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Abstract

Both surface motion and hole stress concentration have always been concerned in anisotropic

medium. In this paper, a theoretical approach is used to study the scattering problem of circular

holes under a scalene trapezoid on the surface. The mapping function that anisotropic medium to

homogeneous medium is established, and the relationship between the free boundary of anisotropic

medium and the mapping of homogeneous medium boundary is proved. In the space of

homogeneous medium mapping, the wave displacement function is obtained by solving the

equation of motion that meets the zero-stress boundary conditions by separating the variable

method and the symmetric method. Based on the complex function, multi-polar coordinate method

and region-matching technique, algebraic equations are established at auxiliary boundary and free

boundary conditions in complex domain. Then according to sample statistics, least square method

is used instead of the Fourier expansion method to solve the undetermined coefficient of the

algebraic equations by discrete boundary. Numerical results shows that the continuity of the

auxiliary boundary and the accuracy of the zero-stress boundary are nice, and the displacement of

the free surface and the stress of the circular hole are related to the parameters of material medium,

the position of the circular hole, the direction of the incident wave and the frequency content of the

excitation. Finally the process of the wave propagation and scattering around trapezoid and shallow

circle are shown in time domain through the inverse fourier transform.

Keywords: Surface motion; anisotropic material; mapping function; SH-wave scattering; least

square method; complex function; Region-matching technique; half-space

1. Introduction

Dynamic response of non-linear boundary in anisotropic medium has always been an important

research topic in the field of wave motion. It is helpful for the research on inverse problems of the

elastic wave, and it is meaningful for the site survey and prospecting, seismic research, underwater
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detection and target identification, large-scale wall vibration analysis, nondestructive testing, flaw

detection, etc. Pioneering work in this area was done in early 1970s. The wave function expansion

method was used to analyze the local semi-cylindrical canyon scattering in the half space under the

action of incident SH waves1,2. Hermite function and mapping function was applied to analyze

scattering of SH waves with arbitrary shape depressions3. Subsequently, the Graf’s addition

theorem provided an analytical solution to the SH waves scattering by a cylindrical canyon of

circular-arc cross-section4, and weighted residual method was applied to 2D canyons of arbitrary

shape5. The degenerate kernels and Fourier series expansions were adopted in the null-field integral

equation to analyze the surface motion of multiple alluvial valleys for incident plane SH waves6.

Due to the multiple reflections of the incident wave on the convex surface, the scattering of the

incident wave by the convex surface is more complicated than that on the concave surface. The

two-dimensional model was divided into a closed circular region and a half space with a semi-

circular concave topography by introducing a semi-circular auxiliary boundary, to study the

scattering of plane SH waves by a semi-cylindrical hill in the half-space7-10. In fact Region-

matching technique was used to study more complex boundary which the entire wavefield solution

in each individual region is well defined and well behaved since it satisfies the governing equation

and all boundary conditions except at the fictitious interface. Such as V-shaped canyon, circular

sectorial canyon, deep semi-elliptic canyon with a horizontal edge11-16. Application of complex

displacement fields, mapping method, series expansion and mirror image method to solve scattering

of waves in complex structure17-21. Such as the anti-plane response of an isosceles trapezoid, an

scalene trapezoid, an isosceles trapezoidal hill to SH waves 22-24. In addition, numerical methods are

also used to solve the scattering of SH waves by concave and convex topography. Hybrid method

based on combination of transfinite interpolation and series expansion solves the problem of

irregular surface scattering25. A hybrid method based on the combination of lamb series and finite

element method was also used to investigate a dike with trapezoidal structure and a circular-arc

foundation embedded in an elastic half-space26. In recent years, new methods have also emerged to

solve the wave problem, such as the refined dynamic theory, the partial differential operator theory.

In engineering, some materials need to be simplified into gradient material models or

anisotropic material models. Due to the large number of independent constants in non-uniform

media, the scattering field of elastic waves becomes more complicated. For example, the

propagation of gradient material waves was studied27-31, and the complex wave function method

was used to give a solution of SH-wave scattering in circular holes, depressions, and cylindrical

semicircular sedimentary valleys in anisotropic media32-39. Boundary element method was used to

study the scattering of SH waves by holes and inclusions in an anisotropic body and an anisotropic
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elastic layer in infinite domain40-43. In addition, numerical methods were also used to study cross-

anisotropic material44,45.

In this paper based on the existing research results, the SH wave scattering problem of shallow

circular hole under scalene trapezoid in anisotropic medium is studied. A more flexible non-

semicircle region division method is used to solve the shallow hole problem, and use auxiliary

circle to solve singularity of reflex angle at trapezoid corner which singularity was proposed by

Achenbach 46. The mapping function from anisotropic medium to homogeneous medium is derived,

and revise the transformation function of professor Diankui Liu32,33. The relationship between the

free boundary of anisotropic medium and the boundary of mapped homogeneous medium is proved,

and the wave displacement function is obtained by solving the wave equation that meets the scalene

trapezoid zero-stress boundary conditions by separating the variable method in the mapped

homogeneous medium space. The wave function that satisfies the boundary conditions of the half-

space is derived by using symmetry and complex coordinates in the mapping of the uniform

medium space. The defect of directly constructing the half-space scattering wave function in the

literature which doesn’t consider anisotropic material asymmetry is corrected. Especially for the

difference range of wave function series, and multiple auxiliary boundary continuous conditions, a

more effective least square method which only need discrete boundary is proposed. The discrete

point spacing and the boundary equation amplitude adjusting are used to coordinate Euclidean

distance weight. After numerical simulation, the high accuracy of the auxiliary boundary continuity

and the zero boundary condition prove the correctness of region-matching technique, wave function

equation and least square method. Finally, the effects of different angles of incidence, the frequency

content of the excitation, parameters of material medium, and positions of hole on surface motion

and hole stress are discussed in frequency domain, and the process of the wave propagation and

scattering around trapezoid and shallow circle are shown in time domain. For many years, The

mapping function from anisotropic medium to homogeneous medium and the function of

constructing the half-space scattering wave are given. At the same time. the singularity of reflex

angle and wave function which satisfy anisotropic medium wedge free edge are solved.

2. Methodology

2.1Model

The model consists of a scalene trapezoid on half space and a hole under free surface shown in

Fig 1 a). SH-wave propagates in anisotropic half space with modulus C44 C45 C55 and density ρ at

incident angle α. C1 and C2 symbolize trapezoidal waist with the gradients of 1:n1 and 1:n2, C3 is

trapezoidal upper flat surface, and S represent half space free flat surface.
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In order to solve singularity of reflex angle at trapezoid corner, and obtain the global

displacement function which satisfy equation (1) and complicated boundary conditions, use region-

matching technique and auxiliary circle. (a) The half space can be divided to region ① ② ③ ④ ⑤

and ⑥ by auxiliary boundary D1 D2 D3 D4 D5 D6with circle center O1 O2 O3 O4 O5 O8. P, P1 P2

P3and P4 are the projection of O O1 O2 O3 O8 on the flat surface. Auxiliary circle D4 and D5 are used

to solve singularity of reflex angle at trapezoid corner O4 and O5. (b) O3 is the intersection of the

extension lines of the C1 and mid-perpendicular of the X4X5 , where X4, X5 are the intersection

point of circle D4, D5 and the trapezoidal edge respectively. (c) O is the intersection of the extension

lines of the trapezoid side C1 and C2. Local coordinate systems are established as shown in the

figure. Once the radius of D4 and D5 are given, all dimensions of each radius can be determined by

the graphical relationship. Usually the radius of r4 and r5 are smaller. Each angle is presented in

Appendix A for details.

Fig 1. The model of the scalene trapezoid with a hole and regions divided
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2.2 Equation of motion and mapping function

From the stress-strain relationship in an anisotropic medium, the SH wave equation is
2 2 2 2

55 45 442 2 22w w w wC C C
x yx y t

   
  

   
(1)

Introducing complex variables yixz  and yixz  , in the complex plane ( z , z ), Eq.(1)

can be rewritten as:

     
2 2 2 2

55 44 45 44 55 55 44 452 2 22 2 2w w w wC C C i C C C C C i
z zz z t

   
       

   
(2)

Correspondingly, radial stress and hoop stress have the forms of

       55 44 55 44 45 55 44 45 55 44

1
2 2

2
i i

rz

w w w w
C C C C C i e C C C i C C e

z z z z
     

         
   

    
        

(3)

       55 44 55 44 45 55 44 45 55 44

1
2 2

2
i i

z

w w w w
C i C i C i C i C e C i C i C C i C i e

z z z z
 


   

           
   

    
        

(4)

In order to convert the left side of the above formula (2) into a form 2w     , the following

conversion is performed
2 2 2 2 2 2

2 2

w z z w z z z z w z z w w z w z
z z z zz z             

               
     

                  

        
        

         
(5)

Comparing formula (2) and formula (5), get:

 

   

 

 

55 44 45

44 55

55 44 45

2 2

2

2

2

0

z z
C C C i a

z z z z
C C b

z z
C C C i c

z z
d

 

   

 

   

 
  

 

   
  

   

 
  

 

 
 

   













(6)

From item (d), the solution form of z is:

z a b c    (7)

Set special solution 0c  , from (a), (b), (c), know that there are three unknown real numbers in

z, let ˆ ˆ ˆ ˆ,a x yi b x zi    or ˆ ˆˆ ˆ,a x zi b y zi    , substitute z into items (a), (b), (c) can obtain

 

 

2
45 44 44 55 45

44

2
45 44 44 55 45

44

C C C C C i
a

C

C C C C C i
b

C

  


 











or

2
55 44 55 45 45

55

2
55 44 55 45 45

55

C C C C C i
a

C

C C C C C i
b

C

  


 












  is expressed as
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bz az
bb aa
bz az
bb aa





  


  

(8)

Comparing the above four results, know that: the second solution (a) term takes a positive sign

in homogeneous medium, z  , z  . so this solution is taken for convenience. Of course other

solutions are also correct.

In order to convert into form
2 2

2
4

w w
u

t


 

 


  
, a and b are expressed by dimensionless 1 2,  and

equivalent elastic modulus 

 

 

1 2

1 2

1
2
1
2

z z

z z

  

  

  

  


(9)

Where

2

55 44 55 45 45

1

55

2

55 44 55 45 45

2

55

C C C C C i

C

C C C C C i

C





  


  










, and  244 55 45 55C C C C  

For the convenience of expression, this paper defines a mapping function  z  ξ to represent

complex conversion. The above formula (1) is transformed into
2 2

2 2

14
T

w w
c t 

 


  
(10)

Where 2
Tc




 . After separating the time variables, the above formula becomes

22

2
w ik w

 
       

(11)

Where Tk c . Then the solution of the above formula (11) scattered wave is

   1,
n

n n
n

w A H k   






 
   

 
 (12)

Correspondingly, radial stress and hoop stress have the forms of

1 2 3 4

1 2 3 4

r r i r r i
rz

i i
z

w w w wf f e f f e

w w w wf f e f f e

 

     



   


   





      
            
      

            

(13)

Where 1
rf 2

rf 3
rf 4

rf 1f


2f


3f


4f
 presented in Appendix.
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Establish a cartesian coordinate system (x',y') , which is defined as ,x y i x y i        .

According to literature 3, this coordinate system (x',y') is a homogeneous medium mapping

coordinate system correspond to an anisotropic medium coordinate system(x,y). It is known from

equation (9) that the complex modulus |ξ| is related to the complex z phase angle θ and modulus |z|,

and the complex ξ phase angle θ' is only related to the z phase angle θ. Suppose the functional

relationship is     f angle z    ξ .

2.3 Wave function in region①

In the trapezoidal region①, the total waves consist of the scattered waves WD6(1) and standing

wave WD3(1) by the auxiliary boundary D6 and D3, it need satisfy governing Eq. (2) and free

hypotenuse condition.

Zero-stress condition of free surface hypotenuse C1 and C2 in region① at the coordinate

system (x,y) can be expressed as:

0

0 1C
z

0 2

0
0

 


 


  
(14)

In cartesian coordinate system(x0,y0) and (x0',y0'), the boundary stress is expressed as

   

   

0

0

1 3 2 4

1 2 1 2

( )

2
( )

i i i i
z

i i i i
z

w w
f e f e f e f e a

i w w ir w w
e e e e b

r r

       


   



 

 
      

   

 

 


 
   

 

    
     

    





           

(15)

It is known that the hypotenuse of the triangle in the mapping space is also a straight line from

the functional relationship     f angle z    ξ . Substituting the boundary condition (14) into item

(a) of the above formula (15), get

 
 

2 4

1 3

i i

i i

f e f ew
w f e f e

   

   








 
 

  
(16)

Substituting the above formula (16) into the term (b), the boundary stress in the coordinate

system (x0',y0') is obtained

 
 0

0 1C
z

0 2

0
0

f
f

 


 

    
(17)

The coordinate system (xe',ye') is established which the xe'-axis bisects the angle of the triangle

corner in mapping space. The governing equation of the polar coordinate system (re',θe')

corresponding to the coordinates (xe',ye') is
2

2
2 2

1 1 0e
e e e e

w wr k w
r r r r 

             
(18)
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Solving the wave equation that satisfies the boundary conditions using the separation variable

method is:

1 1 2 21 2( )cos( ) ( )sin( )e e e ew A kr B kr          J J (19)

Where
   1

1 2

2m
f f


 




or
   2

1 2

(2 1)m
f f


 





0,1, 2m  

On the complex plane ( , )e e  corresponding to the coordinate system (xe',ye'), the standing wave

function of the above formula (19) is written as

     
0 0

0

3(1)
0

0

, 1
mp mp

mD e e
e e m mp e

m e e

W W C K
 

  
 







  
      

     
       

 J (20)

Where W0 is the displacement amplitude, it is supposed to be unity in this paper. Cm is

coefficient to be determined. Jmp0( ) is Bessel function with mp0 th order. p0=π/(f(α1)-f(α2)).

According to moving coordinates from (xe',ye') to (x0',y0'), ξ0 can be expressed as
0

0
q i

e e  (21)

Where q0=-(f(α1)+f(α2))/2

Substituting (21) into equation (20) and returning to the coordinate system (x0,y0), in the

complex plane ( , )j jZ Z , equation (20) can be expressed as

     
 

 
 
 

0

0 0

0 0
0 03(1) 0

0 1 0
0 0 0

0 0

, 1j jD
j j m mp j

m
j j

mp mp
q i q iZ e Z eq i mW Z Z W C K Z e
q i q iZ e Z e





                                          


ξ ξ

J ξ
ξ ξ

(22)

Where

3 03
0

8 08

3
8j

Z b j
Z

Z b j
 

   

and  03 3 1 3 4tan( ) tan( )b H H H H i     is the complex coordinates of O3 with origin at O.

1 2
08 4

1 2 1 22L L
L n n Lb H H H i

n n n n
 

       
is the complex coordinates of O8 with origin at O. In

WD3(1) characters, superscripts (1) means region ①, superscripts D3 represent auxiliary boundary D3.

K1 is the shear wave number of region①. The following symbol marking method is similar.

The corresponding shear stresses are:

   
0

3(1)
0

0

ˆ,r zj
D

j j m mp j
m

Z Z C P Z




 J (23)

   
0

3(1)
0

0

ˆ,zj
D

j j m mp j
m

Z Z C Q Z




 J (24)

Where m̂pP
J , ˆ

mpQJ presented in Appendix, and Hj=0.
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Similarly, the scattered waves WD6(1) can be rewritten as

     
 

 
 
 

0

0 0

0 0
0 06(1) 1 0

0 1 0
0 0 0

0 0

, 1j jD
j j m mp j

m
j j

mp mp
q i q iZ e Z eq i mW Z Z W B K Z e
q i q iZ e Z e





                                          


ξ ξ

H ξ
ξ ξ

(25)

The corresponding shear stresses are:

    1

3

6(1)
00

0

ˆ,r z
D

j j m mp j
m

Z Z C P Z




 H (26)

    1

3

3(1)
00

0

ˆ,z
D

j j m mp j
m

Z Z C Q Z




 H (27)

2.4 Wave function in region②

In the opening region ②, the total waves can be split into incident waves W(i) , reflected waves

W(r) from the horizontal free surface S, and the scattered waves WD1 and WD2 by the auxiliary

boundary D1 and the hole edge D2.

Fig 2. Circular hole symmetry in mapping space

Due to the anisotropy of the material, a semi-infinite space scattering field cannot be directly

constructed by the symmetric method. So need to construct a solution with the help of the material

homogeneity field of the mapping space. The surface stress is
0

S
z 0   from the Eq.(15), and material

is isotropic in mapping space (x',y'). Based on complex coordinates and symmetric method,

construct a semi-infinite space scattering field that satisfies boundary conditions according to

symmetry. The scattering wave equation with two symmetrical holes is

   
 

   
 

1 12 2
2 2

2 2

( ) ( )
m m

m m m m
m

z z
w A k z A k z

z z

 


   


 
  

 

   
   
   


ξ ξ

H ξ H ξ
ξ ξ

(28)

By 2 2 22h ξ ξ , 2 2 ξ ξ , 2 4p 2h ξ ξ , 4 4p 2l ξ ξ relationship

(   2 2h real H ξ ,   2 2l imag H i ξ ) take into Eq.(28), it is expressed as follow
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   
 

     
 

1 12 2 2
2 2 2

2 2 2

1 14 2 4 2
4 2 4 2

4 2 4 2

2
( ) ( 2 )

2

( ) 1 ( )

mm

m m m m
m

mm

m

m m m m
m

h
w A k A k h

h

H H
A k H A k H

H H






   


 


   


 
   

 

  
     

  

          

  
       





ξ ξ
H ξ H ξ

ξ ξ

ξ ξ ξ ξ
H ξ ξ H ξ ξ

ξ ξ ξ ξ

(29)

According to Eq.(29), equation of scattered wave WD2(2) generated by boundary D2 and

satisfying governing Eq. (2) and free boundary condition S in the complex plane ( jz , jz ) can be

written as

 
        

   

          
   

7 21
2 7 2

7 22(2)
0

7 21
2 7 2

7 2

,

1

m

j

m j

jD
j j m m

m
m j

m j

j

Z H
K Z H

Z H
W Z Z W E

Z H
K Z H

Z H






 
  

 


 
  

 

   
           

   
         



ξ ξ
H ξ ξ

ξ ξ

ξ ξ
H ξ ξ

ξ ξ

(30)

Where

1 71
7

2 72

1
2j

Z b j
Z

Z b j
 

   

and 71 1 2b H L i  , 72 2b H

Similarly, equation of scattered wave WD1(2) generated by boundary D1 and satisfying

governing Eq. (2) and free boundary condition S in the complex plane ( jz , jz ) can be written as

 
        

   

          
   

6 11
2 6 1

6 11(2)
0

6 11
2 6 1

6 1

,

1

m

j

m j

jD
j j m m

m
m j

m j

j

Z H
K Z H

Z H
W Z Z W D

Z H
K Z H

Z H






 
  

 


 
  

 

   
           

   
         



ξ ξ
H ξ ξ

ξ ξ

ξ ξ
H ξ ξ

ξ ξ

(31)

Where

1 61
6

2 62

1
2j

Z b j
Z

Z b j
 

   

and 61 1b H , 62 2 2b H L i 

Above formula, W0 is the displacement amplitude. Dm and Em are coefficient to be determined.

H1m( ) is Hankel function of first kind with mth order.

The corresponding shear stresses are:

   11(2)
6

ˆ,r zj
D

j j m m j
m

Z Z D P Z




  H (32)

   11(2)
6

ˆ,zj
D

j j m m j
m

Z Z D Q Z




  H (33)
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   12(2)
7

ˆ,r zj
D

j j m m j
m

Z Z E P Z




  H (34)

   12(2)
7

ˆ,zj
D

j j m m j
m

Z Z E Q Z




  H (35)

In the above stress formula q=0, and see appendix for details.

Incident wave with incidence angle α, can be represented in the cartesian coordinate system

o6x6y6 32, and be written as
2

6 6
2 6 6

(z z )( sin cos )( ) 2

i
i ii ii

i i

iK
e eiK y xi

i iW We W e
 

 


  (36)

Where 0iW W

Substituting into the wave equation (1), the wave velocity is:

      1 22 2
55 45 44cos 2sin cos sinsi i i i ic a C a a C a C     

Reflected wave can be written as
2

6 6
2 6 6

(z z )( sin cos )( ) 2

r
i ir rr

r r

iK
e eiK y xr

r rW W e W e
 

 
   (37)

Substituting into the wave equation (1), the wave velocity is:

      1 22 2
55 45 44cos 2sin cos sinsr r r r rc a C a a C a C     

Substituting the total wave ( ) ( )i rW W W  into the free boundary zero stress condition
3 3

3 0
0S

x z x



 ,

obtain

45 55

2 2

cot cot 2
0

sin sin

r i

r i i
r i

i r

a a C C
W W a
K K  

 
  
 

or
2 2

0
r i

r i i
r i

a a
W W a
K K


  
 

When cotαr1=cotαi-2C45/C55≥0, the reflected wave is in the first quadrant; while cotαr1=cotαi-

2C45/C55<0 the reflected wave does not exist because the anisotropic medium changes the direction

of wave propagation. It means that the incident angle αi can only be less than acot(2C45/C55) near the

surface. Its total expression is

   
2 2

6 6 6 6(z z ) (z z )
2 2

0 0,
i r

i i i ii i r r
j j j j

iK iK
e e e ei r

j jW Z Z W e W e
    

    (38)

Substituting into Eq(3) and Eq(4), get the stress expression

   
       
       

55 44 6 55 44 45 6

55 44 45 6 55 44 6

z 2 z1,
2 2 z zj

i
j ji r

r z j j i
j j

C C U C C C i V e
Z Z

C C C i U C C V e




 



          
       

(39)
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   
       
       

55 44 6 55 44 45 6

55 44 45 6 55 44 6

z 2 z1,
2 2 z zj

i
j ji r

z j j i
j j

C i C i U C i C i C V e
Z Z

C i C i C U C i C i V e



 
 



          
         

(40)

see appendix for details.

2.5 Wave function in region③

In the enclosed region ③, the total waves are composed of WD1 WD3 WD4 and WD5 generated by

the auxiliary boundary D1 D3 D4 and D5. In the complex plane ( jz , jz ), it can be written as

      
  1

1
1

1(3)
, 0 3

j
j

m j

m
ZD

W Z Z W I K Zj j m m Z






 



 
  
 

ξ
J ξ

ξ
(41)

      
  3

3
3

3(3) 1, 0 3
j

j
m j

m
ZD

W Z Z W K K Zj j m m Z






 



 
  
 

ξ
H ξ

ξ
(42)

      
  4

4
4

4(3) 1, 0 3
j

j
m j

m
ZD

W Z Z W M K Zj j m m Z






 



 
  
 

ξ
H ξ

ξ
(43)

      
  5

5
5

5(3) 1, 0 3
j

j
m j

m
ZD

W Z Z W N K Zj j m m Z






 



 
  
 

ξ
H ξ

ξ
(44)

Where

3 13

1 4 14

5 15

3
4
5

j

Z b j
Z Z b j

Z b j

 
  
  

1 31

3 4 34

5 35

1
4
5

j

Z b j
Z Z b j

Z b j

 
  
  

3 43

4 1 41

5 45

3
1
5

j

Z b j
Z Z b j

Z b j

 
  
  

3 53

5 1 51

4 54

3
1
4

j

Z b j
Z Z b j

Z b j

 
  
  

and  31 1 3 3 42 tan( )b H H L H i     ,  34 3 3 4tan( )b H L H i    ,  35 3 3 4tan( )b H H i  , 13 31b b 

14 1 2b H L i   , 15 1 2b H L i   , 43 34b b  , 41 14b b  , 45b Li , 53 35b b  , 51 15b b  , 54 45b b 

The corresponding shear stresses are:

    1(3)
3

ˆ, , 0r zj
D

j j m m j
m

Z Z I P Z 




  J (45)

    1(3)
3

ˆ, , 0zj
D

j j m m j
m

Z Z I Q Z 




  J (46)

    13(3)
1

ˆ, , 0r zj
D

j j m m j
m

Z Z K P Z 




  H (47)
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    13(3)
1

ˆ, , 0zj
D

j j m m j
m

Z Z K Q Z 




  H (48)

    14(3)
4

ˆ, , 0r zj
D

j j m m j
m

Z Z M P Z 




  H (49)

    14(3)
4

ˆ, , 0zj
D

j j m m j
m

Z Z M Q Z 




  H (50)

    15(3)
5

ˆ, , 0r zj
D

j j m m j
m

Z Z N P Z 




  H (51)

    15(3)
5

ˆ, , 0zj
D

j j m m j
m

Z Z N Q Z 




  H (52)

2.6 Wave function in region④ and⑤

There is only standing wave WD( ) in the closed region④ or⑤, it need satisfy governing Eq.

(1) and free hypotenuse condition.

Reference formula Eq. (22), the④ ⑤ region can be rewritten as

      
 

 
 
 

4 4
4 4

4
40 4 4

4(4) 4 4
, 10 4 4

4 4

m

m

mp mp
q i q iZ e Z eD j jq iZ Z W F K Z ej j m mp j q i q iZ e Z ej j

W





 

  
 

                      

ξ ξ
J ξ

ξ ξ
(53)

      
 

 
 
 

5 5
5 5

5
50 5 5

5(5) 5 5
, 105 5 5 5

5 5

m

m

mp mp
q i q iZ e Z eD j jq iW Z Z W G K Z em mp j q i q iZ e Z ej j






 

  
 

                      

ξ ξ
J ξ

ξ ξ
(54)

Where 4 4 44 4jZ Z b j   , 5 5 55 5jZ Z b j   and     4 6 2 / 2q f f     ,

    5 72 / 2q f f    ,     4 6 2p f f     ,     5 72p f f    , 44 55 0b b 

The corresponding shear stresses are:

    4(4)
44

0

ˆ,r zj

D
j j m mp j

m
Z Z F P Z





 J (55)

    4(4)
44

0

ˆ,zj

D
j j m mp j

m
Z Z F Q Z





 J (56)

    5(5)
55

0

ˆ,r zj

D
j j m mp j

m
Z Z G P Z





 J (57)

    5(5)
55

0

ˆ,zj

D
j j m mp j

m
Z Z G Q Z





 J (58)
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2.7 Wave function in region⑥

According to Eq.(29), equation of scattered wave WD6(6) generated by boundary D6 and satisfying

governing Eq. (1) and free boundary condition C3 in the complex plane ( jz , jz ) can be written as

 
        
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(59)

Where 9 8 98 , 8jZ Z b j   and 98 4b H .

The corresponding shear stresses are:

    6(6)
9
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D
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m
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

 J (60)

    6(6)
9
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D
j j m m j

m
Z Z A Q Z





 J (61)

2.8 Boundary conditions and solving method

Based on the continuity conditions of displacement and stress at the auxiliary boundary D1, D3,

D4, D5, D6, and radial zero-stress at the hole edge D2, a system of equations are established for

solving the unknown complex coefficients.
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Fig 3. Discrete points of auxiliary boundary and hole edge

Currently, the fourier expansion method is commonly used to solve the undetermined

coefficients of algebraic equations, and it is an average approximation of the entire boundary

conditions. Due to the wave field high gradient of the trapezoid edge and multiple auxiliary

boundaries, the fourier expansion method which convergence speed is slow is difficult to solve the

problem of the scalene trapezoid. Therefore, this paper proposes least square method with direct

discrete boundary conditions. Take discrete points according to the set distance on the boundary,

and the displacement and stress on the two sides of the discrete points are equal, as shown in the

figure. An infinite number of points n can be taken on the boundary to form an infinite number of

equations to solve the undetermined coefficients Am, Bm, Cm, … . In order to minimize the error of

the undetermined coefficient of the finite term, a large number of sample points n (n>>m) are

approximated to the true solution by the least square method. This paper uses equidistant discrete

points and stress terms divided by μk (not reflected in the formula) to coordinate the weights of

euclidean distance. The matrix is expressed as

T TM MX M N (63)

Where
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above formula see appendix for details.

2.9 Surface displacement amplitude and hole stress

In region①, the total wave field W1 is
3(1) 6(1)

1
D DW W W  (64)

In region②, the total wave field W2 has three components:
1(2) 2(2) ( )

2
D D i rW W W W    (65)

In region③, the total wave field W3 has four components:
1(3) 3(3) 4(3) 5(3)

3
D D D DW W W W W    (66)

In region④, the total wave field W4 has four components:
4(4)

4
DW W (67)

In region⑤, the total wave field W5 has four components:
5(5)

5
DW W (68)

In region⑥, the total wave field W5 has four components:
6(6)

6
DW W (69)

Eqs. (64) to (69) can also be expressed as
( ) 1,2,jt i

j jW W e j    (70)

Where |Wj| is the displacement amplitude, ϕj is the phase angle ofWj

 arctan Im( ) Re( )j j jW W  (71)

The dimensionless frequency of incident waves can be expressed as
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2 2
2

L kL
 

  (72)

Where K1=K2=K3=K4=K5=K6=k, and k is given by Eqs. (11). λ is the wavelength of the incident

waves. It is well known that the effect of elastic waves on surface displacement and hole stress

highly relies on wavelength. As can be seen from Eq. (72), the dimensionless frequency η is

introduced to represent the ratio of the radius (r2) of the hole to the wavelength, and indirectly

represents the magnitude of the wave number.

In region②, hole hoop stress can be expressed as

2 2 2

1(2) 2(2)D D i r
z z z z          （ ） (73)

The dimensionless hoop stress is
*

0 2 2,z z Z r     (74)

Where 0 0kW 

3 Numerical examples and discussions

Table. 1 Parameters of scalene trapezoid and hole

Figure L 1n 2n H 2H 2L 2r  

Fig 4⁓ Fig 6

Fig 10, Fig 12

Fig 14~Fig 16

Fig 19~Fig 21

6.0 0.5 1.5 2.0 6.0 0.0 1.0 0.8 0.2

Fig 7 6.0 0.5 1.5 2.0 6.0 0.0 1.0 / 0.0

Fig 8 6.0 0.5 1.5 2.0 6.0 0.0 1.0 1.0 /

Fig 9 6.0 0.5 1.5 2.0 6.0 0.0 / 0.8 0.2

Fig 11, Fig 13 6.0 1.5 0.5 2.0 6.0 0.0 1.0 0.8 0.2

Fig 17 6.0 1.0 1.0 2.0 6.0 0.0 1.0 / 0.0

Fig 18 6.0 1.0 1.0 2.0 6.0 0.0 1.0 1.0 /

3.1 Precision discussion

An important method to verify the theory is to fit the continuity of the auxiliary boundary and

the zero-stress condition of the circular hole edge, free surface. The numerical results of auxiliary

boundary, hole edge and free surface are given for frequency of incident η=2.0, incident angle α=

0° 60°(the max incident angle αmax = acot(2C45/C55) = 68°), trapezoidal edge slope n1=0.5 n2=1.5,
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material parameters κ=0.8 ν=0.2(κ=C44/C55, ν=C45/C55). As shown in Fig 4 to Fig 5, the

displacement W and stress τrz* continuity of the auxiliary boundary D are good, and the stress τθz* of

the surface and τrz* of the circular hole boundary D2 are close to 0, which indicate that the wave

function and the least square method are effective.

.

Fig 4. The continuity of the auxiliary boundary and free edge zero-stress at α=0°

Fig 5. The continuity of the auxiliary boundary and free edge zero-stress at α=60°

Another important method to verify the theory is to compare with the solution results of the

finite element method as shown in Fig 6 which display the free surface displacement amplitudes

|W/W0|, hole edge stress τθz* and displacement cloud at a certain time. The FEM results are obtained
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by the commercial software Ls-Dyna with user-defined material models. The geometric model is

meshed by shell element which edge length 0.1 and grid only with out-of-plane translational degree

of freedom. The mesh area is large enough to eliminate the effects of boundary reflections. Sine

excitation is applied to the bottom or right edge of the analysis area, corresponding to incident angle

0° or -90° , and the calculation time is long enough to ensure that it is in a steady state. The surface

displacement magnitude measures from the displacement of the surface element nodes, and the

stress of the finite element hole edge comes from the stress of the nearest element of the hole edge,

which represents the stress in the hole edge area rather than the hole edge. So the FEM stress results

may be a bit inaccurate. For incident angle α=-90°, it is difficult to obtain a sufficient reflected

wave area near the surface due to limitation of computational grid domain and computer computing

power. Therefore, the finite element analysis results are only for reference. The results by the

proposed method are agree with those by the finite element method from figure.

Fig 6. Comparisons of the proposed solution results with FEM results at η=0.5 n1=0.5

3.2 Numerical examples and analysis

Each position of free surface can be expressed by dimensionless y/(L/2) in the cartesian

coordinate system o6x6y6, where -1 represents the left trapezoid foot point, 2n2H/L-1 is trapezoid left

vertex, 1-2n1H/L is trapezoid right vertex, 1 represents the right trapezoid foot point.

(1) The characteristics of mapping function

It can be known from the anisotropic material coordinate system (x,y) and the isotropic

material mapping coordinate system (x',y') that the shape of the trapezoid and the hole changes with
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κ or ν. In the isotropic material space κ only changes the mapping coordinate x expansion ratio; ν

affects the scaling of the mapping coordinates x and y.

Fig 7. The shape of trapezoid and hole vs κ

Fig 8. The shape of trapezoid and hole vsν

(2) The comparin of hole

It can be seen from the below figure that the hole has a small impact on the surface at low

frequencies, while it has a greater impact at high frequencies, and the impact of the hole on the

ground surface increases as the angle of incidence increases at low frequencies.

Fig 9. Free surface displacement amplitudes |Wj| of trapezoid without hole and with hole

(3) The influence of materials
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Free surface displacement amplitude and circular hole hoop stress distribution at different

incident frequencies, angle and slope are shown in Fig 10 to Fig 13. When the incident wave has a

horizontal component (α≠0°), the amplitude and oscillation frequency of the right-side surface

(2y/L>1.0) both decrease, while it increase in the incident wave side ( 2y/L<-1.0). It seems that the

trapezoid and the circle hole become filters and amplifier, and it is related to the angle of incidence

and the slope of the trapezoid. This is due to the multiple reflections of the incident wave at

different angles on different slopes. Both the amplitude and oscillation frequency of the trapezoidal

area (-1.0<2y/L<1.0) are improved to different degrees.

The circular hole hoop stress distribution is quite different for different materials. So hole

stress is very sensitive to material, while it is smaller at incident angle 30°.

Fig 10. Free surface displacement amplitudes |Wj| and hole edge stress τθz* at η=0.5 n1=0.5
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Fig 11. Free surface displacement amplitudes |Wj| and hole edge stress τθz* at η=0.5 n1=1.5

Fig 12. Free surface displacement amplitudes |Wj| and hole edge stress τθz* at η=2.0 n1=0.5

Fig 13. Free surface displacement amplitudes |Wj| and hole edge stress τθz* at η=2.0 n1=1.5

(4) The influence of hole deep

Free surface displacement amplitude and circular hole hoop stress distribution at different

incident frequencies, angle and hole deep are shown in Fig 14 and Fig 15. When the incident angle

α=30°, the amplitude of the surface displacement decreases as the hole depth increases, while the

displacement amplitude of the triangular area increases. This is mainly due to the deeper the hole,

the more wave energy enters trapezoid area. The change in hole stress is large at each incidence
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angle. And it is still a big influence to free surface and hole stress even the hole deep reach to 20

from figure.

Fig 14. Free surface displacement amplitudes |Wj| and hole edge stress τθz* for various H3 at

η=0.5 n1=0.5

Fig 15. Free surface displacement amplitudes |Wj| and hole edge stress τθz* for various H3 at

η=2.0 n1=0.5

(5) the influence of incident waves frequency
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For the sake of revealing the influence of dimensionless frequencies on free surface displacement

and hole stress, the first row pictures of Fig 16 give the displacement amplitudes as a function of

2y/L and η at various angles of incidence (α=0°, 30°, 60°) and slope (n1=0.5), and the second row

pictures give the hole stress as a function of θ and η. It shows that the number of wave peaks in the

trapezoidal region increases as the wave dimensionless frequencies increases, and the peak and

oscillation frequency increase on one side of the incident wave, while it decrease on the another

side. At the same time, the peak and oscillation frequency of the area near the larger trapezoidal

slope significantly increase, but when the angle of incidence changes large, the increase will move

to the side of wave incoming direction. The hole concentrated stress is distributed on both sides of

the wave propagation direction, and the shear stress near the free surface boundary is greater than

that on the infinite space. This is because the superposition of the incident wave and the reflection

wave of free boundary. The displacement amplitude of the trapezoidal surface is peak shape, and

the displacement amplitude of the free flat surface is mountains shape which ridge is fluctuations.

Fig 16. 3D plots of surface displacement amplitudes |Wj| and hole edge stress τθz* vs η at n1=0.5

κ=0.8

(6) the influence of κ

For the sake of revealing the influence of material parameters on free surface displacement and

hole stress, the first row pictures of Fig 17 give the displacement amplitudes as a function of 2y/L

and κ at various angles of incidence (α=0°, 30°, 60°) and slope (n1=1.0), and the second row

pictures give the hole stress as a function of θ and κ. It shows that the surface displacement and hole

stress have an increasing trend as the κ decreases, but this trend gradually weakens as the incident
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angle increases. The number of free surface displacement peaks decreases as k increases, while the

number of hole stress peaks increases.

Fig 17. 3D plots of surface displacement amplitudes |Wj| and hole edge stress τθz* vs κ at η=2.0

n1=1.0 ν=0.0

(7) The influence of ν

The first row pictures of Fig 18 give the displacement amplitudes as a function of 2y/L and ν at

various angles of incidence (α=0°, 30°, 60°) and slope (n1=1.0), and the second row pictures give

the hole stress as a function of θ and ν. There is no obvious regular change in surface displacement

and hole stress as ν changes, and the overall level is at the same.
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Fig 18. 3D plots of surface displacement amplitudes |Wj| and hole edge stress τθz* vs ν at η=2.0

n1=1.0 κ=1.0

3.3 Time domain response

The transient response is obtained from the frequency domain results through the inverse

fourier transform (IFT) algorithm. The incident time signal is a Ricker wavelet

  2 2 22 2 2( ) 1 2 cf t
cRi t f t e    (75)

with the characteristic frequency fc=0.5Hz.

The calculated frequencies range from 0.0 to 2.0 Hz with 1/33 Hz intervals. The transfer function

for every position is deduced in the previous chapter for a particular frequency ω (or wave number

k). Then the time domain results can be synthesized by using the inverse FFT, and the shear wave

propagates with the velocity 3Tc  . Fig 19 the reference point is set to be (x,y)=(8,-16) for t=0 s,

Fig 20 and Fig 21 the reference point are set to be (x,y)=(20,-15) for t=0 s. The (x,y) reference

coordinate system is o6x6y6.

Fig 19 shows the synthetic displacement contour which half-space between y=−12 to 12 and

contains 800 discrete positions located along the surface of the trapezoid. Because the reference

point is (8,-16), the vertical Ricker wave reaches the flat surface (x=0) at t=2.3s ( 3.44sic  ), after

the vertical wave leave away from the flat surface several scattered waves appear one after another

which amplitude of the scattered waves are obviously different. The incident angle 60° Ricker wave

reaches the flat surface position (y=-12) at t=2.6s ( 2.83sic  ), when the wave reach the trapezoid

several scattered waves appear one after another which amplitude of the scattered waves are also

obviously different.

In Fig 20 and Fig 21, compute snapshots for nodes with equally distance 0.05 at incident angle

0º and 60º. The snapshots show the wave fields at 9 specified times to illustrate the process of the

wave propagation and scattering around a trapezoid shape and shallow circle. And the shape of

circular hole scattered wave is non-circular, which is the biggest difference from a homogeneous

medium. Besides, through the time domain results of various points, it can be used for the transient
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response analysis of underground structures or surface structures to provide support for strength

design.

Fig 19. 3D plots of surface displacement amplitudes |Wj| vs time at n1=0.5

Fig 20. Snapshots for α =0º at 9 specified times.
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Fig 21. Snapshots for α =60º at 9 specified times.

4. Conclusions

This paper derives the mapping function, which transforms from anisotropic space to isotropic

space. Using the mapping space and adopting the symmetric method, the zero-stress boundary

condition of the semi-infinite cavity is solved. Finally, using complex variable function coordinate

transformation, area matching method and least square method, the analytic solution of the wave to

the typical scalene trapezoid boundary is obtained in frequency domain. From formula derivation

and numerical simulation, the following conclusions can be drawn:

(1) It can be seen from the derivation that there are four mapping functions, that is, there are

four mapping spaces, and each mapping function can solve the problem. Therefore, we can carry

out further research on cracks and special-shaped cavities in the mapping space, just like dealing

with a homogeneous medium.

(2) Because the anisotropic medium changes the direction of wave propagation, the incident

angle αi can only be less than acot(2C45/C55) near the free surface, and it can be used for shock

absorption design.

(3) From the simulation effect, it can be found that κ determines the y-scaling of the geometric

figure, and ν determines the rotation of the image.
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(4) When the incident angle α=30°, the amplitude of the surface displacement decreases as the

hole depth increases, while the displacement amplitude of the trapezoidal area increases.

(5) The displacement amplitude of the trapezoidal surface is peak shape, while the

displacement amplitude of the free flat surface is mountains shape which ridge is fluctuations. The

number of wave peaks in the triangular region increases as the wave dimensionless frequencies

increases, and the peak and oscillation frequency increase on one side of the incident wave, while it

decrease on the another side. The hole concentrated stress is distributed on both sides of the wave

propagation direction, and the shear stress near the free boundary is greater than that on the infinite

space.

(6) The snapshots show the process of the wave propagation and scattering around trapezoid

and shallow circle in time domain. Besides, through the time domain results of various points, it can

be used for the transient response analysis of underground structures or surface structures to provide

support for structural strength design.
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Appendix A: expressions of each angle in figure 1 model
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where jZ , ( )n jZ represents the modulus and phase angle of complex numbers, respectively.
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