References
Adams ES, Atkinson L (2008) Queen
fecundity and reproductive skew in the termite Nasutitermes corniger.
Insectes Soc 55:28–36. https://doi.org/10.1007/s00040-007-0970-5
Adams HA, Southey BR, Robinson GE, Rodriguez-zas SL (2008) Meta-analysis
of genome-wide expression patterns associated with behavioral maturation
in honey bees. 15:1–15. https://doi.org/10.1186/1471-2164-9-503
Adeoye O, Olawumi J, Opeyemi A, Christiania O (2018) Review on the role
of glutathione on oxidative stress and infertility. J Bras Reprod Assist
22:61–66. https://doi.org/10.5935/1518-0557.20180003
Ahmed S, Passos JF, Birket MJ, et al (2008) Telomerase does not
counteract telomere shortening but protects mitochondrial function under
oxidative stress. J Cell Sci 121:1046–1053.
https://doi.org/10.1242/jcs.019372
Allainé D, Pontier D, Gaillard JM, et al (1987) The relationship between
fecundity and adult body weight in Homeotherms. Oecologia 73:478–480.
https://doi.org/10.1007/BF00385268
Alonso-Alvarez C, Bertrand S, Devevey G, et al (2004) Increased
susceptibility to oxidative stress as a proximate cost of reproduction.
Ecol Lett 7:363–368. https://doi.org/10.1111/j.1461-0248.2004.00594.x
Anchelin M, Murcia L, Alcaraz-Pérez F, et al (2011) Behaviour of
telomere and telomerase during aging and regeneration in zebrafish. PLoS
One 6:. https://doi.org/10.1371/journal.pone.0016955
Athena Aktipis C, Boddy AM, Jansen G, et al (2015) Cancer across the
tree of life: Cooperation and cheating in multicellularity. Philos Trans
R Soc B Biol Sci 370:. https://doi.org/10.1098/rstb.2014.0219
Bauch C, Becker PH, Verhulst S (2013) Telomere length reflects
phenotypic quality and costs of reproduction in a long-lived seabird.
Proc R Soc B Biol Sci 280:. https://doi.org/10.1098/rspb.2012.2540
Beaulieu M, Reichert S, Maho Y Le, et al (2011) Oxidative status and
telomere length in a long facing a costly reproductive event. Funct Ecol
25:577–585. https://doi.org/10.1111/j.l365-2435.2010.01825.x
Begna D, Han B, Feng M, et al (2012) Differential expressions of nuclear
proteomes between honeybee (Apis mellifera L.) queen and worker larvae:
A deep insight into caste pathway decisions. J Proteome Res
11:1317–1329. https://doi.org/10.1021/pr200974a
Bize P, Devevey G, Monaghan P, et al (2008) Fecundity and survival in
relation to resistance to oxidative stress in a free-living bird.
Ecology 89:2584–2593. https://doi.org/10.1890/07-1135.1
Blackburn EH (1991) Structure and function of telomeres. Nature
Blackburn EH (2005) Telomeres and telomerase: Their mechanisms of action
and the effects of altering their functions. FEBS Lett 579:859–862.
https://doi.org/10.1016/j.febslet.2004.11.036
Blackburn EH (1990) Minireview Telomeres : Structure and synthesis. J
Biol Chem 265:5919–5921
Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol
3:640–649. https://doi.org/10.1038/nchembio.2007.38
Bodenheimer FS, Nerya AB (1937) One year studies on the biology of the
honeybee in Palestine. Annu Appl Biol 24:385–403
Boswell GP, Britton RF, Franks NF (1998) Habitat fragmentation,
percolation theory and the conservation of a keystone species. Proc R
Soc B Biol Sci 265:
Brueland H (1995) Florida book of insect records. Lowest lifetime
fecundity. In: Book of insect records. pp 41–43
Capkova Frydrychova R, Mason JM, Biessmann H (2009) Regulation of
telomere length in Drosophila. Cytogenet Genome Res 122:356–364
Caulin AF, Maley CC (2011) Peto’s Paradox: Evolution’s prescription for
cancer prevention. Trends Ecol Evol 26:175–182.
https://doi.org/10.1016/j.tree.2011.01.002
Chapuisat M, Keller L (2002) Division of labour influences the rate of
ageing in weaver ant workers. Proc R Soc B Biol Sci 269:909–913.
https://doi.org/10.1098/rspb.2002.1962
Choudhary B, Karande AK, Raghavan SC (2012) Telomere and telomerase in
stem cells: relevance in ageing and disease. Front Biosci 16–30
Colominas-Ciuró R, Santos M, Coria N, Barbosa A (2017) Reproductive
effort affects oxidative status and stress in an Antarctic penguin
species: An experimental study. PLoS One 12:1–15.
https://doi.org/10.1371/journal.pone.0177124
Coluzzi E, Leone S, Sgura A (2019) Oxidative stress induces telomere
dysfunction and senescence by replication fork arrest. Cells 8:19.
https://doi.org/10.3390/cells8010019
Cong Y, Wright WE, Shay JW (2002) Human telomerase and its regulation.
Microbiol Mol Biol Rev 66:407–425.
https://doi.org/10.1128/MMBR.66.3.407
Corona M, Branchiccela B, Madella S, et al (2019) Decoupling the effects
of nutrition, age and behavioral caste on honey bee physiology and
immunity. bioRxiv. https://doi.org/10.1101/667931
Costantini D (2018) Meta-analysis reveals that reproductive strategies
are associated with sexual differences in oxidative balance across
vertebrates. Curr Zool 64:1–11. https://doi.org/10.1093/cz/zox002
Criscuolo F, Pillay N, Zahn S, Schradin C (2020) Seasonal variation in
telomere dynamics in African striped mice. Oecologia 194:609–620.
https://doi.org/10.1007/s00442-020-04801-x
Davidovic M, Sevo G, Svorcan P, et al (2010) Old age as a privilege of
the “selfish ones”. Aging Dis 1:139–46
Dixon L, Kuster R, Rueppell O (2014) Reproduction, social behavior, and
aging trajectories in honeybee workers. Age (Omaha) 36:89–101.
https://doi.org/10.1007/s11357-013-9546-7
Duffy JE, Morrison CL, Rios R (2000) Multiple Origins of Eusociality
among Sponge-Dwelling Shrimps (Synalpheus). Evolution (N Y) 54:503–516
Effron M, Griner L, Benirschke K (1977) Nature and rate of neoplasia
found in captive wild mammals, birds, and reptiles at necropsy. J Natl
Cancer Inst 59:185–198
Engels W (1990) Social Insects: An evolutionary approach to castes and
reproduction. Springer-Verlag, New York
Entringer S, Epel ES, Kumsta R, et al (2011) Stress exposure in
intrauterine life is associated with shorter telomere length in young
adulthood. Proc Natl Acad Sci U S A 108: E513-8.
https://doi.org/10.1073/pnas.1107759108
Epel ES, Blackburn EH, Lin J, et al (2004) Accelerated telomere
shortening in response to life stress. Proc Natl Acad Sci U S A
101:17312–5. https://doi.org/10.1073/pnas.0407162101
Fabian D, Flatt T (2014) Life History Evolution. Nat Educ Knowl 3:1–13
Fathi E, Charoudeh HN, Sanaat Z, Farahzadi R (2019) Telomere shortening
as a hallmark of stem cell senescence. Stem Cell Investig 6:.
https://doi.org/10.21037/sci.2019.02.04
Flatt T, Partridge L (2018) Horizons in the evolution of aging. BMC
Biology 16(1): 1-13. 1–13
Forsyth NR, Elder FFB, Shay JW, Wright WE (2005) Lagomorphs (rabbits,
pikas and hares) do not use telomere-directed replicative aging in
vitro. Mech Ageing Dev 126:685–691.
https://doi.org/10.1016/j.mad.2005.01.003
Francis N, Gregg T, Owen R, et al (2006) Lack of age-associated telomere
shortening in long- and short-lived species of sea urchins. FEBS Lett
580:4713–4717. https://doi.org/10.1016/j.febslet.2006.07.049
Geserick C, Tejera A, González-Suárez E, et al (2006) Expression of
mTert in primary murine cells links the growth-promoting effects of
telomerase to transforming growth factor-β signaling. Oncogene
25:4310–4319. https://doi.org/10.1038/sj.onc.1209465
Gomes NMV, Ryder OA, Houck ML, et al (2011) Comparative biology of
mammalian telomeres: Hypotheses on ancestral states and the roles of
telomeres in longevity determination. Aging Cell 10:761–768.
https://doi.org/10.1111/j.1474-9726.2011.00718.x
Gomes NM V, Shay JW, Wright WE (2010) Telomere Biology in Metazoa. Fed
Eur Biochem Soc 584:3741–3751.
https://doi.org/10.1016/j.febslet.2010.07.031.
Gotwald W (1995) Army Ants: The Biology of social predation. Cornell
University Press, Ithica, NY
Gräff J, Jemielity S, Parker JD, et al (2007) Differential gene
expression between adult queens and workers in the ant Lasius
niger . Mol Ecol 16:675–683.
https://doi.org/10.1111/j.1365-294X.2007.03162.x
Greenberg RA (2005) Telomeres, crisis and cancer. Curr Mol Med
5:213–218. https://doi.org/10.2174/1566524053586590
Gruber H, Schaible R, Ridgway ID, et al (2014) Telomere-independent
ageing in the longest-lived non-colonial animal, arctica islandica. Exp
Gerontol 51:38–45. https://doi.org/10.1016/j.exger.2013.12.014
Guidi J, Lucente M, Sonino N, Fava GA (2021) Allostatic load and its
impact on health: A systematic review. Psychother Psychosom 90:11–27.
https://doi.org/10.1159/000510696
Guo N, Parry EM, Li LS, et al (2011) Short telomeres compromise β-cell
signaling and survival. PLoS One 6:.
https://doi.org/10.1371/journal.pone.0017858
Haendeler J, Dröse S, Büchner N, et al (2009) Mitochondrial telomerase
reverse transcriptase binds to and protects mitochondrial DNA and
function from damage. Arterioscler Thromb Vasc Biol 29:929–935.
https://doi.org/10.1161/ATVBAHA.109.185546
Haldane JBS (1941) New Paths in Genetics. London
Hall KY, Hart RW, Benirschke AK, Walford RL (1984) Correlation between
ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts
and species maximum achievalbe life span. Mech Ageing Dev 13:576
Hariharan IK, Wake DB, Wake MH (2016) Indeterminate growth: Could it
represent the ancestral condition? Cold Spring Harb Perspect Biol
8:1–17. https://doi.org/10.1101/cshperspect.a019174
Harshman LG, Zera AJ (2006) The cost of reproduction: the devil in the
details. Trends Ecol Evol 22:80–86.
https://doi.org/10.1016/j.tree.2006.10.008
Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid
excision repair and life span in a number of mammalian species. Proc
Natl Acad Sci U S A 71:2169–2173.
https://doi.org/10.1073/pnas.71.6.2169
Hartmann A, Heinze J (2003) Lay eggs, live longer: Division of labor and
life span in a clonal ant species. Evolution (N Y) 57:2424–2429.
https://doi.org/10.1111/j.0014-3820.2003.tb00254.x
Hartmann N, Reichwald K, Lechel A, et al (2009) Telomeres shorten while
Tert expression increases during ageing of the short-lived fishNothobranchius furzeri . Mech Ageing Dev 130:290–296.
https://doi.org/10.1016/j.mad.2009.01.003
Harvell CD (1994) Biology of invertebrates and social insects. Q Rev
Biol 69:155–185
Hatakeyama H, Yamazaki H, Nakamura KI, et al (2016) Telomere attrition
and restoration in the normal teleost Oryzias latipes are linked
to growth rate and telomerase activity at each life stage. Aging (Albany
NY) 8:62–76. https://doi.org/10.18632/aging.100873
Haussmann MF, Winkler DW, Huntington CE, et al (2007) Telomerase
activity is maintained throughout the lifespan of long-lived birds.
42:610–618. https://doi.org/10.1016/j.exger.2007.03.004
Heidinger BJ, Blount JD, Boner W, et al (2011) Telomere length in early
life predicts lifespan. PNAS 109:1–6.
https://doi.org/10.1073/pnas.1113306109
Heinze J, Schrempf A (2012) Terminal investment: Individual reproduction
of ant queens increases with age. PLoS One 7:1–4.
https://doi.org/10.1371/journal.pone.0035201
Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J
Cancer 96:1020–1024. https://doi.org/10.1038/sj.bjc.6603671
Hoekstra LA, S., Schwartz T, Sparkman AM, et al (2020) The untapped
potential of reptile biodiversity for understanding how and why animals
age. Funct Ecol 34:38–54. https://doi.org/10.1111/1365-2435.13450.
Hoelzl F, Smith S, Cornils JS, et al (2016) Telomeres are elongated in
older individuals in a hibernating rodent, the edible dormouse
(Glis glis ). Sci Rep 6:1–9. https://doi.org/10.1038/srep36856
Holt SE, Aisner DL, Shay JW, Wright WE (1997) Lack of cell cycle
regulation of telomerase activity in human cells. Proc Natl Acad Sci U S
A 94:10687–10692. https://doi.org/10.1073/pnas.94.20.10687
Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ (2007) Chronic
oxidative stress and telomere shortening. Chemico-biological
interactions 169: 136
Hrdličková R, Nehyba J, Bose HR (2012) Alternatively spliced telomerase
reverse transcriptase variants lacking telomerase activity stimulate
cell proliferation. Mol Cell Biol 32:4283–4296.
https://doi.org/10.1128/mcb.00550-12
Inward D, Beccaloni G, Eggleton P (2007) Death of an order: A
comprehensive molecular phylogenetic study confirms that termites are
eusocial cockroaches. Biol Lett 3:331–335.
https://doi.org/10.1098/rsbl.2007.0102
Jemielity S, Chapuisat M, Parker JD, Keller L (2005) Long live the
queen: studying aging in social insects. Age (Omaha) 27:241–248.
https://doi.org/10.1007/s11357-005-2916-z
Jemielity S, Kimura M, Parker KM, et al (2007) Short telomeres in
short-lived males: what are the molecular and evolutionary causes? Aging
Cell 6: 225–233. https://doi.org/10.1111/j.1474-9726.2007.00279.x
Jiang H, Ju Z, Rudolph KL (2007) Telomere shortening and ageing. Z
Gerontol Geriatr 40: 314–324. https://doi.org/10.1007/s00391-007-0480-0
Jin K (2010) Modern biological theories of aging. Aging Dis 1: 72–74.
https://doi.org/10.1016/j.bbi.2008.05.010
Keller L (1998) Queen lifespan and colony characteristics in ants and
termites. Insectes soc 45:235–246
Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of
evolutionary theories of ageing. Lett to Nat 389:3–5
Kesäniemi J, Lavrinienko A, Tukalenko E, et al (2019) Exposure to
environmental radionuclides associates with tissue-specific impacts on
telomerase expression and telomere length. Sci Rep 9:1–9.
https://doi.org/10.1038/s41598-018-37164-8
Khan Z, Khan MS, Bawazeer S, et al (2022) A comprehensive review on the
documented characteristics of four Reticulitermes termites(Rhinotermitidae, Blattodea) of China. Brazilian J Biol 84:e256354.
https://doi.org/10.1590/1519-6984.256354
Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–4
Kitsoulis C V., Baxevanis AD, Abatzopoulos TJ (2020) The occurrence of
cancer in vertebrates: A mini review. J Biol Res 27:1–12.
https://doi.org/10.1186/s40709-020-00119-0
Klapper W, Heidorn K, Kühne K, et al (1998a) Telomerase activity in
“immortal” fish. FEBS Lett 434:409–12
Klapper W, Kühne K, Singh KK, et al (1998b) Longevity of lobsters is
linked to ubiquitous telomerase expression. FEBS Lett 439:143–6
Kocher S, Paxton R (2014) Comparative methods offer powerful insights
into social evolution in bees. Apidologie 45:289–305.
https://doi.org/10.1007/s13592-014-0268-3
Kohlmeier P, Alleman AR, Libbrecht R, et al (2019) Gene expression is
more strongly associated with behavioural specialization than with age
or fertility in ant workers. Mol Ecol 28:658–670.
https://doi.org/10.1111/mec.14971
Kohlmeier P, Negroni MA, Kever M, et al (2017) Intrinsic worker
mortality depends on behavioral caste and the queens’ presence in a
social insect. Sci Nat 104:. https://doi.org/10.1007/s00114-017-1452-x
Kong D, Jin Y, Yin Y, et al (2007) Real-time PCR detection of telomerase
activity using specific molecular beacon probes. Anal Bioanal Chem
388:699–709. https://doi.org/10.1007/s00216-007-1247-6
Korandová M, Frydrychová RČ (2016) Activity of telomerase and telomeric
length in Apis mellifera . Chromosoma 125:405–411.
https://doi.org/10.1007/s00412-015-0547-4
Korandová M, Krůček T, Szakosová K, et al (2018) Chronic low-dose
pro-oxidant treatment stimulates transcriptional activity of telomeric
retroelements and increases telomere length in Drosophila. J Insect
Physiol 104:1–8. https://doi.org/10.1016/j.jinsphys.2017.11.002
Korandová M, Krůček T, Vrbová K, Frydrychová RC (2014) Distribution of
TTAGG-specific telomerase activity in insects. Chromosome Res
22:495–503
Kotrschal A, Ilmonen P, Penn DJ (2007) Stress impacts telomere dynamics.
Biol Lett 3:128–130. https://doi.org/10.1098/rsbl.2006.0594
Koubová J, Čapková Frydrychová R (2021) Telomerase-positive somatic
tissues of honeybee queens (Apis mellifera ) display no DNA
replication. Cytogenet Genome Res Oct 14:1–6
Koubová J, Jehlík T, Kodrik D, et al (2019) Telomerase activity is
upregulated in the fat bodies of pre-diapause bumblebee queens
(Bombus terrestris ). Insect Biochem Mol Biol 115:103241
Koubová J, Pangrácová M, Jankásek M, et al (2021a) Long-lived termite
kings and queens activate telomerase in somatic organs. Proc R Soc B
288:20210511
Koubová J, Sábová M, Brejcha M, et al (2021b) Seasonality in telomerase
activity in relation to cell size , DNA replication , and nutrients in
the fat body of Apis mellifera . Sci Rep 11:1–11
Kramer BH, Schaible R (2013) Life span evolution in eusocial workers-A
theoretical approach to understanding the effects of extrinsic mortality
in a hierarchical system. PLoS One 8:.
https://doi.org/10.1371/journal.pone.0061813
Kreider JJ, Pen I, Kramer BH (2021) Antagonistic pleiotropy and the
evolution of extraordinary lifespans in eusocial organisms. Evol Lett
5:178–186. https://doi.org/10.1002/evl3.230
Krůček T, Korandová M, Šerý M, et al (2015) Effect of low doses of
herbicide paraquat on antioxidant defense in Drosophila. Arch Insect
Biochem Physiol 88:235–48. https://doi.org/10.1002/arch.21222
Kuszewska K, Miler K, Rojek W, Woyciechowski M (2017) Honeybee workers
with higher reproductive potential live longer lives. Exp Gerontol
98:8–12. https://doi.org/10.1016/j.exger.2017.08.022
Lai AG, Pouchkina-Stantcheva N, Di Donfrancesco A, et al (2017) The
protein subunit of telomerase displays patterns of dynamic evolution and
conservation across different metazoan taxa. BMC Evol Biol 17:1–21.
https://doi.org/10.1186/s12862-017-0949-4
Lau BWM, Wong AOL, Tsao GSW, et al (2008) Molecular cloning and
characterization of the zebrafish (Danio rerio ) telomerase
catalytic subunit (telomerase reverse transcriptase, TERT). J Mol
Neurosci 34:63–75. https://doi.org/10.1007/s12031-007-0072-x
Law E, Girgis A, Sylvie L, et al (2016) Telomeres and stress: Promising
avenues for research in psycho-oncology. Asia-Pacific J Oncol Nurs
3:137–147. https://doi.org/10.4103/2347-5625.182931
Lin J, Epel E, Blackburn E (2012) Telomeres and lifestyle factors: roles
in cellular aging. Mutat Res 730:85–9.
https://doi.org/10.1016/j.mrfmmm.2011.08.003
Listerman I, Sun J, Gazzaniga S, et al (2013) The major
reverse-transcriptase-incompetent splice variant of the human telomerase
protein inhibits telomerase activity but protects from apoptosis. Cancer
Res 73:2817–2828. https://doi.org/10.1158/0008-5472.CAN-12-3082.The
Liu L, Trimarchi JR, Smith PJS, Keefe DL (2002) Mitochondrial
dysfunction leads to telomere attrition and genomic instability. Aging
Cell 1:40–46. https://doi.org/10.1046/j.1474-9728.2002.00004.x
Lopez-Vaamonde C, Raine NE, Koning JW, et al (2009) Lifetime
reproductive success and longevity of queens in an annual social insect.
J Evol Biol 22:983–996.
https://doi.org/10.1111/j.1420-9101.2009.01706.x
Lucas ER, Keller L (2014) Ageing and somatic maintenance in social
insects. Curr Opin Insect Sci 5:31–36.
https://doi.org/10.1016/j.cois.2014.09.009
Lucas ER, Keller L (2018) Elevated expression of ageing and immunity
genes in queens of the black garden ant. Exp Gerontol 108:92–98.
https://doi.org/10.1016/j.exger.2018.03.020
Lucas ER, Romiguier J, Keller L (2017) Gene expression is more strongly
influenced by age than caste in the ant Lasius niger . Mol Ecol
26:5058–5073. https://doi.org/10.1111/mec.14256
Ma HM, Liu W, Zhang P, Yuan XY (2012) Human skin fibroblast telomeres
are shortened after ultraviolet irradiation. J Int Med Res
40:1871–1877. https://doi.org/10.1177/030006051204000526
Majoe M, Libbrecht R, Foitzik S, Nehring V (2021) Queen loss increases
worker survival in leaf-cutting ants under paraquat-induced oxidative
stress. Philos Trans R Soc B Biol Sci 376:.
https://doi.org/10.1098/rstb.2019.0735
Mason JM, Randall TA, Frydrychova RC (2016) Telomerase lost ?
Chromosoma 125:65–73. https://doi.org/10.1007/s00412-015-0528-7
Mason JM, Reddy HM, Capkova Frydrychova R (2011) Telomere maintenance in
organisms without telomerase. In: Seligman H (ed) DNA
Replication-Current Advances. InTech, pp 323–346
Medawar PB (1952) An unsolved problem in biology. H.K. Lewis, London
Monaghan P (2014) Organismal stress, telomeres and life histories. J Exp
Biol 217:57–66. https://doi.org/10.1242/jeb.090043
Mu M, Ren L, Hu X, et al (2015) Season-specific changes in telomere
length and telomerase activity in Chinese pine (Pinus
tabulaeformis Carr.). Russ J Plant Physiol Vol 62:487–493
Mukherjee S, Firpo EJ, Wang Y, Roberts JM (2011) Separation of
telomerase functions by reverse genetics. Proc Natl Acad Sci U S A
108:1363–1371. https://doi.org/10.1073/pnas.1112414108
Negroni MA, Foitzik S, Feldmeyer B (2019) Long-lived Temnothorax ant
queens switch from investment in immunity to antioxidant production with
age. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-43796-1
Nozaki T, Matsuura K (2019) Evolutionary relationship of fat body
endoreduplication and queen fecundity in termites. Ecol Evol
9:11684–11694. https://doi.org/10.1002/ece3.5664
Olsson M, Wapstra E, Friesen C (2018) Ectothermic telomeres: It’s time
they came in from the cold. Philos Trans R Soc B Biol Sci 373: 20160449.
https://doi.org/10.1098/rstb.2016.0449
Parker JD (2010) What are social insects telling us about aging?
Myrmecological News 13:103–110
Passos F, Saretzki G, Ahmed S, et al (2007) Mitochondrial dysfunction
accounts for the stochastic heterogeneity in telomere-dependent
senescence. Plos Biol 5:1138–1151.
https://doi.org/10.1371/journal.pbio.0050110
Penev A, Bazley A, Shen M, et al (2022) Alternative splicing is a
developmental switch for hTERT expression Alex. Mol Cell 81:2349–2360.
https://doi.org/10.1016/j.molcel.2021.03.033.
Razgonova MP, Zakharenko AM, Golokhvast KS, et al (2020) Telomerase and
telomeres in aging theory and chronographic aging theory (Review). Mol
Med Rep 22:1679–1694. https://doi.org/10.3892/mmr.2020.11274
Reznick D (1985) Costs of reproduction: an evaluation of the empirical
evidence. Oikos 44:257–267
Robinson GE, Strambi C, Strambi A, Feldlaufer MF (1991) Comparison of
juvenile hormone and ecdysteroid haemolymph titres in adult worker and
queen honey bees (Apis mellifera ). J Insect Physiol 37:929–935.
https://doi.org/10.1016/0022-1910(91)90008-N
Rollings N, Miller E, Olsson M (2014) Telomeric attrition with age and
temperature in Eastern mosquitofish (Gambusia holbrooki ).
Naturwissenschaften Vol 101:241–244
Sahin E, Colla S, Liesa M, et al (2011) Telomere dysfunction induces
metabolic and mitochondrial compromise. Nature 470:359–365.
https://doi.org/10.1038/nature09787.
Santos JH, Meyer JN, Van Houten B (2006) Mitochondrial localization of
telomerase as a determinant for hydrogen peroxide-induced mitochondrial
DNA damage and apoptosis. Hum Mol Genet 15:1757–1768.
https://doi.org/10.1093/hmg/ddl098
Saretzki G (2009) Telomerase, mitochondria and oxidative stress. Exp
Gerontol 44:485–92. https://doi.org/10.1016/j.exger.2009.05.004
Sauer DJ, Heidinger BJ, Kittilson JD, et al (2021) No evidence of
physiological declines with age in an extremely long-lived fish. Sci Rep
11:9065. https://doi.org/10.1038/s41598-021-88626-5
Schneider SA, Schrader C, Wagner AE, et al (2011) Stress resistance and
longevity are not directly linked to levels of enzymatic antioxidants in
the ponerine ant Harpegnathos saltator . PLoS One 6: e14601.
https://doi.org/10.1371/journal.pone.0014601
Schrempf A, Cremer S, Heinze J (2011) Social influence on age and
reproduction: Reduced lifespan and fecundity in multi-queen ant
colonies. J Evol Biol 24:1455–1461.
https://doi.org/10.1111/j.1420-9101.2011.02278.x
Schrempf, Heinze J, Cremer S (2005) Sexual Cooperation: Mating increases
longevity in ant queens. Curr Biol 15:267–270
Schwartz TS., Bronikowski A (2011) Molecular stress pathways and the
evolution of life histories in reptiles. Molecular mechanisms of life
history evolution: The genetics and physiology of life history traits
and trade-off. In: Flatt T, Heyland A (eds) The Genetics and Physiology
of Life History Traits and Trade-Offs. pp 193–209
Seeley TD (2014) Honeybee ecology: a study of adaptation in social life.
Princeton University Press
Ségal-Bendirdjian E, Geli V, Cayuela ML (2019) Non-canonical Roles of
Telomerase: Unraveling the Imbroglio. Front Cell Dev Biol 7:1–12.
https://doi.org/10.3389/fcell.2019.00332
Seluanov A, Chen Z, Hine C, et al (2007) Telomerase activity coevolves
with body mass, not lifespan. Aging Cell 6:45–52.
https://doi.org/10.1111/j.1474-9726.2006.00262.x.
Sharick JT, Vazquez-Medina JP, Ortiz RM, Crocker DE (2015) Oxidative
stress is a potential cost of breeding in male and female northern
elephant seals. Funct Ecol 29:367–376.
https://doi.org/10.1111/1365-2435.12330
Sherman PW, Lacey EA, Reeve HK, Keller L (1994) The eusociality
continuum. Behav Ecol 6:102–108
Sköld HN, Asplund ME, Wood CA, Bishop JDD (2011) Telomerase deficiency
in a colonial ascidian after prolonged asexual propagation. J Exp Zool
Part B Mol Dev Evol 316 B:276–283. https://doi.org/10.1002/jez.b.21399
Slater GP, Yocum GD, Bowsher JH (2020) Diet quantity influences caste
determination in honeybees (Apis mellifera): Caste determination in
honey bees. Proc R Soc B Biol Sci 287: 20200614..
https://doi.org/10.1098/rspb.2020.0614
Slusher AL, Kim JJJ, Ludlow AT (2020) The role of alternative rna
splicing in the regulation of htert, telomerase, and telomeres:
Implications for cancer therapeutics. Cancers (Basel) 12:1–16.
https://doi.org/10.3390/cancers12061514
Smith CR, Suarez A V., Tsutsui ND, et al (2011) Nutritional asymmetries
are related to division of labor in a queenless ant. PLoS One 6:4–8.
https://doi.org/10.1371/journal.pone.0024011
Smith S, Hoelzl F, Zahn S, Criscuolo F (2021) Telomerase activity in
ecological studies: what are its consequences for individual physiology
and is there evidence for effects and trade‐offs in wild populations.
Mol Ecol 1–13. https://doi.org/10.1111/mec.16233
Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol
3:259–268
Tan TCJ, Rahman R, Jaber-Hijazi F, et al (2012) Telomere maintenance and
telomerase activity are differentially regulated in asexual and sexual
worms. Proc Natl Acad Sci U S A 109:4209–14.
https://doi.org/10.1073/pnas.1118885109
Tian X, Doerig K, Park R, et al (2018) Evolution of telomere maintenance
and tumour suppressor mechanisms across mammals. Philos Trans R Soc B
Biol Sci 373:. https://doi.org/10.1098/rstb.2016.0443
Tindale NB (1932) Revision of the Australian ghost moths (Lepidoptera
Homoneura, family Hepialidae) Part I. Rec South Aust Museum 4:497–536
Tomiyama AJ, O’Donovan A, Lin J, et al (2012) Does cellular aging relate
to patterns of allostasis? An examination of basal and stress reactive
HPA axis activity and telomere length. Physiol Behav 106:40–45.
https://doi.org/10.1016/j.physbeh.2011.11.016
Ulaner GA, Giudice LC (1997) Developmental regulation of telomerase
activity in human fetal tissues during gestation. Mol Hum Reprod
3:769–773
von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends
Biochem Sci 27:339–44
Werner J, Griebeler EM (2011) Reproductive biology and its impact on
body size: Comparative analysis of mammalian, avian and dinosaurian
reproduction. PLoS One 6: e28442.
https://doi.org/10.1371/journal.pone.0028442
Wheeler WM (1907) The polymorphism of ants. Ann Entomol Soc Am
XXIII:39–69
Whittemore K, Vera E, Martínez-Nevado E, et al (2019) Telomere
shortening rate predicts species life span. Proc Natl Acad Sci U S A
116:15122–15127. https://doi.org/10.1073/pnas.1902452116
Wiersma P, Selman C, Speakman JR, Verhulst S (2004) Birds sacrifice
oxidative protection for reproduction. Proc R Soc B Biol Sci
271:360–363. https://doi.org/10.1098/rsbl.2004.0171
Williams GC (1957) Pleiotropy, natural selection, and the evolution of
senescence. Evolution (N Y) 11:398. https://doi.org/10.2307/2406060
Wilson EO (1971) The Insect Societies. Cambridge, MA: Harvard University
Press.
Wright WE, Piatyszek MA, Rainey WE, et al (1996) Telomerase activity in
human germline and embryonic tissues and cells. Dev Genet 18:173–179
Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components
and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids
Res 29:4818–4825. https://doi.org/10.1093/nar/29.23.4818
Young AJ (2018) The role of telomeres in the mechanisms and evolution of
life-history trade-offs and ageing. Philos Trans R Soc B Biol Sci 373:
20160452. https://doi.org/10.1098/rstb.2016.0452
Young RC, Kitaysky AS, Haussmann MF, et al (2013) Age, sex, and telomere
dynamics in a long-lived seabird with male-biased parental care. PLoS
One 8:1–8. https://doi.org/10.1371/journal.pone.0074931
Zheng Q, Huang J, Wang G, et al (2019) Mitochondria , Telomeres and
Telomerase Subunits. Front Cell Dev Biol 7:1–10.
https://doi.org/10.3389/fcell.2019.00274
Zhu X, Kumar R, Mandal M, et al (1996) Cell cycle-dependent modulation
of telomerase activity in tumor cells. PNAS 93:6091–6095
Figure 1. Comparing reproductive strategy to telomerase
activity and telomere length in mammalian species. Data on telomerase
activity were got from Gomes et al. 2011, except for the data on pig
that were got from Fradiani et al. 2004. Data on gestation period,
litters per year, and litter sizes were obtained from the ANAGE
data-base (The Animal Ageing & Longevity Database. http://genomics.
senescence.info/species/). The data on telomeres and telomerase were
obtained from cultured cells derived from fibroblasts from skin, kidney,
lung or cornea of the species (Gomes et al. 2011), or from spleen, lymph
node, lung, and kidney (Fradiani et al. 2004). For more details on
telomerase activities see Gomes et al. 2011. * The gestation periods in
tiger and steppe polecat are 36 and 105 days, respectively, in contrast
to the other Carnivora species with the gestation period ranging from
110 – 259 days. Accordingly, steppe polecat and tiger have the largest
litter sizes (9.4 and 2.5, respectively), in contrast to the other
Carnivora species where litter sizes ranging from 2 to 1.5.
Discontinuous telomeres are abbreviated as “d”.