References
Alberdi, A., Aizpurua, O., Bohmann, K., Gopalakrishnan, S., Lynggaard, C., Nielsen, M., … Bik, H. M. (2017). Promises and pitfalls of using high-throughput sequencing for diet analysis. Molecular Ecology Resources , 98 (1), 1423–1428. https://doi.org/10.1111/mec.13549
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution , 9 (1), 134–147. https://doi.org/10.1111/2041-210X.12849
Alonso, H., Granadeiro, J. P., Waap, S., Xavier, J., Symondson, W. O. C., Ramos, J. A., & Catry, P. (2014). An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Molecular Ecology , 23 (15), 3719–3733. https://doi.org/10.1111/mec.12785
Ando, H., Setsuko, S., Horikoshi, K., Suzuki, H., Umehara, S., Inoue-Murayama, M., & Isagi, Y. (2013). Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens ) in oceanic island habitats.Ecology and Evolution , 3 (12), 4057–4069. https://doi.org/10.1002/ece3.773
Andújar, C., Arribas, P., Yu, D. W., Vogler, A. P., & Emerson, B. C. (2018). Why the COI barcode should be the community DNA metabarcode for the metazoa. Molecular Ecology , 27 (20), 3968–3975. https://doi.org/10.1111/mec.14844
Balmer, D. E., Gillings, S., Caffrey, B. J., Swann, R. L., Downie, I. S., & Fuller, R. J. (2013). Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. Thetford: BTO Books.
Bijlsma, R. G. (1998). Breeding biology and population trend of Hawfinches Coccothraustes coccothraustes in Flevoland.Limosa , 71 (4), 137–148.
Brown, D. S., Burger, R., Cole, N., Vencatasamy, D., Clare, E. L., Montazam, A., & Symondson, W. O. C. (2014). Dietary competition between the alien Asian Musk Shrew (Suncus murinus ) and a re-introduced population of Telfair’s Skink (Leiolopisma telfairii ).Molecular Ecology , 23 (15), 3695–3705. https://doi.org/10.1111/mec.12445
Bryant, D. (2011). Multi-species groups of finches feeding on Wych Elm fruits in spring. Scottish Birds , 31 , 311–314.
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size.Ecology , 93 (12), 2533–2547. https://doi.org/https://doi.org/10.1890/11-1952.1
Charman, E. C., Smith, K., Dodd, S., Gruar, D. J., & Dillon, I. A. (2012). Pre-breeding foraging and nest site habitat selection by Lesser Spotted Woodpeckers Dendrocopos minor in mature woodland blocks in England. Ornis Fennica , 89 (3), 182–196.
Cholewa, M., & Wesołowski, T. (2011). Nestling Food of European Hole-Nesting Passerines: Do We Know Enough to Test the Adaptive Hypotheses on Breeding Seasons? Acta Ornithologica , 46 (2), 105–116. https://doi.org/10.3161/000164511X625874
Clare, E. L., Symondson, W. O. C., Broders, H., Fabianek, F., Fraser, E. E., Mackenzie, A., … Reimer, J. P. (2014). The diet ofMyotis lucifugus across Canada: Assessing foraging quality and diet variability. Molecular Ecology , 23 (15), 3618–3632. https://doi.org/10.1111/mec.12542
Clare, E. L., Symondson, W. O. C., & Fenton, M. B. (2014). An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus ).Molecular Ecology , 23 (15), 3633–3647. https://doi.org/10.1111/mec.12519
Clements, R. (2013). A UK population estimate for the Hawfinch.British Birds , 106 , 43–44.
Cuff, J. P., Drake, L. E., Tercel, M. P. T. G., Stockdale, J. E., Orozco-terWengel, P., Bell, J. R., … Symondson, W. O. C. (2021). Money spider dietary choice in pre- and post-harvest cereal crops using metabarcoding. Ecological Entomology , 46 (2), 249–261. https://doi.org/https://doi.org/10.1111/een.12957
da Silva, L. P., Mata, V. A., Lopes, P. B., Lopes, R. J., & Beja, P. (2020). High-resolution multi-marker DNA metabarcoding reveals sexual dietary differentiation in a bird with minor dimorphism. Ecology and Evolution , 10 (19), 10364–10373. https://doi.org/10.1002/ece3.6687
da Silva, L. P., Mata, V. A., Lopes, P. B., Pereira, P., Jarman, S. N., Lopes, R. J., & Beja, P. (2019). Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Molecular Ecology Resources , 19 (6), 1420–1432. https://doi.org/https://doi.org/10.1111/1755-0998.13060
De Barba, M., Miquel, C., Boyer, F., Mercier, C., Rioux, D., Coissac, E., & Taberlet, P. (2014). DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Molecular Ecology Resources , 14 (2), 306–323. https://doi.org/10.1111/1755-0998.12188
de Vere, N., Rich, T. C. G., Ford, C. R., Trinder, S. A., Long, C., Moore, C. W., … Wilkinson, M. J. (2012). DNA barcoding the native flowering plants and conifers of wales. PLoS ONE , 7 (6), 1–12. https://doi.org/10.1371/journal.pone.0037945
Drake, L., Cuff, J., Young, R., Marchbank, A., Chadwick, E., & Symondson, W. (2021). Post-bioinformatic methods to identify and reduce the prevalence of artefacts in metabarcoding data. Authorea Preprints. https://doi.org/10.22541/au.161830201.18684167/v1
Dunn, J. C., Stockdale, J. E., Moorhouse-Gann, R. J., McCubbin, A., Hipperson, H., Morris, A. J., … Symondson, W. O. C. (2018). The decline of the Turtle Dove: Dietary associations with body condition and competition with other columbids analysed using high-throughput sequencing. Molecular Ecology , 27 (16), 3386–3407. https://doi.org/10.1111/mec.14766
Evens, R., Conway, G., Franklin, K., Henderson, I., Stockdale, J., Beenaerts, N., … Artois, T. (2020). DNA diet profiles with high-resolution animal tracking data reveal levels of prey selection relative to habitat choice in a crepuscular insectivorous bird.Ecology and Evolution , 10 (23), 13044–13056. https://doi.org/10.1002/ece3.6893
Forin-Wiart, M.-A., Poulle, M.-L., Piry, S., Cosson, J.-F., Larose, C., & Galan, M. (2018). Evaluating metabarcoding to analyse diet composition of species foraging in anthropogenic landscapes using Ion Torrent and Illumina sequencing. Scientific Reports , 8,17091. https://doi.org/10.1038/s41598-018-34430-7
Freeman, B. (2014). Sexual niche partitioning in two species of New Guinean Pachycephala whistlers. Journal of Field Ornithology , 85 (1), 23–30. https://doi.org/10.1111/jofo.12046
Holland, J. M., Hutchison, M. A. S., Smith, B., & Aebischer, N. J. (2006). A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Annals of Applied Biology ,150 (3), 403–403. https://doi.org/https://doi.org/10.1111/j.1744-7348.2006.00039.x
Jedlicka, J. A., Vo, A.-T. E., & Almeida, R. P. P. (2017). Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western Bluebirds (Sialia mexicana ) in California vineyards. The Auk ,134 (1), 116–127. https://doi.org/10.1642/AUK-16-103.1
Jones, L., Twyford, A. D., Ford, C. R., Rich, T. C. G., Davies, H., Forrest, L. L., … de Vere, N. (2021). Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Molecular Ecology Resources , 21 (6), 2050–2062. https://doi.org/https://doi.org/10.1111/1755-0998.13388
Kappes, H. (2006). Relations between forest management and slug assemblages (Gastropoda) of deciduous regrowth forests. Forest Ecology and Management , 237 (1), 450–457. https://doi.org/https://doi.org/10.1016/j.foreco.2006.09.067
Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress, W. J., Kuzmina, M. L., … Pringle, R. M. (2015). DNA metabarcoding illuminates dietary niche partitioning by African large herbivores.Proceedings of the National Academy of Sciences , 112 (26), 8019–8024. https://doi.org/10.1073/pnas.1503283112
Kartzinel, T. R., & Pringle, R. M. (2020). Multiple dimensions of dietary diversity in large mammalian herbivores. Journal of Animal Ecology , 89 (6), 1482–1496. https://doi.org/https://doi.org/10.1111/1365-2656.13206
King, R. A., Read, D. S., Traugott, M., & Symondson, W. O. C. (2008). Molecular analysis of predation: A review of best practice for DNA-based approaches. Molecular Ecology , 17 (4), 947–963. https://doi.org/10.1111/j.1365-294X.2007.03613.x
Kirby, W. B., Bellamy, P. E., Stanbury, A. J., Bladon, A. J., Grice, P. V., & Gillings, S. (2015). Breeding season habitat associations and population declines of British Hawfinches Coccothraustes coccothraustes . Bird Study , 62 (3), 348–357. https://doi.org/10.1080/00063657.2015.1046368
Kirby, W. B., Stanbury, A. J., Lewis, J., Smith, D. L., Cross, A. V., Grice, P. V., & Bellamy, P. E. (2018). Nest survival, causes of failure and productivity of British Hawfinches Coccothraustes coccothraustes . Bird Study , 65 (3), 279–289. https://doi.org/10.1080/00063657.2018.1506424
Kirby, W., Stanbury, A., Bellamy, P., & Lewis, J. (2019). Double-brooding and renesting in British Hawfinches. British Birds , 112 , 170–171.
Kratina, P., LeCraw, R. R. M., Ingram, T., & Anholt, B. R. (2012). Stability and persistence of food webs with omnivory: Is there a general pattern? Ecosphere , 3 (6), 1–18. https://doi.org/10.1890/ES12-00121.1
Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation.Trends in Ecology and Evolution , 30 (1), 25–35. https://doi.org/10.1016/j.tree.2014.10.008
Langston, R., Gregory, R., & Adams, R. (2002). The status of the Hawfinch in the UK 1975-1999. British Birds , 95 (4), 166–173.
Lebl, K., Kürbisch, K., Bieber, C., & Ruf, T. (2010). Energy or information? The role of seed availability for reproductive decisions in edible dormice. Journal of Comparative Physiology B ,180 (3), 447–456. https://doi.org/10.1007/s00360-009-0425-6
Lima, S. L. (2009). Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biological Reviews , 84 (3), 485–513. https://doi.org/https://doi.org/10.1111/j.1469-185X.2009.00085.x
Mackenzie, J. A., Hinsley, S. A., & Harrison, N. M. (2014). Parid foraging choices in urban habitat and their consequences for fitness.Ibis , 156 (3), 591–605. https://doi.org/https://doi.org/10.1111/ibi.12166
Marshall, T. J., Dick, M. F., & Guglielmo, C. G. (2016). Seasonal dietary shifting in yellow-rumped warblers is unrelated to macronutrient targets. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , 192 , 57–63. https://doi.org/https://doi.org/10.1016/j.cbpa.2015.11.014
Mata, V. A., Amorim, F., Corley, M. F. V, McCracken, G. F., Rebelo, H., & Beja, P. (2016). Female dietary bias towards large migratory moths in the European free-tailed bat (Tadarida teniotis ). Biology Letters , 12 (3). https://doi.org/10.1098/rsbl.2015.0988
Matthews, J. K., Ridley, A., Kaplin, B. A., & Grueter, C. C. (2020). A comparison of fecal sampling and direct feeding observations for quantifying the diet of a frugivorous primate. Current Zoology ,66 (4), 333–343. https://doi.org/10.1093/cz/zoz058
McClenaghan, B., Nol, E., & Kerr, K. C. R. (2019). DNA metabarcoding reveals the broad and flexible diet of a declining aerial insectivore.Auk , 136 (1), 1–11. https://doi.org/10.1093/auk/uky003
Mitchell, L. J., Horsburgh, G. J., Dawson, D. A., Maher, K. H., & Arnold, K. E. (2021). Metabarcoding reveals selective dietary responses to environmental availability in the diet of a nocturnal, aerial insectivore, the European Nightjar (Caprimulgus europaeus ).Ibis . https://doi.org/https://doi.org/10.1111/ibi.13010
Molokwu, M. N., Nilsson, J.-Å., & Olsson, O. (2011). Diet selection in birds: trade-off between energetic content and digestibility of seeds.Behavioral Ecology , 22 (3), 639–647. https://doi.org/10.1093/beheco/arr025
Moorhouse-Gann, R. (2017). Ecological replacement as a restoration tool: Disentangling the impacts and interactions of Aldabra giant tortoises (Aldabrachelys gigantea) using DNA metabarcoding[Unpublished doctoral dissertation]. Cardiff University.
Moorhouse-Gann, R. J., Dunn, J. C., de Vere, N., Goder, M., Cole, N., Hipperson, H., & Symondson, W. O. C. (2018). New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Scientific Reports , 8 . https://doi.org/10.1038/s41598-018-26648-2
Morganti, M., Rubolini, D., Caprioli, M., Saino, N., & Ambrosini, R. (2017). Rainfall, but not temperature, negatively affects the growth of Blue Tit Cyanistes caeruleus nestlings. Bird Study ,64 (2), 159–167. https://doi.org/10.1080/00063657.2017.1309006
Mountford, G. (1957). The Hawfinch . Collins, London.
Newton, I. (1967). THE ADAPTIVE RADIATION AND FEEDING ECOLOGY OF SOME BRITISH FINCHES. Ibis , 109 (1), 33–96. https://doi.org/10.1111/j.1474-919X.1967.tb00005.x
Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T., & Kratina, P. (2017). Diet tracing in ecology: Method comparison and selection.Methods in Ecology and Evolution , 9 (2), 278–291. https://doi.org/https://doi.org/10.1111/2041-210X.12869
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://cran.r-project.org/package=vegan
Ortega-Jimenez, V. M., & Dudley, R. (2012). Flying in the rain: hovering performance of Anna’s hummingbirds under varied precipitation.Proceedings of the Royal Society B: Biological Sciences ,279 (1744), 3996–4002. https://doi.org/10.1098/rspb.2012.1285
Perrins, C. (1991). Tits and their caterpillar food supply. Ibis ,133 (s1), 49–54. https://doi.org/10.1111/j.1474-919X.1991.tb07668.x
Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology , 21 (8), 1931–1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x
Porter, T. M., & Hajibabaei, M. (2018). Over 2.5 million COI sequences in GenBank and growing. PLOS ONE , 13 (9). Retrieved from https://doi.org/10.1371/journal.pone.0200177
QGIS development team. (2021). QGIS Geographic Information System. QGIS Geographic Information System.
R Core Team. (2020). R: A language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.r-project.org
Ramakers, J. J. C., Gienapp, P., & Visser, M. E. (2019). Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird. Evolution , 73 (2), 175–187. https://doi.org/https://doi.org/10.1111/evo.13660
Ramsay, S. L., & Houston, D. C. (2003). Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis , 145 (2), 227–232. https://doi.org/https://doi.org/10.1046/j.1474-919X.2003.00133.x
Renaud, E., Baudry, E., & Bessa-Gomes, C. (2020). Influence of taxonomic resolution on mutualistic network properties. Ecology and Evolution , 10 (7), 3248–3259. https://doi.org/10.1002/ece3.6060
Renner, S. C., Baur, S., Possler, A., Winkler, J., Kalko, E. K. V, Bates, P. J. J., & Mello, M. A. R. (2013). Food Preferences of Winter Bird Communities in Different Forest Types. PLOS ONE ,7 (12), e53121. Retrieved from https://doi.org/10.1371/journal.pone.0053121
Rytkönen, S., Vesterinen, E. J., Westerduin, C., Leviäkangas, T., Vatka, E., Mutanen, M., … Orell, M. (2019). From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecology and Evolution , 9 (1), 631–639. https://doi.org/10.1002/ece3.4787
Shutt, J., Burgess, M., & Phillimore, A. (2019). A Spatial Perspective on the Phenological Distribution of the Spring Woodland Caterpillar Peak. The American Naturalist , 194 . https://doi.org/10.1086/705241
Shutt, J. D., Nicholls, J. A., Trivedi, U. H., Burgess, M. D., Stone, G. N., Hadfield, J. D., & Phillimore, A. B. (2020). Gradients in richness and turnover of a forest passerine’s diet prior to breeding: A mixed model approach applied to faecal metabarcoding data. Molecular Ecology , 29 (6), 1199–1213. https://doi.org/10.1111/mec.15394
Simon, L., Lalonde, M., & Bruns, T. D. (1992). Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology ,58 (1), 291–295. Retrieved from http://aem.asm.org/content/58/1/291.abstract
Smith, K. W., & Smith, L. (2013). The effect of supplementary feeding in early spring on the breeding performance of the Great Spotted Woodpecker Dendrocopos major . Bird Study , 60 (2), 169–175. https://doi.org/10.1080/00063657.2013.776004
Somervuo, P., Yu, D., Xu, C., Ji, Y., Hultman, J., Wirta, H., & Ovaskainen, O. (2017). Quantifying uncertainty of taxonomic placement in DNA barcoding and metabarcoding. Methods in Ecology and Evolution , 8 (4), 398–407. https://doi.org/10.1111/2041-210X.12721
Sottas, C., Reif, J., Kreisinger, J., Schmiedová, L., Sam, K., Osiejuk, T. S., & Reifová, R. (2020). Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evolutionary Ecology , 34 (4), 501–524. https://doi.org/10.1007/s10682-020-10050-4
Stenhouse, E.H., Bellamy, P., Kirby, W., Vaughan, I.P., Drake, L.E, Marchbank, A., Workman, T., Symondson, W.O.C., & Orozco-terWengel, I.P. (2021). MOTU presence absence data . Retrieved from
Stockdale, J. E. (2018). Using high-throughput sequencing to track habitat use by thrushes exploiting heterogeneous farmland landscapes[Unpublished doctoral dissertation]. Cardiff University.
Sullins, D. S., Haukos, D. A., Craine, J. M., Lautenbach, J. M., Robinson, S. G., Lautenbach, J. D., … Fierer, N. (2018). Identifying the diet of a declining prairie grouse using DNA metabarcoding. The Auk , 135 (3), 583–608. https://doi.org/10.1642/AUK-17-199.1
Sunde, P., Bølstad, M. S., & Møller, J. D. (2003). Reversed sexual dimorphism in tawny owls, Strix aluco , correlates with duty division in breeding effort. Oikos , 101 (2), 265–278. https://doi.org/10.1034/j.1600-0706.2003.12203.x
Svensson, L. (1992). Identification guide to European passerines(4th ed.). Sturegatan, Stockholm, Sweden: British Trust for Ornithology.
Symondson, W. O. C. (2002). Molecular identification of prey in predator diets. Molecular Ecology , 11 (4), 627–641. https://doi.org/10.1046/j.1365-294X.2002.01471.x
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018).Environmental DNA: For Biodiversity Research and Monitoring . Oxford University Press.
Tercel, M. P. T. G., Symondson, W. O. C., & Cuff, J. P. (2021). The problem of omnivory: A synthesis on omnivory and DNA metabarcoding.Molecular Ecology , 30 (10). https://doi.org/https://doi.org/10.1111/mec.15903
Thompson, K. A., & Newmaster, S. G. (2014). Molecular taxonomic tools provide more accurate estimates of species richness at less cost than traditional morphology-based taxonomic practices in a vegetation survey.Biodiversity and Conservation , 23 (6), 1411–1424. https://doi.org/10.1007/s10531-014-0672-z
Tomiałojć, L. (2012). Reproduction and Population Dynamics of HawfinchesCoccothraustes coccothraustes in the Primeval Forest of Białowieża National Park (NE Poland). Acta Ornithologica ,47 (1), 63–78. https://doi.org/10.3161/000164512X653935
Valentini, A., Miquel, C., Nawaz, M. A., Bellemain, E., Coissac, E., Pompanon, F., … Taberlet, P. (2009). New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Molecular Ecology Resources , 9 (1), 51–60. https://doi.org/10.1111/j.1755-0998.2008.02352.x
von Haartman, L. (1978). An account of a small population of Hawfinches.Ornis Fennica , 55 , 132–133.
Wang, Y., Naumann, U., Eddelbuettel, D., John, W., & Warton, D. (2012). mvabund – an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution , 3 (3), 471–474. https://doi.org/10.1111/j.2041-210X.2012.00190.x
Wesołowski, T., & Neubauer, G. (2017). Diet of Marsh Tit Poecile palustris Nestlings in a Primeval Forest in Relation to Food Supply and Age of Young. Acta Ornithologica , 52 (1), 105–118. https://doi.org/10.3161/00016454AO2017.52.1.010
Westfall, P., & Young, S. (1993). Resampling‐Based Multiple Testing. New York: John Wiley & Sons.
Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis . New York: Springer-Verlagg. Retrieved from https://ggplot2.tidyverse.org.
Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., & Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution , 3 (4), 613–623. https://doi.org/10.1111/j.2041-210X.2012.00198.x
Zalewski, A., Szymura, M., Kowalczyk, R., & Brzeziński, M. (2021). Low individual diet variation and high trophic niche overlap between the native polecat and invasive American mink. Journal of Zoology ,314 (2), 151–161. https://doi.org/https://doi.org/10.1111/jzo.12871
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., … Taberlet, P. (2019). DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions.Molecular Ecology , 28 (8), 1857–1862. https://doi.org/10.1111/mec.15060