References:
1. Bernard T, B., Goss KN, Laughon M, et al. Bronchopulmonary dysplasia.Nat Rev Dis Primers. 2019;5(1):78.
2. Smith VC, Zupancic JA, McCormick MC, et al. Trends in severe
bronchopulmonary dysplasia rates between 1994 and 2002. J
Pediatr. 2005;146(4):469-473.
3. Rutkowska M, Hożejowski R, Helwich E, Borszewska-Kornacka MK,
Gadzinowski J. Severe bronchopulmonary dysplasia – incidence and
predictive factors in a prospective, multicenter study in very preterm
infants with respiratory distress syndrome. The Journal of
Maternal-Fetal & Neonatal Medicine. 2018;32(12):1958-1964.
4. Klinger G, Sokolover N, Boyko V, et al. Perinatal risk factors for
bronchopulmonary dysplasia in a national cohort of very-low-birthweight
infants. Am J Obstet Gynecol. 2013;208(2):115 e111-119.
5. Geetha O, Rajadurai VS, Anand AJ, et al. New BPD-prevalence and risk
factors for bronchopulmonary dysplasia/mortality in extremely low
gestational age infants </=28 weeks. J Perinatol.2021;41(8):1943-1950.
6. Northway WH, Jr., Rosan RC, Porter DY. Pulmonary disease following
respirator therapy of hyaline-membrane disease. Bronchopulmonary
dysplasia. N Engl J Med. 1967;276(7):357-368.
7. Kalikkot Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary
dysplasia: A review of pathogenesis and pathophysiology. Respir
Med. 2017;132:170-177.
8. Wang SH, Tsao PN. Phenotypes of Bronchopulmonary Dysplasia. Int
J Mol Sci. 2020;21(17).
9. Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia:
clinical aspects and preventive and therapeutic strategies. J
Transl Med. 2018;16(1):36.
10. Ogawa R, Mori R, Sako M, Kageyama M, Tamura M, Namba F. Drug
treatment for bronchopulmonary dysplasia in Japan: questionnaire survey.Pediatr Int. 2015;57(1):189-192.
11. Moschino L, Zivanovic S, Hartley C, Trevisanuto D, Baraldi E, Roehr
CC. Caffeine in preterm infants: where are we in 2020? ERJ Open
Res. 2020;6(1).
12. Elmowafi M, Mohsen N, Nour I, Nasef N. Prophylactic versus
therapeutic caffeine for apnea of prematurity: a randomized controlled
trial. J Matern Fetal Neonatal Med. 2021:1-9.
13. Synnes A, Grunau RE. Neurodevelopmental outcomes after neonatal
caffeine therapy. Semin Fetal Neonatal Med. 2020;25(6):101160.
14. Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of
prematurity. N Engl J Med. 2006;354(20):2112-2121.
15. Aranda JV, Beharry KD. Pharmacokinetics, pharmacodynamics and
metabolism of caffeine in newborns. Semin Fetal Neonatal Med.2020;25(6):101183.
16. Aranda JV, Cook CE, Gorman W, et al. Pharmacokinetic profile of
caffeine in the premature newborn infant with apnea. J Pediatr.1979;94(4):663-668.
17. Kua KP, Lee SW. Systematic review and meta-analysis of clinical
outcomes of early caffeine therapy in preterm neonates. Br J Clin
Pharmacol. 2017;83(1):180-191.
18. Pakvasa MA, Saroha V, Patel RM. Optimizing Caffeine Use and Risk of
Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review,
Meta-analysis, and Application of Grading of Recommendations Assessment,
Development, and Evaluation Methodology. Clin Perinatol.2018;45(2):273-291.
19. Lodha A, Entz R, Synnes A, et al. Early Caffeine Administration and
Neurodevelopmental Outcomes in Preterm Infants. Pediatrics.2019;143(1).
20. Ferguson KN, Roberts CT, Manley BJ, Davis PG. Interventions to
Improve Rates of Successful Extubation in Preterm Infants: A Systematic
Review and Meta-analysis. JAMA Pediatr. 2017;171(2):165-174.
21. Davis PG, Schmidt B, Roberts RS, et al. Caffeine for Apnea of
Prematurity trial: benefits may vary in subgroups. J Pediatr.2010;156(3):382-387.
22. Patel RM, Leong T, Carlton DP, Vyas-Read S. Early caffeine therapy
and clinical outcomes in extremely preterm infants. J Perinatol.2013;33(2):134-140.
23. Dobson NR, Patel RM, Smith PB, et al. Trends in caffeine use and
association between clinical outcomes and timing of therapy in very low
birth weight infants. J Pediatr. 2014;164(5):992-998 e993.
24. Mohammed S, Nour I, Shabaan AE, Shouman B, Abdel-Hady H, Nasef N.
High versus low-dose caffeine for apnea of prematurity: a randomized
controlled trial. Eur J Pediatr. 2015;174(7):949-956.
25. Steer P, Flenady V, Shearman A, et al. High dose caffeine citrate
for extubation of preterm infants: a randomised controlled trial.Arch Dis Child Fetal Neonatal Ed. 2004;89(6):F499-503.
26. Wan L, Huang L, Chen P. Caffeine citrate maintenance doses effect on
extubation and apnea postventilation in preterm infants. Pediatr
Pulmonol. 2020;55(10):2635-2640.
27. Brattstrom P, Russo C, Ley D, Bruschettini M. High-versus low-dose
caffeine in preterm infants: a systematic review and meta-analysis.Acta Paediatr. 2019;108(3):401-410.
28. Mohd Kori AM, Van Rostenberghe H, Ibrahim NR, Yaacob NM, Nasir A. A
Randomized Controlled Trial Comparing Two Doses of Caffeine for Apnoea
in Prematurity. Int J Environ Res Public Health. 2021;18(9).
29. Segerer FJ, Speer CP. Lung Function in Childhood and Adolescence:
Influence of Prematurity and Bronchopulmonary Dysplasia]. Z
Geburtshilfe Neonatol. 2016;220(4):147-154.
30. Saarenpaa HK, Tikanmaki M, Sipola-Leppanen M, et al. Lung Function
in Very Low Birth Weight Adults. Pediatrics. 2015;136(4):642-650.
31. Kassim Z, Greenough A, Rafferty GF. Effect of caffeine on
respiratory muscle strength and lung function in prematurely born,
ventilated infants. Eur J Pediatr. 2009;168(12):1491-1495.
32. Sanchez-Solis M, Garcia-Marcos PW, Aguera-Arenas J, Mondejar-Lopez
P, Garcia-Marcos L. Impact of early caffeine therapy in preterm newborns
on infant lung function. Pediatr Pulmonol. 2020;55(1):102-107.
33. Doyle LW, Ranganathan S, Cheong JLY. Neonatal Caffeine Treatment and
Respiratory Function at 11 Years in Children under 1,251 g at Birth.Am J Respir Crit Care Med. 2017;196(10):1318-1324.
34. Kraaijenga JV, Hutten GJ, de Jongh FH, van Kaam AH. The Effect of
Caffeine on Diaphragmatic Activity and Tidal Volume in Preterm Infants.J Pediatr. 2015;167(1):70-75.
35. Nagatomo T, Jimenez J, Richter J, et al. Caffeine Prevents
Hyperoxia-Induced Functional and Structural Lung Damage in Preterm
Rabbits. Neonatology. 2016;109(4):274-281.
36. Yoder B, Thomson M, Coalson J. Lung function in immature baboons
with respiratory distress syndrome receiving early caffeine therapy: A
pilot study. Acta Paediatrica. 2005;94(1):92-98.
37. Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia.Birth Defects Res A Clin Mol Teratol. 2014;100(3):145-157.
38. Borszewska-Kornacka MK, Hozejowski R, Rutkowska M, Lauterbach R.
Shifting the boundaries for early caffeine initiation in neonatal
practice: Results of a prospective, multicenter study on very preterm
infants with respiratory distress syndrome. PLoS One.2017;12(12):e0189152.
39. Fehrholz M, Hutten M, Kramer BW, Speer CP, Kunzmann S. Amplification
of steroid-mediated SP-B expression by physiological levels of caffeine.Am J Physiol Lung Cell Mol Physiol. 2014;306(1):L101-109.
40. Rocha G, Proenca E, Guedes A, et al. Cord blood levels of IL-6, IL-8
and IL-10 may be early predictors of bronchopulmonary dysplasia in
preterm newborns small for gestational age. Dis Markers.2012;33(1):51-60.
41. Floros J, Londono D, Gordon D, et al. IL-18R1 and IL-18RAP SNPs may
be associated with bronchopulmonary dysplasia in African-American
infants. Pediatr Res. 2012;71(1):107-114.
42. Hogmalm A, Bry M, Strandvik B, Bry K. IL-1beta expression in the
distal lung epithelium disrupts lung morphogenesis and epithelial cell
differentiation in fetal mice. Am J Physiol Lung Cell Mol
Physiol. 2014;306(1):L23-34.
43. Zhao W, Ma L, Cai C, Gong X. Caffeine Inhibits NLRP3 Inflammasome
Activation by Suppressing MAPK/NF-kappaB and A2aR Signaling in
LPS-Induced THP-1 Macrophages. Int J Biol Sci.2019;15(8):1571-1581.
44. Chen S, Wu Q, Zhong D, Li C, Du L. Caffeine prevents
hyperoxia-induced lung injury in neonatal mice through NLRP3
inflammasome and NF-kappaB pathway. Respir Res. 2020;21(1):140.
45. Weichelt U, Cay R, Schmitz T, et al. Prevention of
hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine.Eur Respir J. 2013;41(4):966-973.
46. Koroglu OA, MacFarlane PM, Balan KV, et al. Anti-inflammatory effect
of caffeine is associated with improved lung function after
lipopolysaccharide-induced amnionitis. Neonatology.2014;106(3):235-240.
47. Chavez Valdez R, Ahlawat R, Wills-Karp M, Nathan A, Ezell T, Gauda
EB. Correlation between serum caffeine levels and changes in cytokine
profile in a cohort of preterm infants. J Pediatr.2011;158(1):57-64, 64 e51.
48. Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway.J Inflamm Res. 2018;11:359-374.
49. Liao J, Kapadia VS, Brown LS, et al. The NLRP3 inflammasome is
critically involved in the development of bronchopulmonary dysplasia.Nat Commun. 2015;6:8977.
50. Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A,
Gauda EB. Caffeine modulates TNF-alpha production by cord blood
monocytes: the role of adenosine receptors. Pediatr Res.2009;65(2):203-208.
51. Endesfelder S, Strauss E, Bendix I, Schmitz T, Buhrer C. Prevention
of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats.Oxid Med Cell Longev. 2020;2020:3840124.
52. Reis e Sousa C. Toll-like receptors and dendritic cells: for whom
the bug tolls. Semin Immunol. 2004;16(1):27-34.
53. Wedgwood S, Gerard K, Halloran K, et al. Intestinal Dysbiosis and
the Developing Lung: The Role of Toll-Like Receptor 4 in the Gut-Lung
Axis. Front Immunol. 2020;11:357.
54. Malash AH, Ali AA, Samy RM, Shamma RA. Association of TLR
polymorphisms with bronchopulmonary dysplasia. Gene.2016;592(1):23-28.
55. Tunc T, Aydemir G, Karaoglu A, et al. Toll-like receptor levels and
caffeine responsiveness in rat pups during perinatal period. Regul
Pept. 2013;182:41-44.
56. Ren H, Teng Y, Tan B, et al. Toll-like receptor-triggered calcium
mobilization protects mice against bacterial infection through
extracellular ATP release. Infect Immun. 2014;82(12):5076-5085.
57. Chavez-Valdez R, Ahlawat R, Wills-Karp M, Gauda EB. Mechanisms of
modulation of cytokine release by human cord blood monocytes exposed to
high concentrations of caffeine. Pediatr Res. 2016;80(1):101-109.
58. Endesfelder S, Zaak I, Weichelt U, Buhrer C, Schmitz T. Caffeine
protects neuronal cells against injury caused by hyperoxia in the
immature brain. Free Radic Biol Med. 2014;67:221-234.
59. Tiwari KK, Chu C, Couroucli X, Moorthy B, Lingappan K. Differential
concentration-specific effects of caffeine on cell viability, oxidative
stress, and cell cycle in pulmonary oxygen toxicity in vitro.Biochem Biophys Res Commun. 2014;450(4):1345-1350.
60. Endesfelder S, Strauss E, Scheuer T, Schmitz T, Buhrer C.
Antioxidative effects of caffeine in a hyperoxia-based rat model of
bronchopulmonary dysplasia. Respir Res. 2019;20(1):88.
61. Hosoi T, Toyoda K, Nakatsu K, Ozawa K. Caffeine attenuated ER
stress-induced leptin resistance in neurons. Neurosci Lett.2014;569:23-26.
62. Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG.
Attenuation of endoplasmic reticulum stress by caffeine ameliorates
hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol
Physiol. 2017;312(5):L586-L598.
63. Tatler AL, Barnes J, Habgood A, Goodwin A, McAnulty RJ, Jenkins G.
Caffeine inhibits TGFβ activation in epithelial cells, interrupts
fibroblast responses to TGFβ, and reduces established fibrosis in ex
vivo precision-cut lung slices. Thorax. 2016;71(6):565-567.
64. Wang X, Cui H, Wu S. CTGF: A potential therapeutic target for
Bronchopulmonary dysplasia. Eur J Pharmacol. 2019;860:172588.
65. Yu H, Konigshoff M, Jayachandran A, et al. Transgelin is a direct
target of TGF-beta/Smad3-dependent epithelial cell migration in lung
fibrosis. FASEB J. 2008;22(6):1778-1789.
66. Fehrholz M, Speer CP, Kunzmann S. Caffeine and rolipram affect Smad
signalling and TGF-beta1 stimulated CTGF and transgelin expression in
lung epithelial cells. PLoS One. 2014;9(5):e97357.
67. Fehrholz M, Glaser K, Speer CP, Seidenspinner S, Ottensmeier B,
Kunzmann S. Caffeine modulates glucocorticoid-induced expression of CTGF
in lung epithelial cells and fibroblasts. Respir Res.2017;18(1):51.
68. Rath P, Nardiello C, Surate Solaligue DE, et al. Caffeine
administration modulates TGF-beta signaling but does not attenuate
blunted alveolarization in a hyperoxia-based mouse model of
bronchopulmonary dysplasia. Pediatr Res. 2017;81(5):795-805.
69. Li XY, Xu L, Lin GS, et al. Protective effect of caffeine
administration on myocardial ischemia/reperfusion injury in rats.Shock. 2011;36(3):289-294.
70. Qi W, Qiao D, Martinez JD. Caffeine Induces TP53-Independent
G1-Phase Arrest and Apoptosis in Human Lung Tumor Cells in a
Dose-Dependent Manner. Radiation Research. 2002;157(2):166-174.
71. Dayanim S, Lopez B, Maisonet TM, Grewal S, Londhe VA. Caffeine
induces alveolar apoptosis in the hyperoxia-exposed developing mouse
lung. Pediatr Res. 2014;75(3):395-402.
72. Jing X, Huang YW, Jarzembowski J, Shi Y, Konduri GG, Teng RJ.
Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1
function in neonatal rat pups. Pediatr Res. 2017;82(3):483-489.
73. Dumpa V, Nielsen L, Wang H, Kumar VHS. Caffeine is associated with
improved alveolarization and angiogenesis in male mice following
hyperoxia induced lung injury. BMC Pulm Med. 2019;19(1):138.
74. Yeh CH, Liao YF, Chang CY, et al. Caffeine treatment disturbs the
angiogenesis of zebrafish embryos. Drug Chem Toxicol.2012;35(4):361-365.
75. Ren X, Chen JF. Caffeine and Parkinson’s Disease: Multiple Benefits
and Emerging Mechanisms. Front Neurosci. 2020;14:602697.
76. Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main
targets of colorectal cancer. World J Gastrointest Oncol.2020;12(2):149-172.