
Spatio-Temporal Discretization Uncertainty of Distributed1

Hydrological Models2

Siavash P. Markhali1, Annie Poulin1, and Marie-Amélie Boucher23
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Abstract11

Quantifying the uncertainty linked to the degree to which the spatio-temporal variability of the12

catchment descriptors (CDs), and consequently calibration parameters (CPs), represented in the13

distributed hydrology models and its impacts on the simulation of flooding events is the main ob-14

jective of this paper. Here, we introduce a methodology based on ensemble approach principles to15

characterize the uncertainties of spatio-temporal variations. We use two distributed hydrological16

models (WaSiM and Hydrotel) and six catchments with different sizes and characteristics, located17

in southern Quebec, to address this objective. We calibrate the models across four spatial (100,18

250, 500, 1000 m2) and two temporal (3 hours and 24 hours) resolutions. Afterwards, all combi-19

nations of CDs-CPs pairs are fed to the hydrological models to create an ensemble of simulations20

for characterizing the uncertainty related to the spatial resolution of the modeling, for each catch-21

ment. The catchments are further grouped into large (> 1000 km2), medium (between 500 and22

1000 km2) and small (< 500 km2) to examine multiple hypotheses. The ensemble approach shows23

a significant degree of uncertainty (over 100% error for estimation of extreme streamflow) linked24

to the spatial discretization of the modeling. Regarding the role of catchment descriptors, results25

show that first, there is no meaningful link between the uncertainty of the spatial discretization and26

catchment size, as spatio-temporal discretization uncertainty can be seen across different catchment27

sizes. Second, the temporal scale plays only a minor role in determining the uncertainty related to28

spatial discretization. Third, the more physically representative a model is, the more sensitive it29

is to changes in spatial resolution. Finally, the uncertainty related to model parameters is larger30

than that of catchment descriptors for most of the catchments. Yet, there are exceptions for which31

a change in spatio-temporal resolution can alter the distribution of state and flux variables, change32

the hydrologic response of the catchments, and cause large uncertainties.33

1 Introduction34

Understanding the spatio-temporal scale of the representation of hydrological processes, and con-35

fronting the issue of scale mismatch within inter-connected hydrological units are two major chal-36

lenges in hydrological modeling (Beven, 2011; Blöschl et al., 2019; Blöschl & Sivapalan, 1995; Fatichi37

et al., 2016). To better understand the complexity (heterogeneity) in hydrological systems, which38

is present under continuous internal change (e.g., land use change) and boundary conditions (e.g.,39

changing climate), distributed hydrological models have been used across different spatio-temporal40

scales (Addor et al., 2014; Blöschl, Reszler, & Komma, 2008; Famiglietti & Wood, 1995; Kumar,41

Samaniego, & Attinger, 2010, 2013; Martel, Brissette, & Poulin, 2020; Merz & Blöschl, 2004; Rakovec42

et al., 2016; Thober et al., 2019; Wanders & Wada, 2015). However, the models themselves suffer43
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from inadequate simulation of hydrological processes due to a lack of scale-relevant theories in wa-44

tershed hydrology (Blöschl & Sivapalan, 1995; Dooge, 1986; Peters-Lidard et al., 2017; Samaniego45

et al., 2017). In fact, changes in the spatio-temporal discretization of the physiographical character-46

istics of a catchment can alter the dynamic interactions between state variables and fluxes, resulting47

in different model responses (e.g., Cao et al., 2020; Krebs, Kokkonen, Valtanen, Setälä, & Koivusalo,48

2014). Therefore, part of the modeling uncertainty is due to the extent to which the physiographic49

characteristics of the catchment are described, more or less finely, by the model. Such uncertainty is50

normally ignored in practice, and is the focus of the present research. Specifically, we aim to quantify51

the relative roles of the spatial resolution of the physiographic characteristics, as well as that of the52

model’s parameters obtained by calibrating the model using different spatio-temporal representa-53

tions of catchments. To this end, two different distributed hydrological models will be used, as well54

as six catchments, all grouped into an ensemble-based approach (Krzysztofowicz, 2001), involving55

16 simulations per model and per catchment.56

Unlike to lumped models, which treat the whole catchment as a unique homogeneous area, dis-57

tributed models incorporate the spatial heterogeneity of the catchments. Depending on the level of58

discretization, distributed models can be classified into two broad categories: semi-distributed and59

fully distributed (Clark et al., 2017; Clark et al., 2015). In semi-distributed models, of which SWAT60

(Arnold, Srinivasan, Muttiah, & Williams, 1998) and VIC (Liang, Lettenmaier, Wood, & Burges,61

1994) are two well-known examples, the level of spatial discretization is limited to defining the num-62

ber of Hydrological Response Units (HRU). On the other hand, models such as WaSiM (Schulla &63

Jasper, 2007), MIKE-SHE (Refsgaard, 1995) and HYDRUS-3D (Šimunek, van Genuchten, & Šejna,64

2008) are considered as fully distributed, as instead, they discretize the catchment using grids, and65

the computation of the fluxes and state variables is performed for each grid cell. Distributed models66

can also be viewed based on a physical or conceptual representation of the processes. Physically67

based models attempt to solve the conservation of mass, energy and momentum equations to repre-68

sent hydrological processes at micro-scale control volumes (Fatichi et al., 2016; Hrachowitz & Clark,69

2017). MIKE-SHE (Refsgaard, 1995) and HYDRUS-3D (Šimunek, van Genuchten, & Šejna, 2008)70

are typical examples. Conceptual models represent processes more simply, through macro-scale con-71

ceptualization(Clark et al., 2017; Devia, Ganasri, & Dwarakish, 2015). The distributed version of72

the HBV model (Bergström et al., 1995), mHM (Samaniego, Kumar, & Attinger, 2010) as well as73

CEQUEAU (St-Hilaire et al., 2015) can be placed in this category.74

In flood forecasting, analyses of hydrological processes, or in climate change impact assessment75

studies, the underlying assumption for implementing a specific model over different spatio-temporal76

resolutions, is usually that the parameters are scale-invariant, ensuring the production of similar77

states and fluxes regardless of the spatio-temporal resolution (Samaniego et al., 2017). However,78

such assumption is questionable in the absence of scale-relevant theories for natural catchments, as79
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the heterogeneity of the system dominates the consistency needed across different catchments to de-80

velop a general theory (Hrachowitz et al., 2013; Nearing et al., 2020). In fact, different hydrological81

processes that take place under different spatio-temporal scales at different catchments highlight the82

“uniqueness of the place” (Beven, 2000), as opposed to the generality of hydrological response. The83

problem is that the lack of such scale-relevant theories directly affects modeling practices. Model84

parameters, for example, typically represent hydrological processes that are either complex, or take85

place on a very small scale, or that are not yet well understood (Barrios & Francés, 2012; Bryn-86

jarsdottir & OHagan, 2014; Pokhrel & Gupta, 2010). In practice, for most cases, model parameters87

lack physical reality, as very often, there are no tangible links between catchment attributes and88

parameters(Beven, 1995). Furthermore, the dearth of knowledge regarding upscaling theories and89

their application in hydrological modeling exacerbates the problem (Kitanidis & VoMvoris, 1983;90

Neuman, 1990). Therefore, the parameters cannot be considered scale-invariant and the conditions91

of flux-matching across diverse spatio-temporal scales cannot be satisfied with current knowledge92

(Wood, Sivapalan, Beven, & Band, 1988).93

The randomness of hydrological processes, attributable to a lack of knowledge related to the94

complexity of the system, can be addressed by replacing the deterministic results of modeling with95

an ensemble of simulations using probabilistic or deterministic approaches (Beven, 2006; Dooge,96

1986; Nearing & Gupta, 2015; Nearing, Gupta, & Crow, 2013; Nearing et al., 2020). We suggest97

that the principles of ensemble simulations can also be useful in addressing the uncertainty linked98

to the spatio-temporal variability of the physical descriptors of a catchment. As such, an ensemble99

of simulations derived from variations of CDs-CPs resolutions can be constructed for each catch-100

ment to quantify the uncertainties corresponding to the spatio-temporal resolution of the modeling.101

While multiple studies focus on accounting for and quantifying different sources of uncertainties102

in hydrological modeling, some include input data uncertainty, structural uncertainty, parametric103

uncertainties, or a combination of the preceding (e.g., Butts, Payne, Kristensen, & Madsen, 2004;104

Craig et al., 2020; Dixon & Earls, 2012; Euser et al., 2013; Faramarzi et al., 2013; Joseph, Ghosh,105

Pathak, & Sahai, 2018; Poulin, Brissette, Leconte, Arsenault, & Malo, 2011; Refsgaard, Van der106

Sluijs, Brown, & Van der Keur, 2006; Tarek, Brissette, & Arsenault, 2020a; Thiboult, Anctil, &107

Boucher, 2016; Zhao et al., 2018), less attention has been directed towards the uncertainty related108

to spatio-temporal variability and how it impacts modeling. This may be attributable to a belief109

that such uncertainty has but trivial impacts on the modeling. However, among the limited research110

works that have been conducted in this context, Tegegne, Kim, Seo, and Kim (2019) demonstrated111

that changing the sub-basin spatial scale in the SWAT model has a small impact on the entire flow112

simulations, but that a substantial sensitivity could be observed when reproducing more extreme113

flow quantiles. Their study, however, was limited to varying the number of HRUs, as opposed to114

changing the spatio-temporal discretization of the model’s parameters. Moreover, no mechanisms115

were considered to account for the uncertainties related to spatio-temporal variability of the physical116
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descriptors of a catchment.117

Varying the spatial resolution used to represent land use in the model might also lead to a range118

of simulations, and therefore help to quantify the corresponding uncertainty. Distributed models119

have widely been used to account for land use change across the globe (e.g., Li et al., 2019; Singh120

et al., 2015; Tavangar, Moradi, Massah Bavani, & Gholamalifard, 2019; Yang, Long, & Bai, 2019).121

In a series of papers (Bormann, Breuer, Gräff, Huisman, & Croke, 2009; Breuer et al., 2009; Huisman122

et al., 2009; Viney et al., 2009) under the project on ‘Assessing the impact of land use change on123

hydrology by ensemble modeling (LUCHEM)’, an ensemble of 10 hydrological models were used,124

with a range of structural complexity. More recently, Chen et al. (2019) investigated parameter125

uncertainty stemming from land use change across different time-scales. They used two distributed126

models and three land use scenarios to simulate streamflow on a catchment located in China. Their127

results suggest that land use change does not have substantial effects on runoff simulations, but128

a large range of uncertainty can be observed for extreme streamflow values. It is worth noting129

that these research works focus on land use change scenarios, while the impact of change of spatio-130

temporal resolution on the modeling and the uncertainties are yet to be investigated.131

The impact of spatial discretization on flood events has been investigated with a focus on urban132

catchments (e.g., Cao et al., 2020; Krebs, Kokkonen, Valtanen, Setälä, & Koivusalo, 2014; Zhou133

et al., 2017). It was found that changes in resolution of the topographic information provided by134

digital elevation models (DEM), for instance, could reorient the flow direction and flow accumu-135

lation, and alter surface and channel routing (Cao, Ni, Qi, & Liu, 2020). Furthermore, altering136

soil textures modifies the imperviousness, the Manning coefficient, the soil water content, etc., in137

addition to reshaping the final response in terms of both runoff generation and routing processes138

(Cao et al., 2020). Given the high degree of imperviousness and the complexity of surfaces in urban139

catchments, changes in spatial resolution could affect the results of flood simulations, which may140

leave such catchments more vulnerable to flooding events (Zhou et al., 2017). Furthermore, changes141

in model response due to the degree to which the spatial heterogeneity of the catchment is repre-142

sented might potentially affect the simulation in terms of peak timing and magnitude (Ichiba et al.,143

2018). However, there is still no consensus on the impacts of refining the spatial resolution, as many144

studies show contradictory results, i.e., overestimation or underestimation of extreme flows (Warsta145

et al., 2017).146

The impacts of the choice of a particular level of spatio-temporal discretization on streamflow147

simulation in natural catchments need to be further investigated. The respective roles of catchment148

area and characteristics, the time step of the simulation, as well as the model structure and parame-149

ters, are potentially important determinants of a hydrological model’s response, and this paper aims150

at investigating their roles. More specifically, we propose to test the following hypotheses:151
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i Larger catchments are susceptible to larger uncertainties in the simulation of streamflow, when152

varying the spatial resolution of their physiographic characteristics.153

ii Finer time steps introduce a higher degree of variability in the simulation, leading to increased154

uncertainty in streamflow simulation.155

iii The more finely distributed and physically realistic a model is, the more sensitive to changes in156

spatial resolution it is.157

iv The uncertainty related to model parameters is larger than that of catchments descriptors (DEM158

resolution, land use, soil texture).159

These hypotheses will be examined through multiple experiments performed using two distributed160

models and six catchments of various sizes.The experiments will result in an ensemble of simulations161

to be investigated per catchment and per model. The structure of the paper is as follows. Section162

2 provides details about the study area and the characteristics of the selected catchments, a brief163

description of the models used for simulations and the details of the experimental design. Results are164

presented in section 3 and discussed in section 4, taking one specific catchment as a representative165

example. Finally, concluding remarks and perspectives for future work are presented in section 5.166

2 Method and Data167

2.1 Study Area168

Six catchments ranging from 100 km2 to more than 2500 km2 located in Quebec, Canada, are selected169

for this study (see Figure 1). The selection procedure is based on the following criteria: First, a170

broad range of catchment sizes should be covered to analyze the sensitivity of hydrological responses171

to the catchment size. Second, catchments should not belong to the same hydrological region, but172

rather, should be distributed across the territory (here the province of Quebec). Third, at least 10173

years of streamflow data for 24- and 3- hour time steps need to be available to fulfill the calibration174

and validation procedures. Table 1 describes the main characteristics of the catchments used in this175

study, which are identified in Figure 1. The catchments are sorted in descending order based on176

their area.177

2.2 Hydrometeorological data178

The present study employs meteorological data (i.e. precipitation and temperature) extracted from179

ERA5 (ECMWF ReAnalysis5) gridded dataset to force the hydrological models for the historical180
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time-period. Gridded reanalyses datasets are considered as an alternative to observed historical me-181

teorological data. Using such datasets allow to solve major flaws of observational datasets, including182

missing data (particularly for higher resolutions), measurement errors, uneven distributions, etc.183

(Tarek, Brissette, & Arsenault, 2020b). The European Centre for Medium-Range Weather Fore-184

casts (ECMWF) proposed multiple reanalysis datasets (ERA-Inerim, ERA5, ERA-Land), which are185

widely used by hydro-climate modelers (Belmonte Rivas & Stoffelen, 2019; Wang, Graham, Wang,186

Gerland, & Granskog, 2019). ERA5 is the fifth generation of ECMWF reanalyses of global climate187

products. The spatial resolution of ERA5 is 31km and the temporal resolution is hourly. Currently,188

the dataset covers the period from 1979 to today, and is expected to be updated to 1950 in the near189

future.190

Observed streamflow series are obtained from the Direction de l’Expertise Hydrique (DEH) of191

the Ministère de l’Environnement et de la Lutte contre les changements climatiques (MELCCC) for192

the 2000-2017 time period, with daily and 3-hour time steps.193

2.3 Hydrological models194

2.3.1 WaSiM195

The Water balance Simulation Model (WaSiM; Schulla & Jasper, 2007) is a process-based model196

that operates on a raster (grid) system. Its submodels run each grid cell of a catchment for each197

time step, providing the opportunity to use parallel computation algorithms based on the OpenMP198

standard. The model represents hydrological processes through its submodel structure, in which199

several options for interpolation, evapotranspiration, snow accumulation and melt, interception,200

glacier model, silting-up, unsaturated zone including heat transfer, saturated zone, surface discharge201

routing, and discharge routing including lakes and reservoirs are available. The distinguishable202

feature of WaSiM is its provision of options to calculate infiltration and to represent water in the203

soil layers, with the calculation being more detailed than for most surface hydrology models. Two204

methods can be used namely, the modified conceptual Topmodel approach, and Richard’s Equations205

approach (or unsaturated zone model). Since the second approach is more physically-based, we206

selected this version for simulations. The 1-D Richards equation, which represents fluxes in the207

unsaturated zone, is represented by Equation 1 (Schulla & Jasper, 2007):208

∂Θ

∂t
=
∂q

∂z
=

∂

∂z
(−k(Θ)

∂Ψ(Θ)

∂z
) (1)

where Θ(m3/m3) is the water content, t(seconds) is time, k(m/s) is the hydraulic conductivity,209

Ψ(m) is the hydraulic head, q(m/s) is the flux, and z(m) is the depth of the soil column. WaSiM210

solves Equation 1 for multiple soil layers (the default is 30 layers for each type) of a grid cell using211
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the finite difference method.212

The unsaturated zone model controls multiple hydrologic variables such as infiltration, exfiltra-213

tion, interflow, baseflow, real evapotranspiration, groundwater recharge, etc. Given the physical214

approach adopted to represent the flux of water in soil, WaSiM leans towards physically-based mod-215

els. However, considering the simplified 1-D version of the continuity equation (instead of 3-D), and216

the existence of other empirical elements in the submodels (e.g., potential evapotranspiration) hin-217

ders the classification of the model among full physically-based distributed models. Table 2 specifies218

the choices that were made for each submodel of WaSim and for Hydrotel, which are described in219

the next sub section.220

2.3.2 Hydrotel221

Hydrotel is an HRU-based distributed model that is widely used operationally for flood forecasting222

by the DEH (e.g., Lucas-Picher et al., 2020; Martel, Brissette, & Poulin, 2020; Turcotte, Morse,223

& Pelchat, 2020). The model adopts a mixture of physical, conceptual and empirical relationships224

to represent hydrological processes. Like WaSiM, it provides multiple options for calculating the225

hydrological processes of a catchment. The main particularity of Hydrotel is its compatibility with226

GIS and remotely sensed data (Fortin et al., 2001). Therefore, the model is capable of representing227

the spatial variability and the topography of catchments through a digital elevation model (DEM),228

soil texture maps and land use data through its components.229

The model uses BV3C (Bilan Vertical 3 Couche) for soil modeling, which is specifically developed230

for Hydrotel. In this approach, the soil column is divided into three layers: The first layer is a surface231

layer that controls infiltration and is affected by surface evaporation; the second layer is associated232

with interflow, and the third one controls the baseflow. For the whole soil column, a moisture233

accounting equation is designed to represent macroprocesses of fluxes (Fortin et al., 2001). As a234

result, from a model classification perspective, the model leans towards the group of conceptual,235

distributed models, even though Hydrotel comprises certain physically-based elements related to236

surface and channel routing. Table 2 shows the submodels of Hydrotel used in this study for237

simulations.238

It should be noted that we developed two types of configurations for the simulations with Hy-239

drotel, in order to allow the comparisons between a grid-based model (i.e., WaSiM) and an HRU240

based model (i.e., Hydrotel). In the first configuration (referred to as Hydrotel1 hereafter), we keep241

the number of HRUs constant, while the spatial resolution varies. In the second configuration, we242

adjust the number of HRUs to match the change in resolution. We manually set the number of243

HRUs equal to the number of subbasins, which are automatically created for WaSiM based on the244

spatial resolution of CDs. This configuration is referred to as Hydrotel2 hereafter.245
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2.4 Experimental plan246

Figure 2 delineates the different steps of our methodology and the experiments designed to answer247

the question posed in the introduction. The first column of the figure shows the “Data Domain”,248

comprised of forcings (precipitation-temperature), calibration data (observed streamflow), and grid-249

ded Catchment Descriptors (CDs- e.g., DEM, land use, soil texture). For CDs, the highest available250

resolution is 100 m2 and we used resampling and interpolation methods to upscale the grids to251

250 m2, 500 m2, and 1000 m2 resolutions. The second column, which is referred as “time domain”252

shows the time step of forcing and calibration data. For this project, the subdaily time step is equal253

to 3 hours.254

Regarding the third column titled “Calibration”, as per usual, we split the time-series into255

calibration and validation periods. The duration of both periods are equal unless there exists a256

large part of missing data in between them that could reduce the accuracy of the calibration. It is257

worth mentioning that the time-series of data related to winter streamflow in 3-hour time step is258

not available, and as a result, we removed this part of the year from the analyses.259

We used the Dynamically Dimensioned Search (DDS; Tolson & Shoemaker, 2007) algorithm

to calibrate the hydrology models. Furthermore, the Kling-Gupta Efficiency (KGE; Gupta, Kling,

Yilmaz, & Martinez, 2009) is adopted as the objective function for optimizations. The KGE is

computed using Equation 2:

KGE =

√
(r − 1)2 + (

σsim
σobs

− 1)2 + (
µsim

µobs
− 1)2 (2)

where r is the linear correlation between observations and simulations, σsim is the standard260

deviation in observations, σobs is the standard deviation in simulations, µsim is the simulation261

mean, and µobs is the observation mean.262

When the distributed models are fed and calibrated against streamflow at the outlet of the catch-263

ment, several calibration parameter sets are obtained according to the spatio-temporal discretization264

of the input data (forth and fifth columns titled “Parameter Resolution” and “CD Resolution”). In265

the next step, all combinations of CPs-CDs are used to force both hydrology models for simulations.266

With n = 4 different resolution for each calibration, an ensemble of n2 = 16 simulations is obtained267

for each model (i.e. WaSiM, Hydrotel1, and Hydrotel2).268

To explore the uncertainty due to the spatial discretization, we first separate the catchments269

based on their surface areas to investigate the possible relations between discretization uncertainty270

and catchment size. Catchments are separated into three categories: larger than 1000 m2 (here-271

after “large”), between 500 m2 and 1000 m2 (hereafter “medium”), and less than 500 m2 (hereafter272

“small”). As shown in Table 1, each category comprises two catchments. Second, we compare the273

efficiency of simulations in calibration and validation across different spatio-temporal resolutions and274
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explore the sensitivity of the efficiency of simulations to the changes in the CPs’ and CDs’ resolution.275

Third, we apply extreme value theory (Coles, Bawa, Trenner, & Dorazio, 2001) to simulate flood276

events with different return periods by fitting the Log-Pearson distribution to the annual flow maxi-277

mas. We calculate summer-fall floods with 5, 10, 20, and 50 years return periods for each simulation278

and calculate the relative error in flood simulations according to Equation 3:279

eT,ij =
QTij −QTobs

QTobs
(3)

where e is the relative error of simulations, i is the CP resolution, j is the CD resolution, QT is280

the magnitude of a flood event with return period T , and obs represents the observation. Given the281

16 possible combinations of simulations, a range of relative error will be obtained from Equation 3282

for a specific return period, which can further be separated into uncertainties corresponding to CPs283

and CDs according to Equations 4 and 5:284

MDECD
T,i = |max(eT,ii, eT,ij , ..., eT,in)−min(eT,ii, eT,ij , ..., eT,in)| (4)

MDECP
T,j = |max(eT,ij , eT,jj , ..., eT,nj)−min(eT,ij , eT,jj , ..., eT,nj)| (5)

where MDECD
T,i is the Maximum Difference of Errors when the resolution of CPs is constant285

and MDECP
T,j is the Maximum Difference of Errors when the resolution of CDs is constant, for a286

return period T. Following this approach, we can investigate the dominant source of uncertainty287

(i.e., CDs or CPs) in the system. Also, this can potentially help understand the possibility of using288

the combination of lower resolution CPs and higher resolution CDs to reduce the computational289

demand and timing, while we maintain a good level of detail in the simulations.290

3 Results291

This section is structured as follows: in section 3.1, mean annual hydrographs of simulations are292

presented. Section 3.2 gives the results related to the model efficiency (KGE of simulation) and293

corresponding uncertainties. Section 3.3 provides analyses regarding the uncertainties of extreme294

flows. Finally, section 3.4 demonstrates the results of analyses carried out on the separation of295

uncertainties of extreme flows into uncertainties of CDs and CPs.296
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3.1 Annual Hydrographs297

Figures 3 to 5 display the mean annual cycle of simulated and observed streamflows for 3- and298

24-hour time steps. As discussed in section 2.4, for each catchment, 16 simulations are available,299

which is the combination of 4 sets of CP and 4 CDs resolutions. The figures show the entire period300

of calibration and validation. Furthermore, winter streamflow has been removed for the 3-hour301

time step due to a lack of observation data. The results are presented according to the catchment302

area: the top row shows larger catchments (> 1000 km2) whereas the bottom row shows smaller303

catchments (< 500 km2). In Figure 3, WaSiM is used to simulate streamflow. The uncertainty304

bounds in the figures demonstrate the sensitivity of the model to variations of the spatial resolution.305

Such uncertainty can be found in most of the cases, regardless of the catchment size and time step306

(3 hours or 24 hours). The Croche, Aux Brochets, and Boyer catchments, which show notable307

uncertainties, belong to the groups of large, medium and small size catchments, respectively. Thus,308

no clear link between the size of the catchment and the degree of uncertainty can be found in309

this study. By contrast, the impact of the time step on the uncertainty can be observed for the310

catchments mentioned above, as the simulations with a 3-hour time step show wider uncertainty311

bounds.312

Figure 4 shows the Hydrotel simulations, when the number of HRUs are kept constant (Hydrotel1,313

see section 2.4). Compared to the WaSiM simulations, the model shows less sensitivity to a changing314

spatial resolution. The only exception is the Aux Pommes catchment, in which a large disparity315

between simulations can be observed. Furthermore, the uncertainty bound is visible for the Croche316

catchments. Regarding the impact of time steps, unlike WaSiM, no systematic pattern emerged.317

Figure 5 shows the Hydrotel2 simulations, when the number of HRUs has changed (see section318

2.4). In general, a slight widening of the uncertainty bounds can be observed, manifesting a higher319

sensitivity of the Hydrotel2 set-up to changes in spatial resolution as compared to the Hydrotel1320

simulations.321

3.2 General performance of the simulations322

Figures 6 to 8 illustrate the performance of the simulations through calibration and validation periods323

for six catchments, according to the Kling Gupta criterion. Here, we split the uncertainty into two324

sources: a primary source, which is caused by direct changes to the Catchment Descriptors (CD325

resolution); and a secondary source, which is caused by any change in the Calibration Parameters326

(CP). However, the latter is itself caused by changing the resolution of CDs. We assign a marker and327

a color to each simulation. The former represents the resolution of CDs and the latter represents328

the resolution of CPs.329
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Figure 6 demonstrates the performance of the simulations by WaSiM. Although the number of330

optimization trials is limited (150) due to the intensive computational demand of the model, the331

efficiency is high (> 0.8) for most cases. Furthermore, the model shows a robust performance for332

both the validation and calibration periods. It is notable that, except for the Châteauguay and333

Chaudière catchments, the spread in the distribution of KGE values is visible, as a result of changes334

in resolution. In addition, no systematic pattern regarding the relationship between catchment335

size and uncertainty can be identified. Interestingly, the maximum spread can be seen in Boyer336

catchment, which is small (191 km2). In terms of temporal resolution, for most of catchments, the337

simulations with a 3 hour time step display a slightly higher dispersion than those with a 24-hour338

time step.339

Figures 7 and 8 show the KGE of simulations by the Hydrotel1 and Hydrotel2 configurations,340

where 500 optimization trials have been used for each case. In general, the efficiency of simulations341

with Hydrotel is lower than with WaSiM (> 0.7), even though the number of optimization trials342

for Hydrotel exceeds those of WaSiM. Nonetheless, the models demonstrate a robust performance343

for the calibration and validation periods. While the spread of the KGE for Hydrotel1 tends to be344

smaller for WaSiM, there are cases such as Croche and Boyer catchments with a 3-hour time step345

with a larger spread. Furthermore, the Aux Pommes catchment depicts a large dispersion in the346

spread of the simulations. Figures 7 and 8 reveal that a major drop in the performance often occurs347

when the highest resolution (100 m2) of CP (or CD) is combined with the lower resolution of CD348

(or CP, i.e. 100, 250, 500, 1000 m2). Remarkably, such a pattern holds for the WaSiM simulation349

of the Boyer catchment with a 3-hour time step in Figure 6, where a major decline in KGE is seen350

in simulations (blue). This highlights the issue of compatibility between the resolution at which351

parameters are calibrated and the resolution at which the model is simulated. Comparing Figures 8352

and 7, it can be seen that the spread of the simulations is higher for Hydrotel2 than for Hydrotel1.353

This is an expected outcome given the scheme used for Hydrotel2, in which the numbers of HRUs354

are changed in accordance with the resolution of CDs .355

Looking at Figures 6 to 8, no systematic pattern can be detected in terms of the impact of356

uncertainties corresponding to CDs or CPs. In some cases, the CDs are dominant (the markers357

grouped together), while in others, CPs are dominant (colors grouped together) and for the rest of358

the cases there is no clear pattern. The figures, however, reveal that the best performance is not359

necessarily correlated with the highest possible resolutions of CDs and CPs. Indeed, the combina-360

tions of the lowest resolutions (P10 or D10), which are shown by black colors and asterisk shape361

markers, are among the top performing simulations. This is important for practical applications, as362

using a combination of lower resolution CDs for calibration and high resolution CDs for simulation363

could substantially reduce the computational costs while maintaining the detail of simulations. The364

computational time of a 1-year single execution by WaSiM is shown in Figure 9. In this figure, we365
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use a random sampling method to produce 100 parameter sets within the boundary of parameters366

and run WaSiM for the Chaudière catchment. Since WaSiM is a gridded physically-based model,367

the time and computational power that could be saved using lower resolutions is noticeable. This368

might not be as significant for more conceptually-based distributed models. It is worth noting that369

the distribution of the run time is due to the variations of the parameters of the unsaturated zone370

model that controls runoff, interflow and baseflow.371

3.3 Uncertainty of extreme streamflows372

Figures 10 to 12 show the relative error when the models are used to simulate floods with 5-, 10-373

, 20-, and 50-year return periods. We fitted the Log-Pearson distribution to the annual maxima374

of the simulated and observed streamflows for the 2000-2017 period and extracted the flood events375

corresponding to the return periods mentioned above. The spread of the boxplots show the difference376

in relative error (Equations 3) of all simulations (i.e., for the ensemble of 16, which is combination of377

CDs and CPs in each case) generated by changes in spatial resolution. Given the nature of extreme378

events, which comprise streamflows with large magnitudes, the noticeable spread of simulations379

shown in these figures highlights the importance of spatial discretization for flood modeling. Figure380

10 demonstrates the relative error of extreme events simulated by WaSiM. In agreement with the381

previous observations, a spread can be detected across different catchment sizes, (i.e. Croche, Aux382

Brochets, Aux Pommes) and a systematic relationship between extreme flow and catchment size383

cannot be identified. Moreover, there is no significant relationship between the spread and the time384

step of the simulations.385

Figures 11 and 12 show the relative error of flood simulations produced by the Hydrotel1 and386

Hydrotel2 configurations. The response of Hydrotel1 to extreme flow is similar to other figures (i.e.387

annual hydrographs and KGE) discussed earlier. While the magnitude of error is higher as compared388

to WaSiM, the model shows a smaller spread of relative errors. Nonetheless, the spread of relative389

error is visible across different catchment sizes (Châteauguay, Aux Brochets, and Aux Pommes),390

which refutes the possibility of a correlation between the catchment size and the uncertainty of391

extreme flow. However, the time step chosen for the simulation is important, as the width of the392

boxplots corresponding to the 3-hour time step is larger than for the 24-hour time step. Simulations393

with Hydrotel2 exhibit a noticeably larger uncertainty for extreme streamflows as compared to394

Hydrotel1, particularly for the Châteauguay and Aux Brochets catchments. This is in line with the395

earlier observations discussed in Figures 7 and 8, where the uncertainties corresponding to Hydrotel2396

are higher than for Hydrotel1 due to the change in the numbers of HRUs for Hydrotel2. Finally,397

considering Figures 10 to 12, the return period does not appear to influence the uncertainty of398

the simulations. Indeed, the spread of the simulations for different return periods is similar, per399

catchment.400
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3.4 Analyzing the uncertainty of extreme streamflows401

Figures 13 to 15 illustrate a separation of the total uncertainty for extreme streamflows into contri-402

butions from CDs and CPs. The separation procedure is carried out following section 2.4. In these403

figures, RN represents the resolution of simulations and QTN represents the flood return period.404

The vertical and horizontal axes are the Maximum Difference of relative Errors (MDE) of CDs and405

CPs respectively, as defined in Equations 4 and 5.406

Figure 13 depicts the results of simulations with WaSiM. For most catchments, the contribution407

of CPs to the total uncertainty is larger than that of CDs. For instance, the MDE of CPs in408

Châteauguay is between 0.1 to 0.2, while the MDE of CDs is around zero. The same pattern can be409

seen for Croche, Chaudière, Aux Pommes (3 hour), and Boyer (3 hour) catchments. This, however,410

is not the case for all the catchments. For the Aux Brochets (3 and 24 hour) and Aux Pommes411

(24 hour) catchments the MDE corresponding to CDs is equal to or larger than that of CPs. The412

dominance of MDE of CDs is evident, particularly for Aux Brochets (3 hour). Interestingly, the Aux413

Brochets (24 hours and 3 hours) and Aux Pommes (24 hour) catchments demonstrate the highest414

range of uncertainty among all catchments. This highlights the importance of accounting for the415

contribution of CDs to the total uncertainty of extreme streamflow simulations when dealing with416

catchments that are sensitive to changes in resolution.417

Figures 14 and 15 display the results of simulations with Hydrotel. Figure 14 illustrates the418

decomposition of uncertainty for extreme streamflows simulated by Hydrotel1. The magnitude of419

MDE for both CDs and CPs as compared to WaSiM is limited. Likewise, the MDE of CPs is larger420

in most cases, except for the Aux Brochets catchment with a 3-hour time step and, the Aux Pommes421

catchment. In general, Hydrotel2 simulations show larger MDEs than Hydrotel1 simulations. Also,422

the number of cases in which the dominant source of uncertainty is CDs is increased (compared to423

WaSiM) as the Châteauguay and Aux Brochets catchments show larger MDEs across the vertical424

axis (Note that the MDEs of CDs calculated for QT50 for Aux Brochets-3 hour are larger than425

1, and have been removed for the sake of consistency in comparisons). Looking at Figure 12, the426

range of uncertainties corresponding to these two catchments is substantially larger than for other427

catchments, in which the dominant source of uncertainty is CPs.428

4 Discussion429

As discussed in section 3.4, the dominant cause of uncertainty in the simulation of extreme streamflow430

relates to CPs resolution for most of the catchments. There are exceptions, in which the dominant431

source of uncertainty in the simulation of those extreme values can be attributed to changes in the432

resolution of CDs. As shown in Figures 12 to 15, catchments such as Aux Brochets, Aux Pommes,433
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and Châteauguay, are among these cases. From this list, the Aux Brochets (3-hour) catchment434

demonstrates the highest level of dominance of CDs, regardless of the model or configuration used435

for simulations. Figure 16 shows the distribution of monthly flow maxima for the Aux Brochets436

(3-hour) catchment simulated by WaSiM. Here, we fitted a Generalized Extreme Values distribution437

to the monthly maxima of simulated and observed streamflows. The summer months (June-July-438

August) were selected for the figure, to minimize the effects of missing data on the analyses. For439

each subplot, the resolution of CDs was kept constant while the resolutions of parameters vary. By440

coarsening the resolution of CDs, a noticeable change in the shape of the cumulative distribution441

function can be observed.442

To explore the reason for the observed sensitivity, we used simulations from WaSiM, as this model443

offers further insights regarding the changes in state variables and fluxes across the catchment. Figure444

17 shows the distribution of average groundwater levels across the catchment. In each column, the445

resolution of CPs is constant, while the resolution of CDs is changing. By coarsening the resolution,446

a major increase of ground water level near the outlet of the catchment (located in the north-447

western part) can be observed. For instance, the distribution of groundwater across the catchment448

in subplots a and e is similar and it changes for subplots i and m. This change in the distribution449

of groundwater across the catchment can also be seen for other CP resolutions (e.g., b,f ,j,n, etc.).450

To explore further, we picked the groundwater distribution results for 100 and 500 m2 CDs451

as representative of high and low resolution catchment descriptors and compared them with the452

distribution of slopes across the catchment. Figure 18 shows the average ground water level (bottom453

row) and slope (top row) within the catchment. Subplot c (CD 100 m2) shows that the maximum454

groundwater level can be found in the middle part of the catchment. Neverthless, for subplot d (CD455

500 m2), most of the groundwater accumulates on the downstream part of the catchment. This can456

be explained by looking at the top row showing the slope distribution. In the subplot a (100 m2
457

resolution), there are small-scale hillslopes and valleys, which spatially correlate with the maximum458

groundwater level in the middle of the catchment. These uneven areas that retain groundwater at459

specific parts of the catchment disappeared during the interpolation for 500 m2 CDs (subplot b),460

resulting in an accumulation of groundwater downstream.461

Figure 19 illustrates the catchment response at the outlet and at Reach1 (R1), for the spring462

flood of 2008. R1 is located right before the outlet in the downstream area. Here, the dashed lines463

depict direct runoff from the subbasins and the solid lines show the simulated streamflow at the464

3-hour time step. In both subbasins, the catchment responses reproduced by the 500 m2 resolution465

demonstrate considerable fluctuations, particularly for the R1 subbasin. The reason for this is that466

the water table is very close to the surface in this area, and this reduces the damping effect of467

interflow and baseflow down to near zero. As a result, any change in the meteorological forcings468

translates into direct flow and a corresponding rapid reaction of the catchment in the R1 subbasin.469
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The fluctuations further transfer and commensurately impact the streamflow at the outlet of the470

catchment. In fact, changes in the resolution of the CDs alter the magnitude and timing of the peak471

flow, regardless of the variations of CPs. Such behaviour can explain the dominance of CDs over472

CPs in Figures 12 to 15 for the Aux Brochets (3hr) catchment.473

5 Conclusion474

We have explored the impact of spatio-temporal discretization to reproduce streamflow and simu-475

late flood events across six catchments located in Quebec (Canada) using two distributed hydrology476

models. We framed a hypothesis regarding the uncertainty of heterogeneity and broke it down into477

four main aspects reiterated as follows: Changing the spatial resolution of catchment descriptors478

generates uncertainty that can potentially impact flood simulations. The catchment area, the model-479

ing time step, and the model structure are the major components used to determine the significance480

of such uncertainty. More precisely, we hypothesized that:481

i Larger catchments are susceptible to larger uncertainties in the simulation of streamflow, when482

varying the spatial resolution of their physiographic characteristics.483

ii Finer time steps introduce a higher degree of variability in the simulation, leading to increased484

uncertainty in streamflow simulation.485

iii The more finely distributed and physically realistic a model is, the more sensitive to changes in486

spatial resolution it is.487

iv The uncertainty related to model parameters is dominant (larger) than that of catchments de-488

scriptors (DEM resolution, land use, soil texture).489

Based on the above results and analysis, the following conclusions can be drawn:490

1. There is no systematic link between the catchment size and the uncertainty corresponding to491

the simulation of streamflow, so hypothesis i is not verified for our experiment. Regardless of492

the model used to reproduce streamflow, the uncertainty of heterogeneity have been observed493

across different catchment sizes (see Figures 3 to 5 and 6 to 8). Interestingly, smaller size494

catchments (Boyer and Aux Pommes) generate larger uncertainties (see Figures 6 and 8), which495

refutes the assumption that changing the spatial resolution mainly affects larger catchments.496

2. The temporal resolution plays only a minor role in the determination of the uncertainty related497

to spatial resolution, so hypothesis ii is also not clearly verified for our experiment. WaSiM and498

Hydrotel2 showed that a 3-hour time step could moderately increase the uncertainty bounds499

of simulations for most catchments (see Figures 3 and 5).500
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3. The model structure is an important driver of the uncertainty related to the spatial resolution501

of simulations (hypothesis iii is verified for our experiment). WaSiM demonstrated a sensitivity502

to changes in the spatio-temporal resolution of the simulations (See figures 3 and 6). This was503

expected, given that the model solves Richards Equations for each grid cell, associated with504

specific catchment descriptors. Hydrotel’s conceptualization of infiltration, percolation and505

groundwater is less physically-based. In its default setting, it cannot adequately capture the506

uncertainty related to spatial discretization unless change is imposed by altering the number507

of HRUs (see Figures 4, 5 and 7, 8).508

4. Our attempt to separate the total spatio-temporal uncertainty into a portion attributable to509

CDs and a portion attributable to CPs showed that the latter is the dominant contributor for510

most of the catchments (hypothesis iv-see Figures 13 to 15). However, there are catchments511

in which the change of CD resolution is dominant (e.g., Aux Brochets and Aux Pommes512

catchments in Figures 13 to 15). Such catchments also demonstrate a large uncertainty in the513

simulation of extreme flows (see Catchment Aux Brochets and Aux Pommes in Figures 10 to514

12, Figure 16). Based on section 4, this might be due to changes in the dynamic interactions515

of states variables and fluxes once the resolution of simulations is altered (see Figure 17).516

Such behavior is expected for relatively flat catchments, but that still includes multiple small517

hillslopes and valleys (e.g., catchment Aux Brochets). Indeed, changing the resolution can518

reduce the impact of an uneven topography, or even eliminate it completely (see Figure 18),519

which can result in an inconsistent hydrologic behaviour and response of the catchment (see520

Figure 19).521

Given the dearth of credible publications addressing the impact of the uncertainty corresponding522

to the resolution of simulations, many gaps and opportunities remain to be addressed in this line523

of research. One major area of focus could be the adoption of more advanced physically-based524

distributed hydrology models to explore the degree of uncertainty, particularly for extreme stream-525

flows. Another focus could be on identifying the key parameters and hydrological processes that are526

mainly affected by spatio-temporal discretization change. Finally, using a larger set of catchments527

with different physical characteristics could help provide a better understanding of how they react528

to variations of the resolution of catchment descriptors. It could also shed light on the importance529

of accounting for this uncertainty in streamflow simulations and in the assessment of flood events.530
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Blöschl, G., Bierkens, M. F., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W.,565

McDonnell, J. J., Savenije, H. H., Sivapalan, M., et al. (2019). Twenty-three unsolved prob-566

18

https://doi.org/10.1002/2014WR015549
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1002/hyp.8193
https://doi.org/10.1002/hyp.8193
https://doi.org/10.1002/hyp.8193
https://doi.org/10.5194/os-15-831-2019
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=The+HBV+model&btnG=
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=The+HBV+model&btnG=
https://scholar.google.ca/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=The+HBV+model&btnG=
https://doi.org/10.1002/hyp.3360090504
https://doi.org/10.1002/hyp.3360090504
https://doi.org/10.1002/hyp.3360090504
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.5194/hess-4-203-2000
https://doi.org/10.5194/hess-4-203-2000
https://doi.org/10.5194/hess-4-203-2000
https://www.wiley.com/en-ca/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-9781119951018
https://www.wiley.com/en-ca/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-9781119951018
https://www.wiley.com/en-ca/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-9781119951018
https://www.wiley.com/en-ca/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-9781119951018
https://www.wiley.com/en-ca/Rainfall+Runoff+Modelling%3A+The+Primer%2C+2nd+Edition-p-9781119951018


lems in hydrology (uph)–a community perspective. Hydrological Sciences Journal, 64 (10),567

1141–1158. https://doi.org/10.1080/02626667.2019.1620507568
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Krebs, G., Kokkonen, T., Valtanen, M., Setälä, H., & Koivusalo, H. (2014). Spatial resolution con-663

siderations for urban hydrological modelling. Journal of Hydrology, 512, 482–497. https :664

//doi.org/10.1016/j.jhydrol.2014.03.013665

Krzysztofowicz, R. (2001). The case for probabilistic forecasting in hydrology. Journal of hydrology,666

249 (1-4), 2–9. https://doi.org/10.1016/S0022-1694(01)00420-6667

Kumar, R., Samaniego, L., & Attinger, S. (2010). The effects of spatial discretization and model668

parameterization on the prediction of extreme runoff characteristics. Journal of Hydrology,669

392 (1-2), 54–69. https://doi.org/10.1016/j.jhydrol.2010.07.047670

Kumar, R., Samaniego, L., & Attinger, S. (2013). Implications of distributed hydrologic model671

parameterization on water fluxes at multiple scales and locations. Water Resources Research,672

49 (1), 360–379. https://doi.org/10.1029/2012WR012195673

Li, Y., Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., & Fan, J. (2019). Spatiotemporal impacts674

of land use land cover changes on hydrology from the mechanism perspective using swat675

21

https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.5194/hess-21-3953-2017
https://doi.org/10.5194/hess-21-3953-2017
https://doi.org/10.5194/hess-21-3953-2017
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1080/02626667.2013.803183
https://doi.org/10.1016/j.advwatres.2008.06.009
https://doi.org/10.5194/hess-22-331-2018
https://doi.org/10.5194/hess-22-331-2018
https://doi.org/10.5194/hess-22-331-2018
https://doi.org/10.1016/j.jhydrol.2018.08.080
https://doi.org/10.1029/WR019i003p00677
https://doi.org/10.1016/j.jhydrol.2014.03.013
https://doi.org/10.1016/j.jhydrol.2014.03.013
https://doi.org/10.1016/j.jhydrol.2014.03.013
https://doi.org/10.1016/S0022-1694(01)00420-6
https://doi.org/10.1016/j.jhydrol.2010.07.047
https://doi.org/10.1029/2012WR012195


model with time-varying parameters. Hydrology Research, 50 (1), 244–261. https://doi.org/676

10.2166/nh.2018.006677

Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based678

model of land surface water and energy fluxes for general circulation models. Journal of Geo-679

physical Research: Atmospheres, 99 (D7), 14415–14428. https://doi.org/10.1029/94JD00483680

Lucas-Picher, P., Lachance-Cloutier, S., Arsenault, R., Poulin, A., Ricard, S., Turcotte, R., & Bris-681

sette, F. (2020). Will evolving climate conditions increase the risk of floods of the large682

us-canada transboundary richelieu river basin? JAWRA Journal of the American Water683

Resources Association. https://doi.org/10.1111/1752-1688.12891684

Martel, J.-L., Brissette, F., & Poulin, A. (2020). Impact of the spatial density of weather stations on685

the performance of distributed and lumped hydrological models. Canadian Water Resources686

Journal/Revue canadienne des ressources hydriques, 1–14. https://doi.org/10.5194/gmd-687

12-2501-2019688
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Table 1: General information and characteristics of the catchments

797

Table 2: The submodels employed to represent the hydrological processes in Hydrotel and WaSiM.
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Figure 1: Location of the catchments for this study, over the southern part of Quebec.

799

Figure 2: Schematic explanation for building ensemble of simulations and analyses.

800

Figure 3: Annual hydrographs of the selected catchments simulated by WaSiM and compared to
observed data. The time steps of the modeling are 24 and 3 hours. The responses are arranged
according to the size of the catchments: large catchments (> 1000 km2) are on the top row;
medium catchments (between 500 and 1000 km2) are on the middle row; large catchments
(< 500 km2) on the bottom row.
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Figure 4: Annual hydrographs of the selected catchments simulated by Hydrotel (Hydrotel1) and
compared to observed data. The time steps of the modeling are 24 and 3 hours. The responses are
arranged according to the size of the catchments: large catchments (> 1000 km2) are on the top
row; medium catchments (between 500 and 1000 km2) are on the middle row; large catchments
(< 500 km2) on the bottom row.

802

Figure 5: Annual hydrographs of the selected catchments simulated by Hydrotel (Hydrotel2) and
compared to observed data. The time steps of the modeling are 24 and 3 hours. The responses are
arranged according to the size of the catchments: large catchments (> 1000 km2) are on top row;
medium catchments (between 500 and 1000 km2) are on the middle row; large catchments
(< 500 km2) on bottom row.
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Figure 6: Efficiency of WaSiM in reproducing streamflow for the calibration and validation
periods. Here, CP and CD represent calibration parameters and catchment descriptors respectively
and the numbers assigned show the resolution divided by 100 for brevity.
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Figure 7: Efficiency of Hydrotel (Hydrotel1) in reproducing streamflow for the calibration and
validation periods. Here, CP and CD represent calibration parameters and catchment descriptors
respectively and the numbers assigned show the resolution divided by 100 for brevity.
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Figure 8: The efficiency of Hydrotel (Hydrotel2) in reproducing streamflow for the calibration and
validation periods. Here, CP and CD represent calibration parameters and catchment descriptors
respectively and the numbers assigned show the resolution divided by 100 for brevity.
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Figure 9: Model run-time for different resolutions (R100 = resolution of 100 km2, ... R1000 =
resolution of 1000 km2) and different time steps (3 hour versus 24 hour) for a one-year simulation
with WaSiM for Chaudière catchment.
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Figure 10: Relative error of reproducing summer-fall flood with 5-, 10-, 20-, and 50-year return
periods using WaSiM. QT represents a flood event with the specific return periods.

808

Figure 11: Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and 50-year
return periods using the Hydrotel1 configuration. QT represents a flood event with a specific
return period. For instance, QT5 is the 5-year return period flood.

809

Figure 12: Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and 50-year
return periods using the Hydrotel2 configuration. QT represents a flood event with a specific
return period. For instance, QT5 is the 5-year return period flood.
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Figure 13: Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and 50-year
return periods using WaSiM. QT represents a flood with a specific return period. For instance,
QT5 is the flood magnitude corresponding to a 5-year return period. R represents the resolution
(divided by 100) of CDs or CPs, in which the Maximum Error Difference (MDE) is calculated.
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Figure 14: Relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and 50-year
return periods using the Hydrotel1 configuration. QT represents a flood with a specific return
period. For instance, QT5 is the flood magnitude corresponding to a 5-year return period. R
represents the resolution (divided by 100) of CDs or CPs, in which the Maximum Error Difference
(MDE) is calculated.

812

Figure 15: The relative error for the simulation of summer-fall floods with 5-, 10-, 20-, and 50-year
return periods using Hydrotel2 Configuration. QT represents a flood with a specific return period.
For instance, QT5 is the flood magnitude corresponding to a 5-year return period. R represent the
resolution (divided by 100) of CDs or CPs, in which the Maximum Error Difference (MDE) is
calculated.

813

Figure 16: Cumulative distribution function of monthly maximum values for 3-hour streamflow
simulated by WaSiM in summer months, for the Aux Brochets catchment (CD100: the resolution
of CDs is 100 m2, etc).

814

Figure 17: Distribution of groundwater elevation across the Aux Brochets catchment for different
resolutions for a 3-hour time step.

815

Figure 18: Comparison of slope (top) and groundwater elevation (bottom) for Aux Brochets (3 hr)
simulated by WaSiM.

816

Figure 19: Routed discharge (Q100, Q500) and direct runoff (R100, R500) of 100 and 500 m2 CD
resolutions simulated by WaSiM for the outlet and Reach 1 (R1 is the reach located in downstream
area next to the outlet of the catchment) of Aux Brochets catchment for 3-hour time step.
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