References
[1] V.L. Talrose, E.L. Frankevich, The method of ionic impact in
estimating the affinity of molecules to a proton, Doklady Akademii Nauk
Sssr 111 (1956) 376.
[2] M.S.B. Munson, F.H. Field, Chemical ionization mass
spectrometry. I. General introduction, J. Am. Chem. Soc. 88 (1966) 2621.
[3] F.H. Field, Chemical ionization mass spectrometry, Accounts
Chem. Res. 1 (1968) 42.
[4] B. Munson, Chemical ionization mass spectrometry, Anal. Chem. 43
(1971) A28.
[5] J.J. Thomson, On the Nature of X3, the Substance Giving The ’3’
Line, Rays of Positive Electricity, Longman, Green, and Company, Essex,
1913, pp. 116-122.
[6] T.R. Hogness, E.G. Lunn, The ionization of hydrogen by electron
impact as interpreted by positive ray analysis, Phys. Rev. 26 (1925)
0044-0055.
[7] E. Herbst, W. Klemperer, Formation and Depletion of Molecules in
Dense Interstellar Clouds, Astrophys. J. 185 (1973) 505.
[8] D.M. Rank, C.H. Townes, W.J. Welch, Interstellar molecules and
dense clouds, Science 174 (1971) 1083.
[9] D. Buhl, L.E. Snyder, Unidentified interstellar microwave line,
Nature 228 (1970) 267.
[10] D. Buhl, L.E. Snyder, Problem of X-ogen, Astrophys. J. 180
(1973) 791-800.
[11] E. Herbst, W. Klemperer, Is X-ogen HCO+,
Astrophys. J. 188 (1974) 255-256.
[12] E. Herbst, J.M. Norbeck, P.R. Certain, W. Klemperer,
Interstellar COH+, Astrophys.
J. 207 (1976) 110-112.
[13] T. Oka, Observation of the infrared spectrum of
H3+, Phys. Rev. Lett. 45 (1980)
531-534.
[14] T. Oka, Interstellar H3+,
Proc. Natl. Acad. Sci. USA 103 (2006) 12235-12242.
[15] N.G. Adams, D. Smith, Recent advances in the studies of
reaction rates relevant to interstellar chemistry, IAU Symposia (1987)
1-18.
[16] T.R. Geballe, T. Oka, Detection of
H3+ in Interstellar Space, Nature 384
(1996) 334-335.
[17] M. Larsson, H3+: the
initiator of interstellar chemistry, International Journal of
Astrobiology 7 (2008) 237-241.
[18] P.M. Hillenbrand, K.P. Bowen, J. Lievin, X. Urbain, D.W. Savin,
Experimental and Theoretical Studies of the Isotope Exchange Reaction D
+ H3+ →
H2D+ + H, Astrophys. J. 877 (2019).
[19] K. Gope, E. Livshits, D.M. Bittner, R. Baer, D. Strasser, Two
pathways and an isotope effect in H3+formation following double ionization of methanol, Natural Sciences
(2021) 108.
[20] N. Ekanayake, M. Nairat, B. Kaderiya, P. Feizollah, B. Jochim,
T. Severt, B. Berry, K.R. Pandiri, K.D. Carnes, S. Pathak, D. Rolles, A.
Rudenko, I. Ben-Itzhak, C.A. Mancuso, B.S. Fales, J.E. Jackson, B.G.
Levine, M. Dantus, Mechanisms and time-resolved dynamics for trihydrogen
cation (H3+) formation from organic
molecules in strong laser fields, Scientific Reports 7 (2017).
[21] N. Ekanayake, T. Severt, M. Nairat, N.P. Weingartz, B.M.
Farris, B. Kaderiya, P. Feizollah, B. Jochim, F. Ziaee, K. Borne, P.K.
Raju, K.D. Carnes, D. Rolles, A. Rudenko, B.G. Levine, J.E. Jackson, I.
Ben-Itzhak, M. Dantus, H2 roaming chemistry and the
formation of H3+ from organic
molecules in strong laser fields, Nature Communications 9 (2018).
[22] A.G. Suits, Roaming atoms and radicals: A new mechanism in
molecular dissociation, Accounts Chem. Res. 41 (2008) 873-881.