69–80.
Zaccarelli, N., Bolnick, D.I., Mancinelli, G. (2013): RInSp: An r package for the analysis of individual specialization in resource use. Methods Ecol. Evol. 4: 1018–1023.
Zuur, A.F., Ieno, E.N., Smith, G.M. (2007): Analyzing Ecological Data. Springer.