Reference
ABADíA, J., VáZQUEZ, S., RELLáN-ÁLVAREZ, R., EL-JENDOUBI, H., ABADíA,
A., ALVAREZ-FERNáNDEZ, A. & LóPEZ-MILLáN, A. F. 2011. Towards a
knowledge-based correction of iron chlorosis. Plant Physiology and
Biochemistry, 49, 471-82.
ASTOLFI, S., PII, Y., MIMMO, T., LUCINI, L., MIRAS-MORENO, M. B., COPPA,
E., VIOLINO, S., CELLETTI, S. & CESCO, S. 2020. Single and Combined Fe
and S Deficiency Differentially Modulate Root Exudate Composition in
Tomato: A Double Strategy for Fe Acquisition? International
Journal of Molecular Sciences, 21.
BOUIS, H. E. & WELCH, R. M. 2010. Biofortification—A Sustainable
Agricultural Strategy for Reducing Micronutrient Malnutrition in the
Global South. Crop Science, 50, S-20-S-32.
BRIAT, J. F., DUBOS, C. & GAYMARD, F. 2015. Iron nutrition, biomass
production, and plant product quality. Trends in Plant Science,20, 33-40.
BROADLEY, M., BROWN, P., CAKMAK, I., RENGEL, Z. & ZHAO, F. 2012.
Chapter 7 - Function of Nutrients: Micronutrients. In: MARSCHNER,
P. (ed.) Marschner’s Mineral Nutrition of Higher Plants (Third
Edition). San Diego: Academic Press.
COLOMBO, C., PALUMBO, G., HE, J.-Z., PINTON, R. & CESCO, S. 2014.
Review on iron availability in soil: interaction of Fe minerals, plants,
and microbes. Journal of soils and sediments, 14,538-548.
CONTE, S. S. & WALKER, E. L. 2011. Transporters contributing to iron
trafficking in plants. Molecular Plant, 4, 464-76.
CONTE, S. S. & WALKER, E. L. 2012. Genetic and biochemical approaches
for studying the yellow stripe-like transporter family in plants.Current Topics in Membranes, 69, 295-322.
CURIE, C., CASSIN, G., COUCH, D., DIVOL, F., HIGUCHI, K., LE JEAN, M.,
MISSON, J., SCHIKORA, A., CZERNIC, P. & MARI, S. 2009. Metal movement
within the plant: contribution of nicotianamine and yellow stripe 1-like
transporters. Annals of Botany, 103, 1-11.
DAI, J., QIU, W., WANG, N., NAKANISHI, H. & ZUO, Y. 2018. Comparative
transcriptomic analysis of the roots of intercropped peanut and maize
reveals novel insights into peanut iron nutrition. Plant
Physiology and Biochemistry, 127, 516-524.
GRILLET, L. & SCHMIDT, W. 2019. Iron acquisition strategies in land
plants: not so different after all. New Phytologist,224, 11-18.
HE, W., SHOHAG, M., WEI, Y., FENG, Y. & YANG, X. 2013. Iron
concentration, bioavailability, and nutritional quality of polished rice
affected by different forms of foliar iron fertilizer. Food
Chemistry, 141, 4122-4126.
KOBAYASHI, T. & NISHIZAWA, N. K. 2012. Iron uptake, translocation, and
regulation in higher plants. Annual Review of Plant Biology,63, 131-52.
KOBAYASHI, T., NOZOYE, T. & NISHIZAWA, N. K. 2019. Iron transport and
its regulation in plants. Free Radical Biology and Medicine,133, 11-20.
KRATENA, N., GöKLER, T., MALTROVSKY, L., OBURGER, E. & STANETTY, C.
2021. A Unified Approach to Phytosiderophore Natural Products.Chemistry, 27, 577-580.
LI, W. & LAN, P. 2017. The Understanding of the Plant Iron Deficiency
Responses in Strategy I Plants and the Role of Ethylene in This Process
by Omic Approaches. Frontiers in Plant Science, 8.
MARSCHNER, P. & RENGEL, Z. 2012. Chapter 12 - Nutrient Availability in
Soils. In: MARSCHNER, P. (ed.) Marschner’s Mineral
Nutrition of Higher Plants (Third Edition). San Diego: Academic Press.
MARTíN-BARRANCO, A., SPIELMANN, J., DUBEAUX, G., VERT, G. & ZELAZNY, E.
2020. Dynamic control of the high-affinity iron uptake complex in root
epidermal cells. Plant Physiology, 184, 1236-1250.
NADAL, P., GARCíA-DELGADO, C., HERNáNDEZ, D., LóPEZ-RAYO, S. & LUCENA,
J. J. 2012. Evaluation of Fe-N, N′-Bis (2-hydroxybenzyl)
ethylenediamine-N, N′-diacetate (HBED/Fe 3+) as Fe carrier for soybean
(Glycine max) plants grown in calcareous soil. Plant and Soil,360, 349-362.
RAJNIAK, J., GIEHL, R. F. H., CHANG, E., MURGIA, I., VON WIRéN, N. &
SATTELY, E. S. 2018. Biosynthesis of redox-active metabolites in
response to iron deficiency in plants. Nature Chemical Biology,14, 442-450.
RIAZ, N. & GUERINOT, M. L. 2021. All together now: regulation of the
iron deficiency response. Journal of Experimental Botany,72, 2045-2055.
RÖMHELD, V. & MARSCHNER, H. 1986. Evidence for a specific uptake system
for iron phytosiderophores in roots of grasses. Plant physiology,80, 175-180.
RORIZ, M., BARROS, M., CASTRO, P. M., CARVALHO, S. M. & VASCONCELOS, M.
W. 2020. Improving iron nutrition in plant foods: The role of legumes
and soil microbes. Vitamins and minerals biofortification of
edible plants. Wiley Press
SAINI, R. K., NILE, S. H. & KEUM, Y.-S. 2016. Food science and
technology for management of iron deficiency in humans: A review.Trends in Food Science and Technology, 53, 13-22.
SCHENKEVELD, W. D. C., SCHINDLEGGER, Y., OBURGER, E., PUSCHENREITER, M.,
HANN, S. & KRAEMER, S. M. 2014. Geochemical Processes Constraining Iron
Uptake in Strategy II Fe Acquisition. Environmental Science and
Technology, 48, 12662-12670.
SUZUKI, M., NOZOYE, T., NAGASAKA, S., NAKANISHI, H., NISHIZAWA, N. K. &
MORI, S. 2016. The detection of endogenous 2’-deoxymugineic acid in
olives (Olea europaea L.) indicates the biosynthesis of mugineic acid
family phytosiderophores in non-graminaceous plants. Soil Science
and Plant Nutrition, 62, 481-488.
SUZUKI, M., URABE, A., SASAKI, S., TSUGAWA, R., NISHIO, S., MUKAIYAMA,
H., MURATA, Y., MASUDA, H., AUNG, M. S., MERA, A., TAKEUCHI, M.,
FUKUSHIMA, K., KANAKI, M., KOBAYASHI, K., CHIBA, Y., SHRESTHA, B. B.,
NAKANISHI, H., WATANABE, T., NAKAYAMA, A., FUJINO, H., KOBAYASHI, T.,
TANINO, K., NISHIZAWA, N. K. & NAMBA, K. 2021. Development of a
mugineic acid family phytosiderophore analog as an iron fertilizer.Nature Communications, 12, 1558.
TAKAGI, S. I., KAMEI, S. & YU, M. H. 1988. Efficiency of iron
extraction from soil by mugineic acid family phytosiderophores.Journal of Plant Nutrition, 11, 643-651.
TRIPATHI, D. K., SINGH, S., GAUR, S., SINGH, S., YADAV, V., LIU, S.,
SINGH, V. P., SHARMA, S., SRIVASTAVA, P., PRASAD, S. M., DUBEY, N. K.,
CHAUHAN, D. K. & SAHI, S. 2018. Acquisition and Homeostasis of Iron in
Higher Plants and Their Probable Role in Abiotic Stress Tolerance.Frontiers in Environmental Science, 5.
UENO, D., ITO, Y., OHNISHI, M., MIYAKE, C., SOHTOME, T. & SUZUKI, M.
2021. A synthetic phytosiderophore analog, proline-2′-deoxymugineic
acid, is efficiently utilized by dicots. Plant and Soil ,123-134.
VASCONCELOS, M. W., GRUISSEM, W. & BHULLAR, N. K. 2017. Iron
biofortification in the 21st century: setting realistic targets,
overcoming obstacles, and new strategies for healthy nutrition.Current Opinion in Biotechnology, 44, 8-15.
VERT, G., GROTZ, N., DéDALDéCHAMP, F., GAYMARD, F., GUERINOT, M. L.,
BRIAT, J. F. & CURIE, C. 2002. IRT1, an Arabidopsis transporter
essential for iron uptake from the soil and for plant growth.Plant Cell, 14, 1223-33.
XIONG, H., KAKEI, Y., KOBAYASHI, T., GUO, X., NAKAZONO, M., TAKAHASHI,
H., NAKANISHI, H., SHEN, H., ZHANG, F., NISHIZAWA, N. K. & ZUO, Y.
2013. Molecular evidence for phytosiderophore-induced improvement of
iron nutrition of peanut intercropped with maize in calcareous soil.Plant Cell and Environment, 36, 1888-902.
YUAN, Y., WU, H., WANG, N., LI, J., ZHAO, W., DU, J., WANG, D. & LING,
H. Q. 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron
uptake gene expression for iron homeostasis in Arabidopsis. Cell
Research, 18, 385-97.
ZHANG, X., ZHANG, D., SUN, W. & WANG, T. 2019. The Adaptive Mechanism
of Plants to Iron Deficiency via Iron Uptake, Transport, and
Homeostasis. International Journal of Molecular Sciences,20, 2424.
ZUO, Y. & ZHANG, F. 2009. Iron and zinc biofortification strategies in
dicot plants by intercropping with gramineous species. A review.Agronomy for Sustainable Development, 29, 63-71.
ZUO, Y. & ZHANG, F. 2011. Soil and crop management strategies to
prevent iron deficiency in crops. Plant and Soil, 339,83-95.