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1 | INTRODUCTION

Quadratic matrix equations arises in many areas of scientific computing and engineering applications. There is a great variety of
quadratic matrix equations that have been studied due to their applicability. An important class of examples, arising in control
theory, is algebraic Riccati equations, such as

XBX + XA+ A*X +C =0,

where A, B, and C are given coefficient matrices. Theory of Riccati equations and numerical methods for their solution are well
developed [13].
In this work, we focus on the simplest quadratic matrix equation:

OX)=X*+BX+C=0, B,CeR™m, (1.1)

which we refer as (QME) throughout the work. Observe that, this type of quadratic matrix equation with B and C satisfying
certain conditions, arise in noisy Wiener-Hopf problems for Markov chains. Notice that, the study can be extended to C™".
Although some Riccati equations are quadratic matrix equations, and vice versa, the two classes of equations require different
techniques for analysis and solution in general. This equation occurs in a variety of applications, for example, it may arise
in the well known quadratic eigenvalue problem:

O(M)x = 2Ax + ABx + Cx =0, with A, B,C € C™",

which arises in the analysis of structural systems and vibration problems [16].
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Many studies have been made to solve quadratic matrix equation by methods which rely heavily on linear algebra and the
theory of matrices, see [14}15]. However, our main aim is to approximate a solution of equation (I.I)) from the numerical point
of view. A commonly used technique to approximate a solution of equation is the application of iterative schemes. The most
popular solver for these type of equations is the Newton method. As it is known, under some suitable conditions, the Newton
method can achieve quadratic convergence speed. Davis ([3]l, [6]) considered the Newton method to the quadratic matrix (I.I))
in detail.

In Bai et al.[3] for solving quadratic matrix equations, the authors transform equation (QME) into an equivalent fixed point
equation, and based on it they construct a successive approximation method, these new methods are more accurate and effective
than the known ones.

Notice that, if X* € R™"™ ig a solution of (QME), i.e.,

(X" —BX*—C =0,

then, we have (X* — B)X* = C. Moreover, it follows that (X* — B) and X* are both nonsingular matrices. In this case, following
the transformation given in [3]], for equation (I.I)), we can construct the following fixed point equation:

X =T(X), where T(X)=(X - B)'C, (1.2)

and T : R™" — R™™ Thus, X* € R™" is a solution of (QME) if and only if it is a fixed-point of the matrix operator T, or
equivalently, a zero of the matrix equation
FX)=X-T(X)=0,

with F : R™™ — R™™ Moreover, as can be seen in [10], if we consider T(X) = (X — B)~'C, the successive approximation
method is stable.

Now, to define the operator T, it is important to do so in such a way that the successive approximation method is stable.
It is known [[1] that, in the application of iterative schemes, its algorithm is important to obtain a stable iterative scheme.
It is known that there are several possibilities to express equation (I.I)), such that, X = T(X) with T : R™m — Rmxm,
Obviously, it is necessary that a fixed matrix for operator 7’ must be a solution of equation (I.T]). For example, we can consider
T(X) = —(BX + C)!'/2. This situation does not seem to be very favorable due to the instabilities that arise when approximating
the square root or the p-th root of a matrix through iterative processes (see [[1] and the references there given). On the other hand,
if we consider T(X) = B~!(=X? — C), we can easily verify that the successive approximation method has a computationally
unstable behavior.

In this work, following the ideas of Y.-H Gao in [9], we consider

T(X)=—-(B+CX™"), (1.3)

which has a computationally stable behavior. Moreover, in this situation, as it is known [12]], Krasnoselskij observed that the
averaged mapping

T,X)=(0-w)ldX)+oT(X), oel0,1] (1.4)
where Id is the identity in R™ ", possesses the same fixed points as 7', and has a better asymptotic behavior than T itself.
Therefore, can be used as an iteration function to approximate fixed points of T'. So, in our study, we consider the Krasnoselskij
method, which is given by the following algorithm:

X, given in R"™™,
(1.5)
X =T,X)=(1-0)X,-oB+CX"), n20, wel01]
Notice that, for @ = 1, the successive approximation method [4] is obtained:
X, giveninR™", X, =T(X,), n=>0. (1.6)

In this work, from (I.3) and under suitable conditions, we prove the local convergence for the Krasnoselskij method given
in (T.3)). Besides, using the auxiliary matrix technique [8]], we prove the existence of a solution of equation and we locate
domains of global convergence restricted to balls for the Krasnoselskij method. To separate a solution of equation (I.T)) from
other possible solutions we obtain a result of uniqueness of solution. Numerical results show that, we can localize from the
Krasnoselskij method schemes more accurate, varying the parameter w, than the successive approximation method. Furthermore,
as we show in the numerical examples it is interesting to construct a predictor-corrector method [7, [11], Krasnoselskij-Newton,
which improves accuracy and execution time when approximating a solution of equation (L.IJ).
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The paper is organized as follows. In Section[2] we present different conditions for the existence and localization of solutions of
equation (T.T) from the study of the global convergence restricted of the Krasnoselskij method given in (I.5). We also establish a
global convergence restricted result in which we increase the value of the parameter w that appears in (I.3)). Finally, we illustrate
some numerical results in Section E] one of them related to the noisy Wiener-Hopf problem considered in ([10], [[L1]).

2 | ON THE APPROXIMATION OF A SOLUTION FOR (QME)

In what follows, we consider the local situation for the Krasnoselskij method given in (I.3). So, we suppose that there exists
X* € B(X*, R) afixed matrix of T given in (I.3). So, we look for conditions on R so that the Krasnoselskij method is convergent
for any starting matrix X, in B(X*, R). Thus, we obtain a local convergence result.

Now, we give a basic technical result to achieve our goal.

Lemma 1. Let X* be a solution of QME (I.1)) and we suppose that there exists (X*)~! with [|(X*)7!|| < p*. For each X €
B(X*, R), with R < 1/p*, then there exists X ' with || X~!|| <

1-p*R’
Proof 1f we consider I the identity matrix in R™ ™ we have
I — (XX < NEXHTIIX - X¥|| < B*R,
ﬂ*
1-p*R’

therefore, as R < 1/, then by the perturbation lemma in matrix analysis, there exists X “Land | X7 <

Theorem 1. Let X* be a nonsingular solution of QME (I.1)) such that
ICll=c and [[(X*)7"]| < B*.
Assume that X, € R™" and there exists R > 0 such that || X, — X*|| < R. Then, if

VR2+4c—-R

B* <
2c
the iterative sequence { X}, generated by the Krasnoselskij method (1.5 with X|, as the initial guess and w € (0, 1], converges
to X*. Moreover, the sequence { X, } € B(X"*, R) and satisfies

||Xn+[ - X*” S q*(w)”Xn - X*llan = 07 1725 eeey

, Q2.7)

where G
)¢
w=1-0+0———:.
q"(w) @ a)l “ R
Proof Notice that, it is easy to check
R>+4c—R 1
—_—— < —.
2c R
Then, f*R < 1 and from Lemmawe obtain that there exists X I and therefore T'(X), for T given in (T.3), is well defined.

So, taking into account that as X* is a solution of QME (I.I) then it is a fixed matrix of T', given in (I.3]), we have
X, - X*=(1 - 0)Xy+ oT(Xy) — (1 — 0)X* — 0T(X")
=l —-w)(Xy— X))+ oC(X)™" =X
=1 - o)X, — X+ oCX") ™ (X)— X)X (2.8)

Then, by applying Lemma [I] we obtain
(F*)c

X, - X< |l-o+to ]IIXO—X*II=q*(w)||Xo—X*II~

1-p*R
o w o (B)c . (B)c .
Now, taking into account that ¢*(0) = 1 and (¢*) (w) = —1 + m, as from (2.7)) it follows that m < 1,thengisa
decreasing real function. Therefore, ¢*(w) < 1 for w € (0, 1], and then || X, — X*|| <]| X, — X*|| < R.
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Next, following a mathematical inductive procedure, taking into account (2.8)), it follows that
X, = XN < g (@)™ 1 X = X*I. (2.9)

Then, the iterative sequence { X}, generated by the Krasnoselskij method (I.3) with X, as the initial guess, converges to X*.
Moreover, the sequence { X} € B(X*, R). [ |

Note that the best a priori bound of the error, see (2.9), is obtained in the case w = 1, that is, for the Successive Approximation

1= (f* 2
method. On the other hand, if (§*)?c < 1, from condition (2.7), it follows that R € { 0, # . In this case, we obtain

that the local result that we have just proved gives us a ball, called the convergence ball, for which we obtain global convergence
for the Krasnoselskij method. That is, this method converges to a solution of QME (I.1)) for any initial guess X, considered in
B(X™*, R).

We follow the idea of locating domains of global convergence for the Krasnoselskij method restricted to balls. To dot hat, we
prove a result of restricted global convergence, by using auxiliary matrices [8]]. For this, we obtain previously some technical
results.

Lemma 2. Let X € R™" a nonsingular matrix such that | X~!|| < §. Then, for each X € B(X, R), with R < 1/, there exists
(X 4+ (X = X)7!, for t € [0, 1], with [|(X + t(X — X))™!|| < fx(), where fx(t) =

1-1fR
Proof  As in Lemmall] we will apply the perturbation lemma in matrix analysis. For this, we consider
I = (O™ + (X = X)) < IX I - 1(X = X)ll <1fR < BR,

for t € [0, 1]. Therefore, as R < l/ﬁ, then there exists (X + #(X — X))~!, and
(X + 16X = X))l < fr®.

So, the lemma is proved. [ ]

From now, we will denote F(X) = X — T(X) with T, given in (I.3). So, we can rewrite the Krasnoselskij method as
X u=T,X,)=X,-—wF(X,), n>0. (2.10)
It is easy to check that the Fréchet derivative F'(X), for X € R™™ is given by
FX)Y=Y+CX 'YX !, forall Y € R™",
Next, we analyze the behavior of the iterations { X} given by the Krasnoselskij method.

Lemma 3. Let X € R”" a nonsingular matrix such that || X || < fand || F(X)|| < 7. If X
then the following items are verified:

X, € B(X,R),with R < 1/,

n—1>

(i) there exists (X,_; + #(X, — X,_)7!, fort € [0, 1], with [|(X,_; +#(X, — X,_ ) 7'Il < fr(D).
. 1

i) IFCE) < 11— =1+ ef (D2 1, = X,

(i) [1X,41 — X1l < [I1 - 0 + @fcfrD] 11X, - X|| + 0 7.

Proof To prove item (i), we consider

I — X' X,y + 01X, = X, ) < IXTHHIHX = X))+ (1= 0D)(X = X,_)Il < AR,

for t € [0, 1]. Therefore, as R < 1/ ﬁ then, by the perturbation lemma in matrix analysis, there exists (X,_; + #(X, — X ”_1))‘1 s
and

X,y + 11X, = X, )7 < fR(D).
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Next, to prove (ii), we consider
oF(X,) = oF(X,_))+o(F(X,) - F(X,_))

X,

n

- —(Xn—Xn_1)+a)/F’(Z)dZ

X,

n—1

1
= a)/(F’(Xn_1 +1(X, - X,_)) — lId)(Xn—Xn_l)dt,
w
0

however, 1
(F' (X, +t(X,— X,_)) — “Id)X, - X, )=

(1- é)(X,l - X, )+CX,_ | +t(X,— X, ) "X, = X,_ )X, +t(X, - X,_ )"
Now, taking into account the previous expressions and the item (i), then the item (ii) follows easily.
Finally, to prove item (iii), notice that
X, —X = X, —o(F(X,) - F(X)) - oF(X)- X
Xn
=X,-X- a)/ F'(Z2)dZ — wF(X)

X

(Id - wF'(X +1(X, — X)) (X, - X)dt — wF(X).

o~ _

On the other hand,
(Id —oF' (X +t(X,— X)))(X, — X) =
(1 - o)X, - X)—oC(X +1(X,- X)X, - X)X +1X, - X))
Then, from Lemma 2] we have
1

1 Xe1 = XII < /Illd —oF' (X +1(X, = X)X, - X dt + ol FX)|
0

1

/(I1 — @]+ wc fr®)?) di]| X, = X|| + ol FCX|
0
[11 = ol + @fc frD] I1X, = XI| + @7,

IA

what it proves (iii). [ |

Theorem 2. Let X € R™" a nonsingular matrix such that || X~'|| < f and || F(X)]|| < 7. Assume that X, € R™™ and there
exists R > 0 such that || X, — X|| < R. Then, if

~ 1
<

d 7<RU1-5 1), 2.11
R+ e and 7 (I = fefr(D) (2.11)

the iterative sequence { X, }, generated by the Krasnoselskij method (T.3)) with X, as the initial guess, converges to X * a solution
of QME (I.1). Moreover, the X,, X* € B(X, R) and satisfies

11X, — X, ll < 4@ X, — X, ,l.n=0,1,2,...,

" wd(w)"
1x* = x,0l < 299 E X ln =012,
1 - g(w)
where
G(®) =1 —w+ wcfr(1)%



6 | Hernandez-Ver6n and Romero

Proof Firstly, notice that

1 1 e
- > > f.
R R+
Therefore, R < l~ Taking into account Lemmafor t = 1, there exists X 0 ! and then X . = T,(X,) is well defined. Now, as
item (iii) in Lemma[3] we have
1X, = X1l < (11 = @] + wfefr() 1 X, = X|| + 07,
so, from (2.1T)), it follows that X, € B(X, R).
Moreover, X, is well defined and taking into account that X, X, € B(X, R), from Lemma we obtain

IO < (1= <1+ £ 1X, = Xl
Therefore
1X, = Xi 1l < d(@)|I X, — Xl

However, §(0) = 1 and §'(w) = —(1 — ¢ fx(1)?). But, from 2.11) we have that p\/? < 1 and then ¢ fg(1)> < 1. So, it follows
that § is a strictly decreasing real function. Then, §(w)) < 1, for all @ € (0, 1], and therefore || X, — X, || < [|X; — X,

Now, applying a mathematical inductive procedure, the sequence { X}, given by the Krasnoselskij method is well defined,
belongs to B(X, R) and the real sequence {|| X a+1 — X, ||} is a strictly decreasing real sequence of positive real numbers. So,
{X,} converges and, by the continuity of F and item (ii) of Lemma it follows that { X} converges to X* a solution of QME

(I.T). Moreover,
||Xm+n - Xn” < ||Xm+n - Xm+n—l “ + ot ||Xn+1 - Xn”

m—1
< Z ”Xn+j+1 - Xn+j”
Jj=0

m—1
D @) 11X, = X,

<
7=0
. 1 - g(w)"
= §(@)"———Il1X; = X,ll
=g 0 70
. 1 —g(w)"
= w§(w)" ————|IF(Xy)ll,
1 - G(w) 0
S0, it is easy to check that )
" wq(w)"
I X* = X, || £ ———IF(Xy)ll.
1 - §(w)

Firstly, notice that this results prove that there exists a solution of equation (QME) in B(X, R). Secondly, notice that if f%c < 1,
we can ensure the global convergence of the Krasnoselskij method in B(X, R) with R € | 0, % - \/Z .

On the one hand, considering X = X*, therefore admitted the existence of X*, using decomposition @) forany n > 1,
instead of item (iii) of Lemma 3] we obtain as a consequence Theorem [I]
On the other hand, taking X = X, o € R™™ we can obtain the following semilocal convergence result.

Corollary 1. Let X, € R™" a nonsingular matrix such that ||X0‘1 | < By and ||[F(X )|l < np. If

ﬁ < an < s .
0 R+ \/E 0 1 ZOR ( )

then, the iterative sequence {X,}, generated by the Krasnoselskij method (I.5) with X, as the initial guess, converges to X* a
solution of equation given in (I.I). Moreover, the sequence {X,} C B(X,, R) and satisfies

||X}'I+1 - Xn” S q()(a))”Xn - Xn_l ”’n = 09 192’ LX)

wgy(w)"

1X* = X,Il <
1_40(0))

[F(X)Il,n=0,1,2, ...,
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where 5
c ﬂo

g =1-w+ w—(l “ARE

Once a solution of equation (QME) is located by Theorem in B(X,, R), we now separate it from other possible solutions
by the following result of uniqueness of solution.

Theorem 3. Under the hypotheses of Theorem the solution X* of li is unique in B(X,), % - R).

Proof
Assume that Y* is another solution of (I.1) in B(X|, r). Thus,
X 1
0=FX")-FX" = /F’(Z)dZ = /F’(Y* +2(X* =Y )dr(X* -Y")
Y+ 0

Now, if the operator Q(X) = /01 F'(Y* + ©(X* — Y*)dr(X) is invertible, then Y* = X*. We can deduce the last from the
perturbation lemma in matrix analysis, prOvided that || Id — Q|| < 1.

Observe that |

(Id - Q)(X) = — / (~C + (X" =YX+ (X7 - Y dr.

0
Now, taking into account that

1
IId = X '(Y* +2(X* =Y < ﬁ/((l —o)r+7R)dr < 1,
0

there exists (Y* + 7(X* — Y*)~! with [|(Y* + 2(X* = Y*)7!|| < fx(1). Then, ||[Id — Q|| < ¢ fr(1)* < 1 and therefore Y* = X*.
So, the proof is complete. [ ]

2.1 | A modification of the Krasnoselskij method

Next, we propose a modification of the Krasnoselskij method to increase the size of the set of values for the parameter w. To do
that, we consider X € R”*" a nonsingular matrix such that || X~'|| < f and || F(X)|| < #. The convergence conditions on the
parameters f and 7 arise from the fact that the sequence {|| X a+1 — X, |} is strictly decreasing and that X, € B(X,R)Vn >0.

Theorem 4. Let X € R™" a nonsingular matrix such that || X~'|| < f and || F(X)]|| < 7. Assume that X, € R™™ and there
exists R > 0 such that || X, — X|| < R.If

~ 1

f < and 7 < R(1-cfr(D), (2.13)
R+ /¢
then, the iterative sequence {X,}, generated by the Krasnoselskij method (I.5) with X|, as the initial guess, converges to X* a
solution of QME (L.1)), for all w € (1, ﬁ) Moreover, the sequence { X, } C B(X, R) and satisfies
CJR

11X, — X,ll < d@)X, - X,_,ll.n=0,1,2,...,
where
§(@) = o — 1 +wcfr(1)%

Proof  Analogously to the proof of Theorem 2] we prove that the sequence { X}, given by the Krasnoselskij method is well
defined, belongs to B(X, R) and the real sequence { || X w+1 — X, |1} is a strictly decreasing real sequence of positive real numbers
when w > 1.
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We suppose that X, € B(X,R).If fR < 1 then there exists X 0 !"and then X, = T, (X,) is well defined. Moreover, taking
into account the condition on 7, given in (2.13), it follows that

1X, = XII < (11 - o] + 0fcfrD) |1 Xy - X|| + @7
< (w—1+wfcfr(l)) R+wiji < R.

Taking into account that X, € B(X, R), there exists X 1“ and then X, = T, (X,) is well defined. And, we have

1 ~
1X; = X\l = lwF(X)I < w <I1 - +ch(1)2> 1X, = Xoll < g(@)||X; — Xl

Now, since §(1) < 1 and 4 is a strictly an increasing real function, it follows that §(w)) < 1, for o € <1, ﬁ)
c
Therefore [| X, — X,1| < 1 X, — X,lI. K
Now, applying a mathematical inductive procedure, we prove that { X, } converges to X* a solution of QME (T.I). [ ]

Note that, we have established a semilocal convergence result in which we increase the value of the parameter w, from (0, 1]

to <0,; .
1+ cfr(1)?

3 | NUMERICAL EXPERIMENTS

In order to analyze numerically the application of the Krasnoselskij method (K) to approximate a solution of equation (I.T),
we consider two numerical examples related to the noisy Wiener-Hopf problem considered in (see [[10], [[11] and the references
there given). In both numerical examples, we compare the accuracy and the execution time with the Newton (NM) and the
predictor-corrector (KN) methods. The methods were implemented in Mathematica Version 10.0 in both examples.

Firstly, we take the (QME) with matrices:

1 -1 1
2 -1~ 100x100
B=- . , C= ., |er . (3.14)

100 1 -1

We show in Tablethe iterations (n) and residuals RES = || X ,2[ + BX, + C|| ¢ of the Krasnoselskij method apply to equation
(1.1) with matrices given in (3.14) for different values of the parameter @, @ = 0.3,0.6,0.8,0.9, 1. We denote by || M || the
Frobenius norm of a matrix M, which is defined as || M ||?r =trace(MTM).

TABLE 1 Iterations and residuals of the Krasnoselskij method apply to || with X, = (100 + /10004)1,y,, and stopping criteria RES < 107°.

2] n RES

0.3 89 0.117835x 1071
0.6 34 0.213112x 1010
0.8 19 0.375782 % 1010
0.9 17 0.115693 x 1010
1 23 0.185747 x 1010

Observe that, although the a priori error bound optimal is reached for w = 1, see Theorem[2] a better numerical behavior than
for the successive approximation method can appear for different values of w, in this case for @ = 0.8,0.9.

Notice that, taking T(X) = B+ CX -1 the Krasnoselskij method has a reduced operational cost. Then, as in [11], we can
think of the use of a predictor-corrector method. Thus, using the Krasnoselskij method as a predictor, we can increase the speed
of convergence using the Newton method [2] as a corrector. Notice that, the Newton method at each iteration step needs to solve
the Sylvester equation: X, ., X, + CX n‘lX ++1 = —BX,,. Then, the hybrid predictor-corrector method may have less operational
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cost than directly applying the Newton method. So, we can consider the iterative process
Given an initial guess X, € R™™,
{ X, =X,-FX,), n=0,1,...,Ny—1,
{ Yo = Xn,»
Yo =Y, —[F'Y)I'F(Y,), n>0,

to approximate a solution of equation (T.I), where F : R™"™ — R™" with F(X)=X + B+ CX~.
So, we denote by { Z,} the hybrid method:

X,n=01,...,N,—1,
Zn= n 0
Y,, n> N,.

To approximate a solution of equation (I.I)), in the following Table[2] we apply the Krasnoselskij methodd (K), the Newton
method (NM) and the predictor-corrector method (KN). Thus, we consider two and three iterations to predict with the Kras-

noselskij method and then iterate with the Newton method to increase the accuracy of the solution until the stopping criterion
RES < 107! is reached.

TABLE 2 Numerical results with X, = (100 + v/10004)I4,, and stopping criteria RES = || X? + BX, + C|| < 10~°.

n(w = 1) RESw = 1) iter(w = 0.9) RES(w = 0.9)
K 23 0.185747 x 10~ 10 17 0.115693 x 10~ 10
NM 5 0.551624 x 10~14
KN 343 0.718181 x 10~ 343 0.41076 x 10~13
KN 243 0.7158738 x 10~10 2+4 0414911 x 10°13

As we show in Table[2] the use of the hybrid method can make sense in certain occasions due to the reduction in the operational
cost.

Secondly, we apply the Krasnoselskij, the Newton and the predictor-corrector (KN) methods to the following noisy Wiener-
Hopf problem. Thus, we consider the simplest quadratic matrix equation:

X2-VX+Q=0,
and
X’+VX+Q=0,

with Q-matrix solutions I', and I'_, respectively.
In particular, we consider the following matrices:

al;y 0 -1 20%20
= = R .
g < 0 by > - © ©

We analyze the following cases for a and b:
(@ a=1,b=-1,s0I" and I"_ are both singular Q-matrices.
(b) a=2,b=-1,s0I, is asingular Q-matrix and I'_ is a non-singular Q-matrix.

We apply for each case, the Newton (NM), the Krasnoselskij and the predictor-corrector (KN) methods, to approximate
solutions of I', and I'"_, denoted by r +and I"_, respectively. In Tables we report the computational results of each experiment
in terms of iteration number denoted by n_, residuals RESS, := || fi FVT , + 0|l and the computing time in seconds z, used

until convergence to a Q-matrix such that RES, < 107! for (a) and (b). We take, X, = max, ¢;)o(£v; + /0> — 4¢;) /21y, just
like in [11] and, K, = 8 when apply the predictor-corrector method in both cases. In our implementations all iterations are run
in Mathematica 10.
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TABLE 3 Numerical results of experiment (a) under stopping criterion RE.S L < 10710,

n, RES, 1,
NM 35 0.673475x 10°1® 145
K 71 0.754063 x 10! 1.5

KN 8+4  0.108633 x 10710 2.2

TABLE 4 Numerical results of experiment (b) under stopping criterion RESS, < 10710,

n, RES, 1, k_ RES_ !
NM 27 0.294812x 107 11.5 14 0.638975x 1071 6.6
K 49 0.587327 x 10711 1.1 43 0.678975x 1011 1.
KN 843 0.520372x 10720 17 843 0.723316x10°4 12

Observe that, in all cases analyzed the method predictor-corrector is more accurate than the Newton method. The number of
iterations that the Newton method uses is considerably reduced by the predictor-corrector method. Moreover, the Krasnoselskij
and the predictor-corrector methods require the use of smaller execution time than the Newton method. That is what indicates

the best computational efficiency of these methods compared to the Newton method.

4 | CONCLUSIONS

From a fixed-point-type transformation of quadratic matrix equation, we consider the stable iterative scheme of Krasnoselskij.
Using this scheme we carried out a qualitative study of equation given in (I.I). We obtain domains of existence of solutions
that allow us to locate and separate them. The numerical examples confirm that varying the parameter w that appear in the
Krasnoselskij method, we can improve numerically the successive approximation method. Even, the predictor-corrector iterative
scheme with the Krasnoselskij method as a predictor and the Newton method as corrector method, respectively, it can improves
the numerical application of the Newton method when approximating a solution of equation given in (I.T).
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