References
Ancin-Murguzur, F. J., Munoz, L., Monz, C., & Hausner, V. H. (2020).
Drones as a tool to monitor human impacts and vegetation changes in
parks and protected areas. Remote Sensing in Ecology and
Conservation, 6 , 105-113. doi:10.1002/rse2.127
Anderegg, W. R. L., Abatzoglou, J. T., Anderegg, L. D. L., Bielory, L.,
Kinney, P. L., & Ziska, L. (2021). Anthropogenic climate change is
worsening North American pollen seasons. Proc Natl Acad Sci U S A,
118 (7). doi:10.1073/pnas.2013284118
Andres, K. J., Sethi, S. A., Lodge, D. M., & Andres, J. (2021). Nuclear
eDNA estimates population allele frequencies and abundance in
experimental mesocosms and field samples. Molecular Ecology,
30 (3), 685-697. doi:10.1111/mec.15765
Arstingstall, K. A., DeBano, S. J., Li, X., Wooster, D. E., Rowland, M.
M., Burrows, S., & Frost, K. (2021). Capabilities and limitations of
using DNA metabarcoding to study plant-pollinator interactions.Mol Ecol . doi:10.1111/mec.16112
Aziz, A. N., & Sauve, R. J. (2008). Genetic mapping of Echinacea
purpurea via individual pollen DNA fingerprinting. Molecular
Breeding, 21 (2), 227-232. doi:10.1007/s11032-007-9123-9
Baksay, S., Pornon, A., Burrus, M., Mariette, J., Andalo, C., &
Escaravage, N. (2020). Experimental quantification of pollen with DNA
metabarcoding using ITS1 and trnL. Scientific Reports, 10 (1),
4020. doi:10.1038/s41598-020-61198-6
Baldock, K. C., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas,
N., Osgathorpe, L. M., . . . Memmott, J. (2015). Where is the UK’s
pollinator biodiversity? The importance of urban areas for
flower-visiting insects. Proc Biol Sci, 282 (1803), 20142849.
doi:10.1098/rspb.2014.2849
Bänsch, S., Tscharntke, T., Wunschiers, R., Netter, L., Brenig, B.,
Gabriel, D., & Westphal, C. (2020). Using ITS2 metabarcoding and
microscopy to analyze shifts in pollen diets of honey bees and bumble
bees along a mass-flowering crop gradient. Molecular Ecology,
29 (24), 5003-5018.
Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S.,
Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological
advances in bee pollinators and bee-pollinated plants. Proceedings
of the National Academy of Sciences, 108 (51), 20645-20649.
doi:10.1073/pnas.1115559108
Bell, K. L., Batchelor, K. L., Bradford, M., McKeown, A., Macdonald, S.
L., & Westcott, D. (2021). Optimisation of a pollen DNA metabarcoding
method for diet analysis of flying-foxes
(<i>Pteropus</i> spp.).Australian Journal of Zoology , -.
doi:https://doi.org/10.1071/ZO20085
Bell, K. L., Burgess, K. S., Botsch, J. C., Dobbs, E. K., Read, T. D.,
& Brosi, B. J. (2019). Quantitative and qualitative assessment of
pollen DNA metabarcoding using constructed species mixtures. InMolecular Ecology (Vol. 28, pp. 431-455): Wiley/Blackwell
(10.1111).
Bell, K. L., de Vere, N., Keller, A., Richardson, R. T., Gous, A.,
Burgess, K. S., & Brosi, B. J. (2016). Pollen DNA barcoding: current
applications and future prospects. Genome, 59 (9), 629-640.
doi:10.1139/gen-2015-0200
Bell, K. L., Petit, R. A., Cutler, A., Dobbs, E. K., Macpherson, J. M.,
Read, T. D., . . . Brosi, B. J. (2021). Comparing whole‐genome shotgun
sequencing and DNA metabarcoding approaches for species identification
and quantification of pollen species mixtures. Ecology and
Evolution . doi:10.1002/ece3.8281
Bennett, K., & Parducci, Y. (2006). DNA from pollen: principles and
potential. In The Holocene (Vol. 16, pp. 1031-1034).
Berry, D., Mahfoudh, K. B., Wagner, M., & Loy, A. (2011). Barcoded
Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification.Applied and Environmental Microbiology, 77 (21), 7846-7849.
doi:doi:10.1128/AEM.05220-11
Bista, I., Carvalho, G. R., Tang, M., Walsh, K., Zhou, X., Hajibabaei,
M., . . . Creer, S. (2018). Performance of amplicon and shotgun
sequencing for accurate biomass estimation in invertebrate community
samples. In Molecular Ecology Resources (Vol. 18, pp. 1020-1034).
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C.
C., Al-Ghalith, G. A., . . . Caporaso, J. G. (2019). Reproducible,
interactive, scalable and extensible microbiome data science using QIIME
2. Nature Biotechnology, 37 (8), 852-857.
doi:10.1038/s41587-019-0209-9
Bosch, J., Gonzalez, A. M., Rodrigo, A., & Navarro, D. (2009).
Plant-pollinator networks: adding the pollinator’s perspective.Ecol Lett, 12 (5), 409-419. doi:10.1111/j.1461-0248.2009.01296.x
Bourel, B., Marchant, R., de Garidel-Thoron, T., Tetard, M., Barboni,
D., Gally, Y., & Beaufort, L. (2020). Automated recognition by multiple
convolutional neural networks of modern, fossil, intact and damaged
pollen grains. Computers & Geosciences, 140 , 104498.
doi:10.1016/j.cageo.2020.104498
Bowler, D. E., Bjorkman, A. D., Dornelas, M., Myers‐Smith, I. H.,
Navarro, L. M., Niamir, A., . . . Fish, R. (2020). Mapping human
pressures on biodiversity across the planet uncovers anthropogenic
threat complexes. People and Nature, 2 (2), 380-394.
doi:10.1002/pan3.10071
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., &
Coissac, E. (2016). obitools: a unix-inspired software package for DNA
metabarcoding. Molecular Ecology Resources, 16 (1), 176-182.
doi:10.1111/1755-0998.12428
Breitwieser, F. P., Pertea, M., Zimin, A. V., & Salzberg, S. L. (2019).
Human contamination in bacterial genomes has created thousands of
spurious proteins. Genome Research, 29 (954-960).
doi:10.1101/gr.245373.118
Brennan, G. L., Potter, C., de Vere, N., Griffith, G. W., Skjoth, C. A.,
Osborne, N. J., . . . Creer, S. (2019). Temperate airborne grass pollen
defined by spatio-temporal shifts in community composition. Nature
Ecology & Evolution, 3 (5), 750-754. doi:10.1038/s41559-019-0849-7
Brosi, B. J. (2016). Pollinator specialization: from the individual to
the community. New Phytologist, 210 (4), 1190-1194.
doi:10.1111/nph.13951
Brosi, B. J., & Briggs, H. M. (2013). Single pollinator species losses
reduce floral fidelity and plant reproductive function.Proceedings of the National Academy of Sciences, 110 (32),
13044-13048. doi:10.1073/pnas.1307438110
Bruni, I., Galimberti, A., Caridi, L., Scaccabarozzi, D., De Mattia, F.,
Casiraghi, M., & Labra, M. (2015). A DNA barcoding approach to identify
plant species in multiflower honey. In Food chemistry (Vol. 170,
pp. 308-315).
Burkle, L. A., Marlin, J. C., & Knight, T. M. (2013). Plant-pollinator
interactions over 120 years: Loss of species, co-occurrence, and
function. Science, 339 (6127), 1611-1615.
Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A.,
Scharlemann, J. P. W., Almond, R. E. A., . . . Watson, R. (2010). Global
biodiversity: Indicators of recent declines. Science, 328 (5982),
1164-1168.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference
from Illumina amplicon data. Nature Methods, 13 (7), 581-583.
doi:10.1038/nmeth.3869
Campbell, B. C., Al Kouba, J., Timbrell, V., Noor, M. J., Massel, K.,
Gilding, E. K., . . . Davies, J. M. (2020). Tracking seasonal changes in
diversity of pollen allergen exposure: Targeted metabarcoding of a
subtropical aerobiome. Science of The Total Environment, 747 ,
141189. doi:10.1016/j.scitotenv.2020.141189
Capo, E., Giguet-Covex, C., Rouillard, A., Nota, K., Heintzman, P. D.,
Vuillemin, A., . . . Parducci, L. (2021). Lake Sedimentary DNA Research
on Past Terrestrial and Aquatic Biodiversity: Overview and
Recommendations. Quaternary, 4 (1), 6. doi:10.3390/quat4010006
Casanelles‐Abella, J., Müller, S., Keller, A., Aleixo, C., Alós Orti,
M., Chiron, F., . . . Moretti, M. (2021). How wild bees find a way in
European cities: Pollen metabarcoding unravels multiple feeding
strategies and their effects on distribution patterns in four wild bee
species. Journal of Applied Ecology . doi:10.1111/1365-2664.14063
CBOL Plant Working Group, Hollingsworth, P. M., Forrest, L. L., Spouge,
J. L., Hajibabaei, M., Ratnasingham, S., . . . Little, D. P. (2009). A
DNA barcode for land plants. Proceedings of the National Academy
of Sciences, 106 (31), 12794-12797. doi:10.1073/pnas.0905845106
Chang, H., Guo, J., Fu, X., Liu, Y., Wyckhuys, K., Hou, Y., & Wu, K.
(2018). Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal
Origin of Long-Distance Migrants of a Noctuid Moth. InInternational Journal of Molecular Sciences (Vol. 19, pp. 567):
Multidisciplinary Digital Publishing Institute.
Cohen, H., Smith, G. P., Sardiñas, H., Zorn, J. F., McFrederick, Q. S.,
Woodard, S. H., & Ponisio, L. C. (2021). Mass-flowering monoculture
attracts bees, amplifying parasite prevalence. Proceedings of the
Royal Society B: Biological Sciences, 288 (1960), 20211369.
doi:doi:10.1098/rspb.2021.1369
Courtin, J., Andreev, A. A., Raschke, E., Bala, S., Biskaborn, B. K.,
Liu, S., . . . Herzschuh, U. (2021). Vegetation Changes in Southeastern
Siberia During the Late Pleistocene and the Holocene. Frontiers in
Ecology and Evolution, 9 . doi:10.3389/fevo.2021.625096
Cristescu, M. E. (2014). From barcoding single individuals to
metabarcoding biological communities: towards an integrative approach to
the study of global biodiversity. In Trends in Ecology &
Evolution (Vol. 29, pp. 566-571): Elsevier Ltd.
Cullen, N., Xia, J., Wei, N., Kaczorowski, R., Arceo-Gómez, G., O’Neill,
E., . . . Ashman, T.-L. (2021). Diversity and composition of pollen
loads carried by pollinators are primarily driven by insect traits, not
floral community characteristics. Oecologia, 196 (1), 131-143.
doi:10.1007/s00442-021-04911-0
da Rocha‐Filho, L. C., Montagnana, P. C., Araújo, T. N., Moure‐Oliveira,
D., Boscolo, D., & Garófalo, C. A. (2021). Pollen analysis of
cavity‐nesting bees (Hymenoptera: Anthophila) and their food webs in a
city. Ecological Entomology . doi:10.1111/een.13097
Damschen, E. I., Brudvig, L. A., Burt, M. A., Fletcher, R. J., Haddad,
N. M., Levey, D. J., . . . Tewksbury, J. J. (2019). Ongoing accumulation
of plant diversity through habitat connectivity in an 18-year
experiment. Science, 365 (6460), 1478-1480.
doi:doi:10.1126/science.aax8992
Danner, N., Keller, A., Härtel, S., & Steffan-Dewenter, I. (2017).
Honey bee foraging ecology: Season but not landscape diversity shapes
the amount and diversity of collected pollen. In W. Blenau (Ed.),PLoS one (Vol. 12, pp. e0183716): Springer New York.
Darling, J. A., Pochon, X., Abbott, C. L., Inglis, G. J., & Zaiko, A.
(2020). The risks of using molecular biodiversity data for incidental
detection of species of concern. Diversity and Distributions,
26 (9), 1116-1121. doi:10.1111/ddi.13108
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan,
B. J. (2018). Simple statistical identification and removal of
contaminant sequences in marker-gene and metagenomics data. InMicrobiome (Vol. 6, pp. 226): BioMed Central.
de Manincor, N., Hautekèete, N., Mazoyer, C., Moreau, P., Piquot, Y.,
Schatz, B., . . . Massol, F. (2020). How biased is our perception of
plant-pollinator networks? A comparison of visit- and pollen-based
representations of the same networks. Acta Oecologica, 105 ,
103551. doi:10.1016/j.actao.2020.103551
de Vere, N., Jones, L. E., Gilmore, T., Moscrop, J., Lowe, A., Smith,
D., . . . Ford, C. R. (2017). Using DNA metabarcoding to investigate
honey bee foraging reveals limited flower use despite high floral
availability. In Scientific Reports (Vol. 7, pp. 42838).
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen,
E. J., Clare, E. L., . . . Eveson, J. P. (2019). Counting with DNA in
metabarcoding studies: How should we convert sequence reads to dietary
data? Molecular Ecology, 28 (2), 391-406. doi:10.1111/mec.14734
Dharampal, P. S., Carlson, C., Currie, C. R., & Steffan, S. A. (2019).
Pollen-borne microbes shape bee fitness. Proceedings of the Royal
Society B: Biological Sciences, 286 (1904), 20182894.
doi:10.1098/rspb.2018.2894
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., & Ewers,
R. M. (2007). Interactive effects of habitat modification and species
invasion on native species decline. Trends Ecol Evol, 22 (9),
489-496. doi:10.1016/j.tree.2007.07.001
Diehn, S., Zimmermann, B., Tafintseva, V., Bağcıoğlu, M., Kohler, A.,
Ohlson, M., . . . Kneipp, J. (2020). Discrimination of grass pollen of
different species by FTIR spectroscopy of individual pollen grains.Analytical and Bioanalytical Chemistry, 412 (24), 6459-6474.
doi:10.1007/s00216-020-02628-2
Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C., Power, E. F.,
Wright, G. A., & Wilson, K. (2017). Nutritional composition of honey
bee food stores vary with floral composition. Oecologia, 185 (4),
749-761. doi:10.1007/s00442-017-3968-3
Dorazio, R. M., & Erickson, R. A. (2018). eDNAoccupancy: An R package
for multiscale occupancy modelling of environmental DNA data.Molecular Ecology Resources, 18 (2), 368-380.
doi:10.1111/1755-0998.12735
Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V., & Grozinger, C. M.
(2020). County-level analysis reveals a rapidly shifting landscape of
insecticide hazard to honey bees (Apis mellifera ) on US farmland.Scientific Reports, 10 (1), 797. doi:10.1038/s41598-019-57225-w
Douglas, M. R., & Tooker, J. F. (2015). Large-Scale Deployment of Seed
Treatments Has Driven Rapid Increase in Use of Neonicotinoid
Insecticides and Preemptive Pest Management in U.S. Field Crops.Environmental Science & Technology, 49 (8), 5088-5097.
doi:10.1021/es506141g
Dunker, S., Motivans, E., Rakosy, D., Boho, D., Mäder, P., Hornick, T.,
& Knight, T. M. (2021). Pollen analysis using multispectral imaging
flow cytometry and deep learning. New Phytologist, 229 (1),
593-606. doi:10.1111/nph.16882
Dunn, J. C., Stockdale, J. E., Moorhouse-Gann, R. J., McCubbin, A.,
Hipperson, H., Morris, A. J., . . . Symondson, W. O. C. (2018). The
decline of the Turtle Dove: Dietary associations with body condition and
competition with other columbids analysed using high-throughput
sequencing. Molecular Ecology, 27 , 3386-3407.
doi:10.1111/mec.14766
Edgar, R. C. (2010). Search and clustering orders of magnitude faster
than BLAST. Bioinformatics, 26 (19), 2460-2461.
doi:10.1093/bioinformatics/btq461
Edgar, R. C. (2018). Accuracy of taxonomy prediction for 16S rRNA and
fungal ITS sequences. PeerJ, 6 , e4652. doi:10.7717/peerj.4652
Elliott, B., Wilson, R., Shapcott, A., Keller, A., Newis, R.,
Cannizzaro, C., . . . Wallace, H. M. (2020). Pollen diets and niche
overlap of honey bees and native bees in protected areas. In Basic
and Applied Ecology .
Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D., &
Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700
to 2000. Global Ecology and Biogeography, 19 , 589-606.
doi:10.1111/j.1466-8238.2010.00540.x
Engel, P., Kwong, W. K., McFrederick, Q., Anderson, K. E., Barribeau, S.
M., Chandler, J. A., . . . Dainat, B. (2016). The Bee Microbiome: Impact
on Bee Health and Model for Evolution and Ecology of Host-Microbe
Interactions. mBio, 7 (2), e02164-02115. doi:10.1128/mBio.02164-15
Esling, P., Lejzerowicz, F., & Pawlowski, J. (2015). Accurate
multiplexing and filtering for high-throughput amplicon-sequencing.Nucleic Acids Research, 43 (5), 2513-2524. doi:10.1093/nar/gkv107
Forrest, J. R. K. (2015). Plant-pollinator interactions and phenological
change: What can we learn about climate impacts from experiments and
observations? Oikos (4-13).
Galimberti, A., De Mattia, F., Bruni, I., Scaccabarozzi, D., Sandionigi,
A., Barbuto, M., . . . Labra, M. (2014). A DNA barcoding approach to
characterize pollen collected by honeybees. In PLoS one (Vol. 9,
pp. e109363).
Garrido-Sanz, L., Senar, M. A., & Pinol, J. (2021). Relative species
abundance estimation in artificial mixtures of insects using
mito-metagenomics and a correction factor for the mitochondrial DNA copy
number. Mol Ecol Resour . doi:10.1111/1755-0998.13464
Garrido-Sanz, L., Senar, M. À., & Piñol, J. (2020). Estimation of the
relative abundance of species in artificial mixtures of insects using
low-coverage shotgun metagenomics. In Metabarcoding and
Metagenomics (Vol. 4, pp. e48281).
Gonçalves, A. B., Souza, J. S., da Silva, G. G., Cereda, M. P., Pott,
A., Naka, M. H., & Pistori, H. (2016). Feature extraction and machine
learning for the classification of Brazilian savannah pollen grains.PLoS one, 11 (6), e0157044. doi:10.1371/journal.pone.0157044
Gouker, F. E., Guo, Y., & Pooler, M. R. (2020). Using acetone for rapid
PCR-amplifiable DNA extraction from recalcitrant woody plant taxa.Applications in Plant Sciences, 8 (12), e11403.
Gous, A., Eardley, C. D., Johnson, S. D., Swanevelder, D. Z. H., &
Willows-Munro, S. (2021). Floral hosts of leaf-cutter bees
(Megachilidae) in a biodiversity hotspot revealed by pollen DNA
metabarcoding of historic specimens. PLoS one, 16 (1), e0244973.
doi:10.1371/journal.pone.0244973
Gous, A., Swanevelder, D. Z. H., Eardley, C. D., & Willows-Munro, S.
(2019). Plant-pollinator interactions over time: Pollen metabarcoding
from bees in a historic collection. In Evolutionary Applications(Vol. 12, pp. 187-197): Wiley/Blackwell (10.1111).
Grab, H., Brokaw, J., Anderson, E., Gedlinske, L., Gibbs, J., Wilson,
J., . . . Diamond, S. (2019). Habitat enhancements rescue bee body size
from the negative effects of landscape simplification. Journal of
Applied Ecology, 56 (9), 2144-2154. doi:10.1111/1365-2664.13456
Gresty, C. E. A., Clare, E., Devey, D. S., Cowan, R. S., Csiba, L.,
Malakasi, P., . . . Willis, K. J. (2018). Flower preferences and pollen
transport networks for cavity-nesting solitary bees: Implications for
the design of agri-environment schemes. Ecology and Evolution,
8 (15), 7574-7587. doi:10.1002/ece3.4234
Hall, D. M., Camilo, G. R., Tonietto, R. K., Ollerton, J., Ahrné, K.,
Arduser, M., . . . Threlfall, C. G. (2017). The city as a refuge for
insect pollinators. Conserv Biol, 31 (1), 24-29.
doi:10.1111/cobi.12840
Hansen, J., Reudy, R., Sato, M., & Lo, K. (2010). Global surface
temperature change. Reviews of Geophysics, 48 (RG4004),
2010RG000345.
Hasegawa, Y., Suyama, Y., & Seiwa, K. (2009). Pollen donor composition
during the early phases of reproduction revealed by DNA genotyping of
pollen grains and seeds of Castanea crenata. New Phytologist,
182 (4), 994-1002. doi:10.1111/j.1469-8137.2009.02806.x
Hawkins, J., de Vere, N., Griffith, A., Ford, C. R., Allainguillaume,
J., Hegarty, M. J., . . . Adams-Groom, B. (2015). Using DNA
Metabarcoding to Identify the Floral Composition of Honey: A New Tool
for Investigating Honey Bee Foraging Preferences. In PLoS one(Vol. 10, pp. e0134735): Public Library of Science.
He, C., Liu, Z., Gou, S., Zhang, Q., Zhang, J., & Xu, L. (2019).
Detecting global urban expansion over the last three decades using a
fully convolutional network. Environmental Research Letters,
14 (3), 034008. doi:10.1088/1748-9326/aaf936
Hirota, S. K., Nitta, K., Suyama, Y., Kawakubo, N., Yasumoto, A. A., &
Yahara, T. (2013). Pollinator-Mediated Selection on Flower Color, Flower
Scent and Flower Morphology of Hemerocallis: Evidence from Genotyping
Individual Pollen Grains On the Stigma. PLoS one, 8 (12), e85601.
doi:10.1371/journal.pone.0085601
Hornick, T., Richter, A., Harpole, W. S., Bastl, M., Bohlmann, S., Bonn,
A., . . . Dunker, S. (2021). An integrative environmental pollen
diversity assessment and its importance for the Sustainable Development
Goals. Plants, People, Planet . doi:10.1002/ppp3.10234
Hulme, P. E. (2009). Trade, transport and trouble: managing invasive
species pathways in an era of globalization. Journal of Applied
Ecology, 46 (1), 10-18.
doi:https://doi.org/10.1111/j.1365-2664.2008.01600.x
Isagi, Y., & Suyama, Y. (2011). Single-Pollen Genotyping . Tokyo:
Springer.
Ito, M., Suyama, Y., Ohsawa, T. A., & Watano, Y. (2008).
Airborne-pollen pool and mating pattern in a hybrid zone betweenPinus pumila and P. parviflora var. pentaphylla .Molecular Ecology, 17 (23), 5092-5103.
doi:10.1111/j.1365-294X.2008.03966.x
Jayaprakash, P. (2018). Pollen Germination in vitro. In P. W. Mokwala
(Ed.), Pollination in Plants : IntechOpen.
Jensen, M. R., Sigsgaard, E. E., Liu, S., Manica, A., Bach, S. S.,
Hansen, M. M., . . . Thomsen, P. F. (2021). Genome-scale target capture
of mitochondrial and nuclear environmental DNA from water samples.Molecular Ecology Resources, 21 (3), 690-702.
doi:10.1111/1755-0998.13293
Jones, L., Brennan, G. L., Lowe, A., Creer, S., Ford, C. R., & de Vere,
N. (2021). Shifts in honeybee foraging reveal historical changes in
floral resources. Communications Biology, 4 (1), 37.
doi:10.1038/s42003-020-01562-4
Jones, L., Twyford, A. D., Ford, C. R., Rich, T. C. G., Davies, H.,
Forrest, L. L., . . . de Vere, N. (2021). Barcode UK: A complete DNA
barcoding resource for the flowering plants and conifers of the United
Kingdom. Mol Ecol Resour, 21 (6), 2050-2062.
doi:10.1111/1755-0998.13388
Judd, H. J., Huntzinger, C., Ramirez, R., & Strange, J. P. (2020). A 3D
Printed Pollen Trap for Bumble Bee (Bombus ) Hive Entrances.JoVE (161), e61500. doi:10.3791/61500
Kaluza, B. F., Wallace, H., Keller, A., Heard, T. A., Jeffers, B.,
Drescher, N., . . . Leonhardt, S. D. (2017). Generalist social bees
maximize diversity intake in plant species-rich and resource-abundant
environments. In Ecosphere (Vol. 8, pp. e01758).
Keller, A., Brandel, A., Becker, M. C., Balles, R., Abdelmohsen, U. R.,
Ankenbrand, M. J., & Sickel, W. (2018). Wild bees and their nests host
Paenibacillus bacteria with functional potential of avail.Microbiome, 6 (1), 229. doi:10.1186/s40168-018-0614-1
Keller, A., Danner, N., Grimmer, G., Ankenbrand, M. J., von der Ohe, K.,
von der Ohe, W., . . . Steffan-Dewenter, I. (2015). Evaluating
multiplexed next-generation sequencing as a method in palynology for
mixed pollen samples. Plant Biology, 17 (2), 558-566.
doi:10.1111/plb.12251
Keller, A., Hohlfeld, S., Kolter, A., Schultz, J., Gemeinholzer, B., &
Ankenbrand, M. J. (2020). BCdatabaser: on-the-fly reference database
creation for (meta-)barcoding. Bioinformatics, 36 (8), 2630-2631.
doi:10.1093/bioinformatics/btz960
Keller, A., McFrederick, Q. S., Dharampal, P., Steffan, S., Danforth, B.
N., & Leonhardt, S. D. (2021). (More than) Hitchhikers through the
network: the shared microbiome of bees and flowers. Current
Opinion in Insect Science, 44 , 8-15. doi:10.1016/j.cois.2020.09.007
Kembel, S. W., Wu, M., Eisen, J. A., & Green, J. L. (2012).
Incorporating 16S Gene Copy Number Information Improves Estimates of
Microbial Diversity and Abundance. PLOS Computational Biology,
8 (10), e1002743. doi:10.1371/journal.pcbi.1002743
Khansaritoreh, E., Salmaki, Y., Ramezani, E., Akbari Azirani, T.,
Keller, A., Neumann, K., . . . Behling, H. (2020). Employing DNA
metabarcoding to determine the geographical origin of honey.Heliyon, 6 (11), e05596. doi:10.1016/j.heliyon.2020.e05596
Klimczak, L. J., Ebner von Eschenbach, C., Thompson, P. M., Buters, J.
T. M., & Meuller, G. A. (2020). Mixture analyses of air-sampled pollen
extracts can accurately differentiate pollen taxa. Atmospheric
Environment, 243 , 117746. doi:10.1016/j.atmosenv.2020.117746
Kolter, A., & Gemeinholzer, B. (2021). Internal transcribed spacer
primer evaluation for vascular plant metabarcoding. Metabarcoding
and Metagenomics, 5 , e68155. doi:10.3897/mbmg.5.68155
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M.
(2015). Climate change alters the structure of arctic marine food webs
due to poleward shifts of boreal generalists. Proceedings of the
Royal Society B: Biological Sciences, 282 , 20151546.
doi:10.1098/rspb.2015.1546
Kraaijeveld, K., de Weger, L. A., Ventayol Garcia, M., Buermans, H.,
Frank, J., Hiemstra, P. S., & den Dunnen, J. T. (2014). Efficient and
sensitive identification and quantification of airborne pollen using
next-generation DNA sequencing. Molecular Ecology Resources,
15 (1), 8-16. doi:10.1111/1755-0998.12288
Kratschmer, S., Petrović, B., Curto, M., Meimberg, H., & Pachinger, B.
(2020). Pollen availability for the Horned mason bee (
Osmia cornuta
) in regions of different land use and landscape structures.Ecological Entomology, 45 (3), 525-537. doi:10.1111/een.12823
Kron, P., Loureiro, J., Castro, S., & Čertner, M. (2021). Flow
cytometric analysis of pollen and spores: An overview of applications
and methodology. Cytometry Part A, 99 (4), 348-358.
doi:10.1002/cyto.a.24330
Kurganskiy, A., Creer, S., Vere, N. d., Griffith, G. W., Osborne, N. J.,
Wheeler, B. W., . . . Skjøth, C. A. (2021). Predicting the severity of
the grass pollen season and the effect of climate change in Northwest
Europe. Science Advances, 7 (13), eabd7658.
doi:10.1126/sciadv.abd7658
Kuzmina, M. L., Braukmann, T. W. A., Fazekas, A. J., Graham, S. W.,
Dewaard, S. L., Rodrigues, A., . . . Hebert, P. D. N. (2017). Using
herbarium-derived DNAs to assemble a large-scale DNA barcode library for
the vascular plants of Canada. Applications in Plant Sciences,
5 (12), apps.1700079. doi:10.3732/apps.1700079
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., &
Taylor, M. I. (2019). How quantitative is metabarcoding: A
meta-analytical approach. Molecular Ecology, 28 (2), 420-430.
doi:10.1111/mec.14920
Lang, D., Tang, M., Hu, J., & Zhou, X. (2019). Genome‐skimming provides
accurate quantification for pollen mixtures. In Molecular Ecology
Resources (Vol. 19, pp. 1433-1446): John Wiley & Sons, Ltd (10.1111).
Lark, T. J., Meghan Salmon, J., & Gibbs, H. K. (2015). Cropland
expansion outpaces agricultural and biofuel policies in the United
States. Environmental Research Letters, 10 (4), 044003.
doi:10.1088/1748-9326/10/4/044003
Lark, T. J., Spawn, S. A., Bougie, M., & Gibbs, H. K. (2020). Cropland
expansion in the United States produces marginal yields at high costs to
wildlife. Nature Communications, 11 (1), 4295.
doi:10.1038/s41467-020-18045-z
Lau, P., Bryant, V., Ellis, J. D., Huang, Z. Y., Sullivan, J., Schmehl,
D. R., . . . Rangel, J. (2019). Seasonal variation of pollen collected
by honey bees (Apis mellifera) in developed areas across four regions in
the United States. PLoS one, 14 (6), e0217294.
doi:10.1371/journal.pone.0217294
Leontidou, K., Vernesi, C., De Groeve, J., Cristofolini, F., Vokou, D.,
& Cristofori, A. (2018). DNA metabarcoding of airborne pollen: new
protocols for improved taxonomic identification of environmental
samples. In Aerobiologia (Vol. 34, pp. 63-74): Springer
Netherlands.
Leontidou, K., Vokou, D., Sandionigi, A., Bruno, A., Lazarina, M., De
Groeve, J., . . . Cristofori, A. (2021). Plant biodiversity assessment
through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps).Scientific Reports, 11 , 18226.
Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington,
J., Crandall, K. A., . . . Zhang, G. (2018). Earth BioGenome Project:
Sequencing life for the future of life. Proceedings of the
National Academy of Sciences, 115 (17), 4325-4333.
doi:10.1073/pnas.1720115115
Liu, S., Li, K., Jia, W., Stoof-Leichsenring, K. R., Liu, X., Cao, X.,
& Herzschuh, U. (2021). Vegetation Reconstruction From Siberia and the
Tibetan Plateau Using Modern Analogue Technique–Comparing Sedimentary
(Ancient) DNA and Pollen Data. Frontiers in Ecology and Evolution,
9 , 668611. doi:10.3389/fevo.2021.668611
Loeza‐Quintana, T., Abbott, C. L., Heath, D. D., Bernatchez, L., &
Hanner, R. H. (2020). Pathway to Increase Standards and Competency of
eDNA Surveys (PISCeS)—Advancing collaboration and standardization
efforts in the field of eDNA. Environmental DNA, 2 (3), 255-260.
doi:10.1002/edn3.112
Lowenstein, D. M., Matteson, K. C., & Minor, E. S. (2018). Evaluating
the dependence of urban pollinators on ornamental, non-native, and
‘weedy’ floral resources. Urban Ecosystems, 22 (2), 293-302.
doi:10.1007/s11252-018-0817-z
Lucas, A., Bodger, O., Brosi, B. J., Ford, C. R., Forman, D. W., Greig,
C., . . . Vere, N. d. (2018). Floral resource partitioning by
individuals within generalised hoverfly pollination networks revealed by
DNA metabarcoding. In Scientific Reports (pp. 1-11): Springer US.
Lucas, A., Bodger, O., Brosi, B. J., Ford, C. R., Forman, D. W., Greig,
C., . . . de Vere, N. (2018). Generalisation and specialisation in
hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA
metabarcoding. In N. Sanders (Ed.), Journal of Animal Ecology .
Lucek, K., Galli, A., Gurten, S., Hohmann, N., Maccagni, A., Patsiou,
T., & Willi, Y. (2019). Metabarcoding of honey to assess differences in
plant-pollinator interactions between urban and non-urban sites.Apidologie, 50 (3), 317-329. doi:10.1007/s13592-019-00646-3
MacGregor, C. J., Kitson, J. J. N., Fox, R., Hahn, C., Lunt, D. H.,
Pocock, M. J. O., & Evans, D. M. (2019). Construction, validation, and
application of nocturnal pollen transport networks in an agro-ecosystem:
a comparison using light microscopy amd DNA metabarcoding.Ecological Entomology, 44 (1), 17-29. doi:10.1111/een.12674
Mander, L., & Punyasena, S. W. (2014). On the taxonomic resolution of
pollen and spore records of earth’s vegetation. International
Journal of Plant Sciences, 175 (8), 931-945. doi:10.1086/677680
Marcos, J. V., Nava, R., Cristobal, G., Redondo, R., Escalante-Ramirez,
B., Bueno, G., . . . Rodriguez, T. (2015). Automated pollen
identification using microscopic imaging and texture analysis.Micron, 68 , 36-46. doi:10.1016/j.micron.2014.09.002
Mata, V. A., Rebelo, H., Amorim, F., McCracken, G. F., Jarman, S., &
Beja, P. (2019). How much is enough? Effects of technical and biological
replication on metabarcoding dietary analysis. In Molecular
Ecology (Vol. 28, pp. 165-175).
Mathiasson, M. E., & Rehan, S. M. (2020). Wild bee declines linked to
plant‐pollinator network changes and plant species introductions.Insect Conservation and Diversity, 13 (6), 595-605.
doi:10.1111/icad.12429
MATSUKI, Y., ISAGI, Y., & SUYAMA, Y. (2007). The determination of
multiple microsatellite genotypes and DNA sequences from a single pollen
grain. In Molecular Ecology Notes (Vol. 7, pp. 194-198).
Matsuki, Y., Tateno, R., Shibata, M., & Isagi, Y. (2008). Pollination
efficiencies of flower-visiting insects as determined by direct genetic
analysis of pollen origin. American Journal of Botany, 95 (8),
925-930. doi:10.3732/ajb.0800036
McFrederick, Q. S., & Rehan, S. M. (2016). Characterization of pollen
and bacterial community composition in brood provisions of a small
carpenter bee. In Molecular Ecology (Vol. 25, pp. 2302-2311).
Milla, E., Bovill, J., Schmidt-Lebuhn, A. N., & Encinas-Viso, F. (in
press). Monitoring of honey bee floral resources with pollen DNA
metabarcoding as a complementary tool to vegetation surveys.Ecological Solutions and Evidence, in press .
Moorhouse-Gann, R. J., Dunn, J. C., de Vere, N., Goder, M., Cole, N.,
Hipperson, H., & Symondson, W. O. C. (2018). New universal ITS2 primers
for high-resolution herbivory analyses using DNA metabarcoding in both
tropical and temperate zones. In Scientific Reports (Vol. 8, pp.
8542).
Muthreich, F., Zimmermann, B., Birks, H. J. B., Vila‐Viçosa, C. M., &
Seddon, A. W. R. (2020). Chemical variations in Quercus pollen as
a tool for taxonomic identification: Implications for long-term
ecological and biogeographical research. Journal of Biogeography,
47 (6), 1298-1309. doi:10.1111/jbi.13817
Nakazawa, F., Uetake, J., Suyama, Y., Kaneko, R., Takeuchi, N., Fujita,
K., . . . Kanda, H. (2013). DNA analysis for section identification of
individual Pinus pollen grains from Belukha glacier, Altai
Mountains, Russia. Environmental Research Letters, 8 , 014032.
doi:10.1088/1748-9326/8/1/014032
Nichols, R. V., Vollmers, C., Newsom, L. A., Wang, Y., Heintzman, P. D.,
Leighton, M., . . . Shapiro, B. (2018). Minimizing polymerase biases in
metabarcoding. In Molecular Ecology Resources : Wiley/Blackwell
(10.1111).
Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A.,
& Herzschuh, U. (2017). A comparison of sedimentary DNA and pollen from
lake sediments in recording vegetation composition at the Siberian
treeline. In Molecular Ecology Resources (Vol. 17, pp. e46-e62).
Nürnberger, F., Keller, A., Härtel, S., & Steffan‐Dewenter, I. (2019).
Honey bee waggle dance communication increases diversity of pollen diets
in intensively managed agricultural landscapes. Molecular Ecology,
28 (15), 3602-3611. doi:10.1111/mec.15156
O’Donnell, J. L., Kelly, R. P., Lowell, N. C., & Port, J. A. (2016).
Indexed PCR Primers Induce Template-Specific Bias in Large-Scale DNA
Sequencing Studies. PLoS one, 11 (3), e0148698.
doi:10.1371/journal.pone.0148698
Olsson, O., Karlsson, M., Persson, A. S., Smith, H. G., Varadarajan, V.,
Yourstone, J., . . . Freckleton, R. (2021). Efficient, automated and
robust pollen analysis using deep learning. Methods in Ecology and
Evolution, 12 (5), 850-862. doi:10.1111/2041-210x.13575
Otto, C. R. V., Roth, C. L., Carlson, B. L., & Smart, M. D. (2016).
Land-use change reduces habitat suitability for supporting managed honey
bee colonies in the Northern Great Plains. Proceedings of the
National Academy of Sciences, 113 (37), 10430-10435.
doi:10.1073/pnas.1603481113
Paffetti, D., Vettori, C., Caramelli, D., Vernesi, C., Lari, M.,
Paganelli, A., . . . Giannini, R. (2007). Unexpected presence of Fagus
orientalis complex in Italy as inferred from 45,000-year-old DNA pollen
samples from Venice lagoon. BMC Evolutionary Biology, 7 (2), S6.
doi:10.1186/1471-2148-7-S2-S6
Parducci, L., Alsos, I. G., Unneberg, P., Pedersen, M. W., Han, L.,
Lammers, Y., . . . Wohlfarth, B. (2019). Shotgun Environmental DNA,
Pollen, and Macrofossil Analysis of Lateglacial Lake Sediments From
Southern Sweden. In Frontiers in Ecology and Evolution (Vol. 7,
pp. 189): Frontiers.
Parducci, L., Bennett, K. D., Ficetola, G. F., Alsos, I. G., Suyama, Y.,
Wood, J. R., & Pedersen, M. W. (2017). Ancient plant DNA in lake
sediments. In New Phytologist (Vol. 214, pp. 924-942).
Parducci, L., Nota, K., & Wood, J. R. (2019). Reconstructing Past
Vegetation Communities Using Ancient DNA from Lake Sediments. In C.
Lindqvist & O. P. Rajora (Eds.), Paleogenomics: Genome-Scale
Analysis of Ancient DNA (pp. 163-187). Cham: Springer International
Publishing.
Parducci, L., Suyama, Y., Lascoux, M., & Bennett, K. D. (2005). Ancient
DNA from pollen: a genetic record of population history in Scots pine.
In Molecular Ecology (Vol. 14, pp. 2873-2882).
Parsons, K. M., Everett, M., Dahlheim, M., & Park, L. (2018). Water,
water everywhere: environmental DNA can unlock population structure in
elusive marine species. Royal Society Open Science, 5 (8), 180537.
doi:10.1098/rsos.180537
Pawluczyk, M., Weiss, J., Links, M. G., Egaña Aranguren, M., Wilkinson,
M. D., & Egea-Cortines, M. (2015). Quantitative evaluation of bias in
PCR amplification and next-generation sequencing derived from
metabarcoding samples. Analytical and Bioanalytical Chemistry,
407 (7), 1841-1848. doi:10.1007/s00216-014-8435-y
Pedersen, M. W., De Sanctis, B., Saremi, N. F., Sikora, M., Puckett, E.
E., Gu, Z., . . . Willerslev, E. (2021). Environmental genomics of Late
Pleistocene black bears and giant short-faced bears. Current
Biology, 31 (12), 2728-2736.e2728. doi:10.1016/j.cub.2021.04.027
Peel, N., Dicks, L. V., Clark, M. D., Heavens, D., Percival-Alwyn, L.,
Cooper, C., . . . Yu, D. W. (2019). Semi-quantitative characterisation
of mixed pollen samples using MinION sequencing and Reverse Metagenomics
(RevMet). Methods in Ecology and Evolution, 10 (10), 1690-1701.
doi:10.1111/2041-210X.13265
Pereira, S. G., Guedes, A., Abreu, I., & Ribeiro, H. (2021). Testing
the Raman parameters of pollen spectra in automatic identification.Aerobiologia, 37 (1), 15-28. doi:10.1007/s10453-020-09669-1
Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C.,
Classen, A., . . . Steffan-Dewenter, I. (2019). Climate-land-use
interactions shape tropical mountain biodiversity and ecosystem
functions. Nature, 568 (7750), 88-92.
doi:10.1038/s41586-019-1048-z
Petersen, G., Johansen, B., & Seberg, O. (1996). PCR and sequencing
from a single pollen grain. In Plant Molecular Biology (Vol. 31,
pp. 189-191).
Piko, J., Keller, A., Geppert, C., Batáry, P., Tscharntke, T., Westphal,
C., & Hass, A. L. (2021). Effects of three flower field types on
bumblebees and their pollen diets. Basic and Applied Ecology, 52 ,
95-108. doi:10.1016/j.baae.2021.02.005
Pimm, S. L., & Joppa, L. N. (2015). How many plant species are there,
where are they, and what rate are they going extinct? Annals of
the Missouri Botanical Garden, 100 (170-176).
Piñol, J., Senar, M. A., & Symondson, W. O. C. (2019). The choice of
universal primers and the characteristics of the species mixture
determine when DNA metabarcoding can be quantitative. In Molecular
Ecology (Vol. 28, pp. 407-419): Wiley/Blackwell (10.1111).
Polling, M., Li, C., Cao, L., Verbeek, F., de Weger, L. A., Belmonte,
J., . . . Gravendeel, B. (2021). Neural networks for increased accuracy
of allergenic pollen monitoring. Scientific Reports, 11 (1),
11357. doi:10.1038/s41598-021-90433-x
Polling, M., Sin, M., de Weger, L. A., Speksnijder, A. G. C. L.,
Koenders, M. J. F., de Boer, H., & Gravendeel, B. (2022). DNA
metabarcoding using nrITS2 provides highly qualitative and quantitative
results for airborne pollen monitoring. Science of The Total
Environment, 806 , 150468.
doi:https://doi.org/10.1016/j.scitotenv.2021.150468
Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S.
N., & Taberlet, P. (2012). Who is eating what: diet assessment using
next generation sequencing. Molecular Ecology, 21 (8), 1931-1950.
doi:10.1111/j.1365-294X.2011.05403.x
Popic, T. J., Wardle, G. M., & Davila, Y. C. (2013). Flower-visitor
networks only partially predict the function of pollen transport by
bees. Austral Ecology, 38 (1), 76-86.
doi:10.1111/j.1442-9993.2012.02377.x
Pornon, A., Andalo, C., Burrus, M., & Escaravage, N. (2017). DNA
metabarcoding data unveils invisible pollination networks. InScientific Reports (Vol. 7, pp. 16828).
Pornon, A., Escaravage, N., Burrus, M., Holota, H., Khimoun, A.,
Mariette, J., . . . Andalo, C. (2016). Using metabarcoding to reveal and
quantify plant-pollinator interactions. In Scientific Reports(Vol. 6, pp. 27282).
Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L., &
Durham, S. L. (2018). Local extinction of a rare plant pollinator in
Southern Utah (USA) associated with invasion by Africanized honey bees.Biological Invasions, 20 (3), 593-606.
doi:10.1007/s10530-017-1559-1
Potter, C., de Vere, N., Jones, L. E., Ford, C. R., Hegarty, M. J.,
Hodder, K. H., . . . Franklin, E. L. (2019). Pollen metabarcoding
reveals broad and species-specific resource use by urban bees.PeerJ, 7 , e5999. doi:10.7717/peerj.5999
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O.,
& Kunin, W. E. (2010). Global pollinator declines: trends, impacts and
drivers. Trends Ecol Evol, 25 (6), 345-353.
doi:10.1016/j.tree.2010.01.007
Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M.,
Carlton, J. T., . . . Richardson, D. M. (2020). Scientists’ warning on
invasive alien species. Biological Reviews, 95 (6), 1511-1534.
doi:https://doi.org/10.1111/brv.12627
Quaresma, A., Brodschneider, R., Gratzer, K., Gray, A., Keller, A.,
Kilpinen, O., . . . Pinto, M. A. (2021). Preservation methods of honey
bee-collected pollen are not a source of bias in ITS2 metabarcoding.Environmental Monitoring and Assessment, 193 (12), 785.
doi:10.1007/s10661-021-09563-4
Reilly, J. R., Artz, D. R., Biddinger, D., Bobiwash, K., Boyle, N. K.,
Brittain, C., . . . Winfree, R. (2020). Crop production in the USA is
frequently limited by a lack of pollinators. Proceedings of the
Royal Society B: Biological Sciences, 287 (1931), 20200922.
doi:10.1098/rspb.2020.0922
Revilla, T. A., Encinas-Viso, F., & Loreau, M. (2015). Robustness of
mutualistic networks under phenological change and habitat destruction.Oikos, 124 , 22-32. doi:10.1111/OIK.01532
Richardson, R. T., Curtis, H. R., Matcham, E. G., Hua Lin, C., Suresh,
S., Sponsler, D. B., . . . Johnson, R. M. (2018). Quantitative
multi-locus metabarcoding and waggle dance interpretation reveal honey
bee spring foraging patterns in Midwest agroecosystems. Molecular
Ecology, 28 (3), 686-697. doi:10.1111/mec.14975
Richardson, R. T., Eaton, T. D., Lin, C. H., Cherry, G., Johnson, R. M.,
& Sponsler, D. B. (2021). Application of plant metabarcoding to
identify diverse honeybee pollen forage along an urban–agricultural
gradient. In Molecular Ecology (Vol. 30, pp. 310-323).
Richardson, R. T., Lin, C.-H., Quijia, J. O., Riusech, N. S., Goodell,
K., & Johnson, R. M. (2015). Rank-Based Characterization of Pollen
Assemblages Collected by Honey Bees Using a Multi-Locus Metabarcoding
Approach. In Applications in Plant Sciences (Vol. 3, pp.
1500043).
Richardson, R. T., Sponsler, D. B., McMinn‐Sauder, H., & Johnson, R. M.
(2020). MetaCurator: A hidden Markov model‐based toolkit for extracting
and curating sequences from taxonomically‐informative genetic markers.Methods in Ecology and Evolution, 11 (1), 181-186.
doi:10.1111/2041-210x.13314
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahe, F. (2016).
VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4 ,
e2584. doi:10.7717/peerj.2584
Rowney, F. M., Brennan, G. L., Skjoth, C. A., Griffith, G. W., McInnes,
R. N., Clewlow, Y., . . . Creer, S. (2021). Environmental DNA reveals
links between abundance and composition of airborne grass pollen and
respiratory health. Current Biology, 31 (9), 1995-2003 e1994.
doi:10.1016/j.cub.2021.02.019
Samuelson, A. E., Gill, R. J., & Leadbeater, E. (2020). Urbanisation is
associated with reduced Nosema sp. infection, higher colony strength and
higher richness of foraged pollen in honeybees. Apidologie,
51 (5), 746-762. doi:10.1007/s13592-020-00758-1
Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J., Collins, J. P.,
& Yoccoz, N. (2013). Site occupancy models in the analysis of
environmental DNA presence/absence surveys: a case study of an emerging
amphibian pathogen. Methods in Ecology and Evolution, 4 (7),
646-653. doi:10.1111/2041-210x.12052
Sepulveda, A. J., Nelson, N. M., Jerde, C. L., & Luikart, G. (2020).
Are Environmental DNA Methods Ready for Aquatic Invasive Species
Management? Trends Ecol Evol, 35 (8), 668-678.
doi:10.1016/j.tree.2020.03.011
Sevillano, V., Holt, K., & Aznarte, J. L. (2020). Precise automatic
classification of 46 different pollen types with convolutional neural
networks. PLoS one, 15 (6), e0229751.
doi:10.1371/journal.pone.0229751
Sickel, W., Ankenbrand, M. J., Grimmer, G., Holzschuh, A., Härtel, S.,
Lanzen, J., . . . Keller, A. (2015). Increased efficiency in identifying
mixed pollen samples by meta-barcoding with a dual-indexing approach. InBMC Ecology (Vol. 15, pp. 20).
Sigsgaard, E. E., Nielsen, I. B., Bach, S. S., Lorenzen, E. D.,
Robinson, D. P., Knudsen, S. W., . . . Thomsen, P. F. (2016). Population
characteristics of a large whale shark aggregation inferred from
seawater environmental DNA. Nature Ecology & Evolution, 1 (1),
0004. doi:10.1038/s41559-016-0004
Simanonok, M. P., Otto, C. R. V., Cornman, R. S., Iwanowicz, D. D.,
Strange, J. P., & Smith, T. A. (2021). A century of pollen foraging by
the endangered rusty patched bumble bee (Bombus affinis): inferences
from molecular sequencing of museum specimens. Biodiversity and
Conservation, 30 , 123-137. doi:10.1007/s10531-020-02081-8
Smith, C., Weinman, L., Gibbs, J., & Winfree, R. (2019). Specialist
foragers in forest bee communities are small, social or emerge early.Journal of Animal Ecology, 88 (8), 1158-1167.
doi:10.1111/1365-2656.13003
Smith, M. R., Singh, G. M., Mozaffarian, D., & Myers, S. S. (2015).
Effects of decreases of animal pollinators on human nutrition and global
health: a modelling analysis. The Lancet, 386 (10007), 1964-1972.
doi:10.1016/s0140-6736(15)61085-6
Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina,
A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from
1982 to 2016. Nature, 560 (7720), 639-643.
doi:10.1038/s41586-018-0411-9
Sponsler, D. B., Shump, D., Richardson, R. T., & Grozinger, C. M.
(2020). Characterizing the floral resources of a North American
metropolis using a honey bee foraging assay. Ecosphere, 11 (4),
e03102.
Stillman, E. C., & Flenley, J. R. (1996). The needs and prospects for
automation in palynology. Quaternary Science Reviews, 15 (1), 1-5.
doi:10.1016/0277-3791(95)00076-3
Suanno, C., Aloisi, I., Fernández-González, D., & Del Duca, S. (2021).
Monitoring techniques for pollen allergy risk assessment.Environmental Research, 197 , 111109.
doi:https://doi.org/10.1016/j.envres.2021.111109
Suchan, T., Talavera, G., Saez, L., Ronikier, M., & Vila, R. (2019).
Pollen metabarcoding as a tool for tracking long-distance insect
migrations. Molecular Ecology Resources, 19 (1), 149-162.
doi:10.1111/1755-0998.12948
Suyama, Y. (2011). Procedure for Single-Pollen Genotyping. In Y. Isagi
& Y. Suyama (Eds.), Single-Pollen Genotyping (pp. 7-15). Tokyo:
Springer Japan.
Suyama, Y., Kawamuro, K., Kinoshita, I., Yoshimura, K., Tsumura, Y., &
Takahara, H. (1996). DNA sequence from a fossil pollen of
<i>Abies</i> spp. from
Pleistocene peat. Genes & Genetic Systems, 71 (3), 145-149.
doi:10.1266/ggs.71.145
Swenson, S. J., & Gemeinholzer, B. (2021). Testing the effect of pollen
exine rupture on metabarcoding with Illumina sequencing. In B. Heinze
(Ed.), PLoS one (Vol. 16, pp. e0245611).
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev,
E. (2012). Towards next-generation biodiversity assessment using DNA
metabarcoding. In Molecular Ecology (Vol. 21, pp. 2045-2050).
Tanaka, K., Nozaki, A., Nakadai, H., Shiwa, Y., & Shimizu-Kadota, M.
(2020). Using pollen DNA metabarcoding to profile nectar sources of
urban beekeeping in Kōtō-ku, Tokyo. In.
Threlfall, C. G., Walker, K., Williams, N. S. G., Hahs, A. K., Mata, L.,
Stork, N., & Livesley, S. J. (2015). The conservation value of urban
green space habitats for Australian native bee communities.Biological Conservation, 187 , 240-248.
doi:10.1016/j.biocon.2015.05.003
Tommasi, N., Ferrari, A., Labra, M., Galimberti, A., & Biella, P.
(2021). Harnessing the Power of Metabarcoding in the Ecological
Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences
of Filtering Approaches. Diversity, 13 (9), 437.
Tremblay, É. D., Duceppe, M.-O., Thurston, G. B., Gagnon, M.-C., Côté,
M.-J., & Bilodeau, G. J. (2019). High-resolution biomonitoring of plant
pathogens and plant species using metabarcoding of pollen pellet
contents collected from a honey bee hive. In Environmental DNA :
John Wiley & Sons, Ltd.
Trinkl, M., Kaluza, B. F., Wallace, H., Heard, T. A., Keller, A., &
Leonhardt, S. D. (2020). Floral Species Richness Correlates with Changes
in the Nutritional Quality of Larval Diets in a Stingless Bee.Insects, 11 (2). doi:10.3390/insects11020125
Tur, C., Vigalondo, B., Trojelsgaard, K., Olesen, J. M., & Traveset, A.
(2014). Downscaling pollen-transport networks to the level of
individuals. Journal of Animal Ecology, 83 (1), 306-317.
doi:10.1111/1365-2656.12130
Turo, K. J., & Gardiner, M. M. (2019). From potential to practical:
conserving bees in urban public green spaces. Frontiers in Ecology
and the Environment, 17 (3), 167-175. doi:10.1002/fee.2015
Uetake, J., Tobo, Y., Kobayashi, S., Tanaka, K., Watanabe, S., DeMott,
P. J., & Kreidenweis, S. M. (2021). Visualization of the seasonal shift
of a variety of airborne pollens in western Tokyo. In Science of
The Total Environment (Vol. 788, pp. 147623).
Vannette, R. L. (2020). The Floral Microbiome: Plant, Pollinator, and
Microbial Perspectives. Annual Review of Ecology, Evolution, and
Systematics, 51 (1), 363-386. doi:10.1146/annurev-ecolsys-011720-013401
Vaudo, A. D., Biddinger, D. J., Sickel, W., Keller, A., & López-Uribe,
M. M. (2020). Introduced bees (Osmia cornifrons ) collect pollen
from both coevolved and novel host-plant species within their
family-level phylogenetic preferences. Royal Society Open Science,
7 , 200225. doi:10.1098/rsos.200225
10.6084/m9.figshare.c
Voulgari-Kokota, A., Grimmer, G., Steffan-Dewenter, I., & Keller, A.
(2018). Bacterial community structure and succession in nests of two
megachilid bee genera. FEMS Microbiology Ecology, 95 (1).
doi:10.1093/femsec/fiy218
Voulgari-Kokota, A., Steffan-Dewenter, I., & Keller, A. (2020).
Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to
Microbiome Exchange with Imported Pollen Provisions. Insects,
11 (6), 373. doi:10.3390/insects11060373
Vuong, H. Q., & McFrederick, Q. S. (2019). Comparative Genomics of Wild
Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to
the Bee Host. Genome Biology and Evolution, 11 (8), 2151-2161.
doi:10.1093/gbe/evz136
Wagemaker, C. A. M., Mommer, L., Visser, E. J. W., Weigelt, A., van
Gurp, T. P., Postuma, M., . . . de Kroon, H. (2021). msGBS: A new
high-throughput approach to quantify the relative species abundance in
root samples of multispecies plant communities. Mol Ecol Resour,
21 (4), 1021-1036. doi:10.1111/1755-0998.13278
Wenzel, A., Grass, I., Belavadi, V. V., & Tscharntke, T. (2020). How
urbanization is driving pollinator diversity and pollination - A
systematic review. Biological Conservation, 241 , 108321.
doi:10.1016/j.biocon.2019.108321
Wilmshurst, J. M., Moar, N. T., Wood, J. R., Bellingham, P. J.,
Findlater, A. M., Robinson, J. J., & Stone, C. (2014). Use of pollen
and ancient DNA as conservation baselines for offshore islands in New
Zealand. Conservation Biology, 28 (1), 202-212.
doi:10.1111/cobi.12150
Wilson, R. S., Keller, A., Shapcott, A., Leonhardt, S. D., Sickel, W.,
Hardwick, J. L., . . . Wallace, H. M. (2021). Many small rather than few
large sources identified in long-term bee pollen diets in
agroecosystems. In Agriculture, Ecosystems & Environment (Vol.
310, pp. 107296).
Yilmaz, P., Kottmann, R., Field, D., Knight, R., Cole, J. R.,
Amaral-Zettler, L., . . . Glockner, F. O. (2011). Minimum information
about a marker gene sequence (MIMARKS) and minimum information about any
(x) sequence (MIxS) specifications. Nature Biotechnology, 29 (5),
415-420. doi:10.1038/nbt.1823
Zemenick, A. T., Vannette, R. L., & Rosenheim, J. A. (2021). Linked
networks reveal dual roles of insect dispersal and species sorting for
bacterial communities in flowers. Oikos, 130 , 697-707.
doi:10.1101/847376
Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a
fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics,
30 (5), 614-620. doi:10.1093/bioinformatics/btt593
Zhao, Y. H., Lázaro, A., Ren, Z. X., Zhou, W., Li, H. D., Tao, Z. B., .
. . Wang, H. (2018). The topological differences between visitation and
pollen transport networks: a comparison in species rich communities of
the Himalaya–Hengduan Mountains. Oikos, 128 (4), 551-562.
doi:10.1111/oik.05262
Zimmermann, B. (2018). Chemical characterization and identification of
Pinaceae pollen by infrared microspectroscopy. Planta, 247 (1),
171-180. doi:10.1007/s00425-017-2774-9