References

Amara I, Zaidi I, Masmoudi K, Ludevid M, Pagès M, Goday A, et al. Insights into late embryogenesis abundant (LEA) proteins in plants: From structure to the functions. Am J Plant Sci. 2014;5:3440-3455.
Boyle C, Hansen L, Hinnenkamp C, Ismail BP. Emerging camelina protein: Extraction, modification, and structural/functional characterization. J Am Oil Chem Soc. 2018; 95: 1049-1062. doi:10.1002/aocs.12045
Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986;25:469–487.
Casey R, Domoney C, Ellis N. Legume storage proteins and their genes. In Miflin BJ, editor, Oxford Surveys of Plant Molecular and Cell Biology. Oxford University Press, Oxford: United Kingdom; 1986. P. 1-95.
Crouch ML, Tenbarge KM, Simon AE, Ferl R. cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from precursor polypeptide. J Mol Appl Genet. 1983;2:273-283.
Delseny M, Raynal M. Globulin storage proteins in crucifers and non-legume dicotyledonous families. In Shewry PR, Casey R, editors, Seed Proteins. Kluwer Academic: Amsterdam, Netherland; 1999. p. 427-451.
Eynck C, Falk KC. Camelina (Camelina sativa ). In Sing BP, editor, Biofuel Crops: Production, Physiology and Genetics. CAB International; 2013. p.369-391.
Firestone DE, editor. Official Methods and Recommended Practices of the AOCS (5th ed.): AOCS Press: Champaign, IL: 1997.
Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1;2876-2890.
Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress: not just for plants anymore. Annu Rev physiol. 2011;73:115-134.
Hong-Bo S, Zong-Suo L, Ming-An S. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B. 2005;45:131-135.
Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, et al. Protein composition of oil bodies from mature Brassica napusseeds. Proteomics . 2009;9:3268-3284.
Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ. Protein and lipid composition analysis of oil bodies from two Brassica napuscultivars. Proteomics. 2006;6:4586-4598.
Kim JT, Netravali AN. Non-food application of camelina meal: Development of sustainable and green biodegradable paper-camelina composite sheets and fibers. Polym Compos. 2012;33 :1969-1976.
Korte T, Herrmann A. pH-dependent binding of the fluorophore bis-ANS to influenza virus reflects the conformational change of hemagglutinin. Eur Biophys. 1994;23:105–113.
Krzyzaniak A, Burova T, Haertlé T, Barciszewski J. The structure and properties of napin-seed storage protein from rape (Brassica napus L.). Food/Nahrung. 1998;42:201–204.
Latimer Jr DGW, Horwitz DW, editors. Official Methods of Analysis of AOAC International (18th ed.): AOAC Intl: 2005.
Li N, Guangyan Q, Sun S, Wang D. Characterization of gum isolated from camelina seed. Ind Crops Prod. 2016;83:268–274.
Li N, Qi G, Sun XS, Wang D, Bean S, Blackwell D. Isolation and characterization of protein fractions isolated from camelina meal. Trans ASABE. 2014;57:169-178.
Lyzenga WJ, Harrington M, Bekkaoui D, Wigness M, Hegedus DD, Rozwadowski KL. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa . BMC Plant Biol. 2019;19:292.
Marambe PWMLHK, Shand PJ, & Wanasundara JPD. An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) Proteins. J Am Oil Chem Soc. 2008;85:1155-1164.
Matthaus B, Zubr J. Variability of specific components in Camelina sativa oilseed cakes. Ind Crop Prod. 2000;12:9-18.
Maurer S, Waschatko G, Schach D, Zielbauer BI, Dahl J, Weidner T, et al. The role of intact oleosin for stabilization and function of oleosomes. J Phys Chem. 2013;117:13872-13883.
Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, et al. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J. 2013;11:759-769.
Nietzel T, Dudkina NV, Haase C, Denolf P, Semchonok DA, Boekema EJ, et al. The native structure and composition of the cruciferin complex inBrassica napus . J Biochem. 2013:288:2238-2245.
Oomah BD, Blanchard C, Balasubramanian P. Phytic acid, phytase, minerals, and antioxidant activity in canadian dry bean (Phaseolus vulgaris L.) cultivars. J Agri Food Chem. 2008;56:11312-11319.
Oomah BD, Corbe A, Balasubramanian P. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J Agri Food Chem. 2010;58:8225-8230.
Pantoja-Uceda D, Bruix M, Gimenez-Gallego G, Rico M, Santoro J. Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis . Biochem. 2003;42:13839-13847.
Parker CE, Warren MR, Loiselle DR, Dicheva NN, Scarlett CO, Borchers CH. Identification of components of protein complexes. Methods Mol Biol. 2005;301:117-151.
Perera SP, McIntosh TC, Wanasundara JP. Structural properties of cruciferin and napin of Brassica napus (Canola) show distinct responses to changes in pH and temperature. Plants. 2016;5:36. doi:10.3390/plants5030036
Russo R, Reggiani R. Seed Protein in Camelina sativa (L.) Crantz var. Calena. Int J Plant Soil Sci. 2015;8:1-6.
Schuster A, Friedt W. Glucosinolate content and composition as parameters of quality of Camelina seed. Ind crop Prod. 1998;7 :297–302.
Schwenke KD, Linow KJ. A reversible dissociation of the 12 S globulin from rapeseed (Brassica napus L.) depending on ionic strength.Food / Nahrung . 1982;26:K5-K6.
Senko MW, Remes PM, Canterbury JD, Mathur R, Song Q, Eliuk SM, et al. Novel parallelized quadrupole/linear ion trap/orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem, 2003;85:11710-11714.
Shewry PR, Casey R. The 2S Albumin storage Proteins. In Shewry PR, Casey, R, editors, Seed Proteins. Kluwer Academic: Amsterdam, Netherland; 1999. p. 563–586.
Shewry PR. Manipulation of seed storage proteins. In Lindsey K, editor, Transgenic Plant Research. Harwood Academic: Amsterdam, Netherland; 1998. p. 135–149.
Shewry PR, Napier JA, Tatham AS. Seed storage proteins: Structures and biosynthesis. Plant Cell . 1995;7 :945–956.
Soukoulis C, Gaiani C, Hoffmann L. Plant seed mucilage as emerging biopolymer in food industry applications, Curr opin Food Sci. 2018;22:28-42.
https://doi.org/10.1016/j.cofs.2018.01.004
Tzen JTC. Integral proteins in plant oil bodies. ISRN Botany. 2012; https://doi.org/10.5402/2012/173954
Wanasundara JPD. Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr, 2011;51:635-677.
Wanasundara JD, Abeysekara S, McIntosh T, Falk K. Solubility differences of major storage proteins of Brassicaceae oilseeds. J Ame Oil Chem Soc. 2012;89:869-881.
Wanasundara JPD, McIntosh TC. Process of aqueous protein extraction from Brassicaceae oilseeds. US 8557963 (Patent). 2013.
Wanasundara, PKJPD, Shahidi F. Removal of flaxseed mucilage by chemical and enzymatic treatments. Food Chem. 1997;59:47-55.
Weber E, Neumann D. Protein bodies, storage organelles in plant seeds. Biochem Physiol Pflanz. 1980;175: 279-306.
Wijesundera C, Boiteau T, Xu X, Shen Z, Watkins P, Logan A. Stabilization of fish oil-in-water emulsions with oleosin extracted from canola meal. J Food Sci. 2013;78:C1340-1347. doi: 10.1111/1750-3841.12177
Withana-Gamage TS, Hegedus DD, Qiu X, McIntosh T, Wanasundara JPD. Structural and physicochemical property relationships of cruciferin homohexamers. J Agri Food Chem. 2013;61:5848–5859.
Zhu X, Wang D, Sun XS. Physico-chemical properties of camelina protein altered by sodium bisulfite and guanidine-HCl. Ind Crops Prod. 2016;83:453-461.
Zubr J. Oil-seed crop: Camelina sativa . Ind Crops Prod. 1997;6:113-119.
Zubr J. Dietary fatty acids and amino acids of Camelina sativaseed. J Food Qual. 2003;26: 451-462.
Zubr J. Carbohydrates, vitamins and minerals of Camelina sativaseed. Nut Food Sci. 2010;40: 523-531.
ACKNOWLEDGMENTS
Acknowledgements :
This study is supported by the project “Developing Camelina sativa as a modern crop platform” that received funds from Global Institute of Food Security, University of Saskatchewan (Project # J-001661) and Agriculture and Agri-Food Canada (Project # J-001589).