References:
1. Bernard T, B., Goss KN, Laughon M, et al. Bronchopulmonary dysplasia.Nat Rev Dis Primers. 2019;5(1):78.
2. Smith VC, Zupancic JA, McCormick MC, et al. Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr. 2005;146(4):469-473.
3. Rutkowska M, Hożejowski R, Helwich E, Borszewska-Kornacka MK, Gadzinowski J. Severe bronchopulmonary dysplasia – incidence and predictive factors in a prospective, multicenter study in very preterm infants with respiratory distress syndrome. The Journal of Maternal-Fetal & Neonatal Medicine. 2018;32(12):1958-1964.
4. Klinger G, Sokolover N, Boyko V, et al. Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants. Am J Obstet Gynecol. 2013;208(2):115 e111-119.
5. Geetha O, Rajadurai VS, Anand AJ, et al. New BPD-prevalence and risk factors for bronchopulmonary dysplasia/mortality in extremely low gestational age infants </=28 weeks. J Perinatol.2021;41(8):1943-1950.
6. Northway WH, Jr., Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357-368.
7. Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir Med. 2017;132:170-177.
8. Wang SH, Tsao PN. Phenotypes of Bronchopulmonary Dysplasia. Int J Mol Sci. 2020;21(17).
9. Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med. 2018;16(1):36.
10. Ogawa R, Mori R, Sako M, Kageyama M, Tamura M, Namba F. Drug treatment for bronchopulmonary dysplasia in Japan: questionnaire survey.Pediatr Int. 2015;57(1):189-192.
11. Moschino L, Zivanovic S, Hartley C, Trevisanuto D, Baraldi E, Roehr CC. Caffeine in preterm infants: where are we in 2020? ERJ Open Res. 2020;6(1).
12. Elmowafi M, Mohsen N, Nour I, Nasef N. Prophylactic versus therapeutic caffeine for apnea of prematurity: a randomized controlled trial. J Matern Fetal Neonatal Med. 2021:1-9.
13. Synnes A, Grunau RE. Neurodevelopmental outcomes after neonatal caffeine therapy. Semin Fetal Neonatal Med. 2020;25(6):101160.
14. Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112-2121.
15. Aranda JV, Beharry KD. Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin Fetal Neonatal Med.2020;25(6):101183.
16. Aranda JV, Cook CE, Gorman W, et al. Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr.1979;94(4):663-668.
17. Kua KP, Lee SW. Systematic review and meta-analysis of clinical outcomes of early caffeine therapy in preterm neonates. Br J Clin Pharmacol. 2017;83(1):180-191.
18. Pakvasa MA, Saroha V, Patel RM. Optimizing Caffeine Use and Risk of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review, Meta-analysis, and Application of Grading of Recommendations Assessment, Development, and Evaluation Methodology. Clin Perinatol.2018;45(2):273-291.
19. Lodha A, Entz R, Synnes A, et al. Early Caffeine Administration and Neurodevelopmental Outcomes in Preterm Infants. Pediatrics.2019;143(1).
20. Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to Improve Rates of Successful Extubation in Preterm Infants: A Systematic Review and Meta-analysis. JAMA Pediatr. 2017;171(2):165-174.
21. Davis PG, Schmidt B, Roberts RS, et al. Caffeine for Apnea of Prematurity trial: benefits may vary in subgroups. J Pediatr.2010;156(3):382-387.
22. Patel RM, Leong T, Carlton DP, Vyas-Read S. Early caffeine therapy and clinical outcomes in extremely preterm infants. J Perinatol.2013;33(2):134-140.
23. Dobson NR, Patel RM, Smith PB, et al. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J Pediatr. 2014;164(5):992-998 e993.
24. Mohammed S, Nour I, Shabaan AE, Shouman B, Abdel-Hady H, Nasef N. High versus low-dose caffeine for apnea of prematurity: a randomized controlled trial. Eur J Pediatr. 2015;174(7):949-956.
25. Steer P, Flenady V, Shearman A, et al. High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial.Arch Dis Child Fetal Neonatal Ed. 2004;89(6):F499-503.
26. Wan L, Huang L, Chen P. Caffeine citrate maintenance doses effect on extubation and apnea postventilation in preterm infants. Pediatr Pulmonol. 2020;55(10):2635-2640.
27. Brattstrom P, Russo C, Ley D, Bruschettini M. High-versus low-dose caffeine in preterm infants: a systematic review and meta-analysis.Acta Paediatr. 2019;108(3):401-410.
28. Mohd Kori AM, Van Rostenberghe H, Ibrahim NR, Yaacob NM, Nasir A. A Randomized Controlled Trial Comparing Two Doses of Caffeine for Apnoea in Prematurity. Int J Environ Res Public Health. 2021;18(9).
29. Segerer FJ, Speer CP. Lung Function in Childhood and Adolescence: Influence of Prematurity and Bronchopulmonary Dysplasia]. Z Geburtshilfe Neonatol. 2016;220(4):147-154.
30. Saarenpaa HK, Tikanmaki M, Sipola-Leppanen M, et al. Lung Function in Very Low Birth Weight Adults. Pediatrics. 2015;136(4):642-650.
31. Kassim Z, Greenough A, Rafferty GF. Effect of caffeine on respiratory muscle strength and lung function in prematurely born, ventilated infants. Eur J Pediatr. 2009;168(12):1491-1495.
32. Sanchez-Solis M, Garcia-Marcos PW, Aguera-Arenas J, Mondejar-Lopez P, Garcia-Marcos L. Impact of early caffeine therapy in preterm newborns on infant lung function. Pediatr Pulmonol. 2020;55(1):102-107.
33. Doyle LW, Ranganathan S, Cheong JLY. Neonatal Caffeine Treatment and Respiratory Function at 11 Years in Children under 1,251 g at Birth.Am J Respir Crit Care Med. 2017;196(10):1318-1324.
34. Kraaijenga JV, Hutten GJ, de Jongh FH, van Kaam AH. The Effect of Caffeine on Diaphragmatic Activity and Tidal Volume in Preterm Infants.J Pediatr. 2015;167(1):70-75.
35. Nagatomo T, Jimenez J, Richter J, et al. Caffeine Prevents Hyperoxia-Induced Functional and Structural Lung Damage in Preterm Rabbits. Neonatology. 2016;109(4):274-281.
36. Yoder B, Thomson M, Coalson J. Lung function in immature baboons with respiratory distress syndrome receiving early caffeine therapy: A pilot study. Acta Paediatrica. 2005;94(1):92-98.
37. Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia.Birth Defects Res A Clin Mol Teratol. 2014;100(3):145-157.
38. Borszewska-Kornacka MK, Hozejowski R, Rutkowska M, Lauterbach R. Shifting the boundaries for early caffeine initiation in neonatal practice: Results of a prospective, multicenter study on very preterm infants with respiratory distress syndrome. PLoS One.2017;12(12):e0189152.
39. Fehrholz M, Hutten M, Kramer BW, Speer CP, Kunzmann S. Amplification of steroid-mediated SP-B expression by physiological levels of caffeine.Am J Physiol Lung Cell Mol Physiol. 2014;306(1):L101-109.
40. Rocha G, Proenca E, Guedes A, et al. Cord blood levels of IL-6, IL-8 and IL-10 may be early predictors of bronchopulmonary dysplasia in preterm newborns small for gestational age. Dis Markers.2012;33(1):51-60.
41. Floros J, Londono D, Gordon D, et al. IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants. Pediatr Res. 2012;71(1):107-114.
42. Hogmalm A, Bry M, Strandvik B, Bry K. IL-1beta expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice. Am J Physiol Lung Cell Mol Physiol. 2014;306(1):L23-34.
43. Zhao W, Ma L, Cai C, Gong X. Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-kappaB and A2aR Signaling in LPS-Induced THP-1 Macrophages. Int J Biol Sci.2019;15(8):1571-1581.
44. Chen S, Wu Q, Zhong D, Li C, Du L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-kappaB pathway. Respir Res. 2020;21(1):140.
45. Weichelt U, Cay R, Schmitz T, et al. Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine.Eur Respir J. 2013;41(4):966-973.
46. Koroglu OA, MacFarlane PM, Balan KV, et al. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology.2014;106(3):235-240.
47. Chavez Valdez R, Ahlawat R, Wills-Karp M, Nathan A, Ezell T, Gauda EB. Correlation between serum caffeine levels and changes in cytokine profile in a cohort of preterm infants. J Pediatr.2011;158(1):57-64, 64 e51.
48. Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway.J Inflamm Res. 2018;11:359-374.
49. Liao J, Kapadia VS, Brown LS, et al. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia.Nat Commun. 2015;6:8977.
50. Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB. Caffeine modulates TNF-alpha production by cord blood monocytes: the role of adenosine receptors. Pediatr Res.2009;65(2):203-208.
51. Endesfelder S, Strauss E, Bendix I, Schmitz T, Buhrer C. Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats.Oxid Med Cell Longev. 2020;2020:3840124.
52. Reis e Sousa C. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin Immunol. 2004;16(1):27-34.
53. Wedgwood S, Gerard K, Halloran K, et al. Intestinal Dysbiosis and the Developing Lung: The Role of Toll-Like Receptor 4 in the Gut-Lung Axis. Front Immunol. 2020;11:357.
54. Malash AH, Ali AA, Samy RM, Shamma RA. Association of TLR polymorphisms with bronchopulmonary dysplasia. Gene.2016;592(1):23-28.
55. Tunc T, Aydemir G, Karaoglu A, et al. Toll-like receptor levels and caffeine responsiveness in rat pups during perinatal period. Regul Pept. 2013;182:41-44.
56. Ren H, Teng Y, Tan B, et al. Toll-like receptor-triggered calcium mobilization protects mice against bacterial infection through extracellular ATP release. Infect Immun. 2014;82(12):5076-5085.
57. Chavez-Valdez R, Ahlawat R, Wills-Karp M, Gauda EB. Mechanisms of modulation of cytokine release by human cord blood monocytes exposed to high concentrations of caffeine. Pediatr Res. 2016;80(1):101-109.
58. Endesfelder S, Zaak I, Weichelt U, Buhrer C, Schmitz T. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radic Biol Med. 2014;67:221-234.
59. Tiwari KK, Chu C, Couroucli X, Moorthy B, Lingappan K. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro.Biochem Biophys Res Commun. 2014;450(4):1345-1350.
60. Endesfelder S, Strauss E, Scheuer T, Schmitz T, Buhrer C. Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res. 2019;20(1):88.
61. Hosoi T, Toyoda K, Nakatsu K, Ozawa K. Caffeine attenuated ER stress-induced leptin resistance in neurons. Neurosci Lett.2014;569:23-26.
62. Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L586-L598.
63. Tatler AL, Barnes J, Habgood A, Goodwin A, McAnulty RJ, Jenkins G. Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices. Thorax. 2016;71(6):565-567.
64. Wang X, Cui H, Wu S. CTGF: A potential therapeutic target for Bronchopulmonary dysplasia. Eur J Pharmacol. 2019;860:172588.
65. Yu H, Konigshoff M, Jayachandran A, et al. Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J. 2008;22(6):1778-1789.
66. Fehrholz M, Speer CP, Kunzmann S. Caffeine and rolipram affect Smad signalling and TGF-beta1 stimulated CTGF and transgelin expression in lung epithelial cells. PLoS One. 2014;9(5):e97357.
67. Fehrholz M, Glaser K, Speer CP, Seidenspinner S, Ottensmeier B, Kunzmann S. Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts. Respir Res.2017;18(1):51.
68. Rath P, Nardiello C, Surate Solaligue DE, et al. Caffeine administration modulates TGF-beta signaling but does not attenuate blunted alveolarization in a hyperoxia-based mouse model of bronchopulmonary dysplasia. Pediatr Res. 2017;81(5):795-805.
69. Li XY, Xu L, Lin GS, et al. Protective effect of caffeine administration on myocardial ischemia/reperfusion injury in rats.Shock. 2011;36(3):289-294.
70. Qi W, Qiao D, Martinez JD. Caffeine Induces TP53-Independent G1-Phase Arrest and Apoptosis in Human Lung Tumor Cells in a Dose-Dependent Manner. Radiation Research. 2002;157(2):166-174.
71. Dayanim S, Lopez B, Maisonet TM, Grewal S, Londhe VA. Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung. Pediatr Res. 2014;75(3):395-402.
72. Jing X, Huang YW, Jarzembowski J, Shi Y, Konduri GG, Teng RJ. Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1 function in neonatal rat pups. Pediatr Res. 2017;82(3):483-489.
73. Dumpa V, Nielsen L, Wang H, Kumar VHS. Caffeine is associated with improved alveolarization and angiogenesis in male mice following hyperoxia induced lung injury. BMC Pulm Med. 2019;19(1):138.
74. Yeh CH, Liao YF, Chang CY, et al. Caffeine treatment disturbs the angiogenesis of zebrafish embryos. Drug Chem Toxicol.2012;35(4):361-365.
75. Ren X, Chen JF. Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Front Neurosci. 2020;14:602697.
76. Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol.2020;12(2):149-172.