References

1. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021;33(31):e2007100.
2. Luo Y, Zhang Z, Chhowalla M, Liu B. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting.Adv. Mater. 2021:e2108133.
3. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015;44(8):2060-2086.
4. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017;46(2):337-365.
5. Antolini E. Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells. ACS Catalysis. 2014;4(5):1426-1440.
6. McCrory CC, Jung S, Peters JC, Jaramillo TF. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.J. Am. Chem. Soc. 2013;135(45):16977-16987.
7. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J Phys Chem Lett.2012;3(3):399-404.
8. Lyu F, Wang Q, Choi SM, Yin Y. Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Small.2019;15(1):e1804201.
9. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater. 2016;28(2):215-230.
10. Gong M, Dai HJ. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research. 2015;8(1):23-39.
11. Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today.2016;11(5):601-625.
12. Li T, Lv Y, Su J, et al. Anchoring CoFe2O4 Nanoparticles on N-Doped Carbon Nanofibers for High-Performance Oxygen Evolution Reaction. Adv. Sci. 2017;4(11):1700226.
13. Tan L, Pan Q-R, Wu X-T, Li N, Song J-H, Liu Z-Q. Core@Shelled Co/CoO Embedded Nitrogen-Doped Carbon Nanosheets Coupled Graphene as Efficient Cathode Catalysts for Enhanced Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Sustainable Chemistry & Engineering. 2019;7(6):6335-6344.
14. Wang Y, Zhang Y, Liu Z, et al. Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angew. Chem. Int. Ed. 2017;56(21):5867-5871.
15. Gao Z-W, Ma T, Chen X-M, et al. Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. Small. 2018;14(17):1800195.
16. Song L, Zhang J, Sarkar S, et al. Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries via alloying degree control strategy.Chem. Eng. J. 2022;433:133686.
17. Liu M, Li N, Cao S, et al. A ”Pre-Constrained Metal Twins” Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis. Adv. Mater. 2021:e2107421.
18. Bai L, Hsu CS, Alexander DTL, Chen HM, Hu X. A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2019;141(36):14190-14199.
19. Guan BY, Lu Y, Wang Y, Wu MH, Lou XW. Porous Iron-Cobalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal-Organic Framework Hybrids for Oxygen Reduction. Adv. Funct. Mater. 2018;28(10):1706738.
20. Wang S, Wang H, Huang C, et al. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Applied Catalysis B: Environmental.2021;298:120512.
21. Jin T, Liu X, Gao Q, et al. Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chem. Eng. J.2022;433:134089.
22. Wang Z, Xiao S, Zhu Z, et al. Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range. ACS Appl. Mater. Interfaces.2015;7(7):4048-4055.
23. Du Y, Chen J, Li L, Shi H, Shao K, Zhu M. Core-Shell FeCo Prussian Blue Analogue/Ni(OH)2 Derived Porous Ternary Transition Metal Phosphides Connected by Graphene for Effectively Electrocatalytic Water Splitting. ACS Sustainable Chemistry & Engineering.2019;7(15):13523-13531.
24. Yu M, Budiyanto E, Tuysuz H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed.2022;61(1):e202103824.
25. Su CY, Cheng H, Li W, et al. Atomic Modulation of FeCo-Nitrogen-Carbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All-Solid-State Zinc-Air Battery. Advanced Energy Materials. 2017;7(13):1602420.
26. Bai LC, Hsu CS, Alexander DTL, Chen HM, Hu XL. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy. 2021;6(11):1054-1066.
27. Wang YJ, Fan HB, Ignaszak A, et al. Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chem. Eng. J. 2018;348:416-437.
28. Wang J, Kong H, Zhang JY, Hao Y, Shao ZP, Ciucci F. Carbon-based electrocatalysts for sustainable energy applications.Prog. Mater Sci. 2021;116:100717.
29. Li CL, Wu MC, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Applied Catalysis B-Environmental. 2019;244:150-158.
30. Zhu X, Jin T, Tian C, et al. In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co4 N Hybrid for Highly Efficient Oxygen Evolution. Adv. Mater. 2017;29(47):1704091.
31. Meng F, Zhong H, Bao D, Yan J, Zhang X. In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries. J. Am. Chem. Soc. 2016;138(32):10226-10231.
32. Shi QR, Zhu CZ, Du D, Lin YH. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev.2019;48(12):3181-3192.
33. Zhang LL, Xiao J, Wang HY, Shao MH. Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis. 2017;7(11):7855-7865.
34. Cui XJ, Ren PJ, Deng DH, Deng J, Bao XH. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy & Environmental Science. 2016;9(1):123-129.
35. Deng J, Ren P, Deng D, Bao X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed.2015;54(7):2100-2104.
36. Deng J, Deng D, Bao X. Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Adv. Mater. 2017;29(43):1606967.
37. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media.Nat. Commun. 2017;8(1):14969.
38. Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin valorization: Improving lignin processing in the biorefinery.Science. 2014;344(6185):12013-12018.
39. Wright A, Bandulasena H, Ibenegbu C, et al. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass. AIChE Journal. 2018;64(11):3803-3816.
40. Wang J, Qian Y, Zhou Y, Yang D, Qiu X. Atomic Force Microscopy Measurement in the Lignosulfonate/Inorganic Silica System: From Dispersion Mechanism Study to Product Design. Engineering.2021;7(8):1140-1148.
41. Qi Y, Xiao X, Mei YQ, et al. Modulation of Bronsted and Lewis Acid Centers for NixCo3-xO4 Spinel Catalysts: Towards Efficient Catalytic Conversion of Lignin. Adv. Funct. Mater.2022;n/a(n/a):2111615.
42. Shen YX, Peng F, Cao YH, Zuo JH, Wang HJ, Yu H. Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media. Journal of Energy Chemistry.2019;34:33-42.
43. Wu Y, Cao JP, Zhao XY, et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. Appl Surf Sci.2020;508:144536-144547.
44. Gomez-Aviles A, Penas-Garzon M, Bedia J, Rodriguez JJ, Belver C. C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen.Chemical Engineering Journal. 2019;358:1574-1582.
45. Zhang B, Yang D, Qiu X, et al. Fabricating ZnO/lignin-derived flower-like carbon composite with excellent photocatalytic activity and recyclability. Carbon.2020;162:256-266.
46. Qin HF, Zhou Y, Bai JR, et al. Lignin-Derived Thin-Walled Graphitic Carbon-Encapsulated Iron Nanoparticles: Growth, Characterization, and Applications. ACS Sustainable Chemistry & Engineering. 2017;5(2):1917-1923.
47. Qin HF, Kang SF, Wang YG, et al. Lignin-Based Fabrication of Co@C Core-Shell Nanoparticles as Efficient Catalyst for Selective Fischer-Tropsch Synthesis of C5+ Compounds. Acs Sustainable Chemistry & Engineering. 2016;4(3):1240-1247.
48. Fei X, Xu Q, Xue L, et al. Aqueous Phase Catalytic Conversion of Ethanol to Higher Alcohols over NiSn Bimetallic Catalysts Encapsulated in Nitrogen-Doped Biorefinery Lignin-Based Carbon.Ind. Eng. Chem. Res. 2021;60(49):17959-17969.
49. Pei YX, Chang AY, Liu X, et al. Nitrogen-doped carbon dots from Kraft lignin waste with inorganic acid catalyst and their brain cell imaging applications. Aiche Journal. 2021;67(5):e17132.
50. Chen X, Yuan B, Yu F, Xie C, Yu S. Lignin: A Potential Source of Biomass-Based Catalysts. Progress in Chemistry.2021;33(2):303-317.
51. Linhuo G, Mingsong Z, Dongjie Y, Xueqing Q. Preparation and Evaluation of Carboxymethylated Lignin as Dispersant for Aqueous Graphite Suspension Using Turbiscan Lab Analyzer. Journal of Dispersion Science and Technology. 2013;34(5):644-650.
52. Blochl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouinzone integrations. Physical Review B.1994;49(23):16223-16233.
53. Pang J, Zhang W, Zhang H, et al. Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors.Carbon. 2018;132:280-293.
54. Rong Z, Dong C, Zhang S, Dong W, Huang F. Co5.47N loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn-air battery. Nanoscale. 2020;12(10):6089-6095.
55. Jin H, Mao S, Zhan G, Xu F, Bao X, Wang Y. Fe incorporated α-Co(OH)2nanosheets with remarkably improved activity towards the oxygen evolution reaction. Journal of Materials Chemistry A.2017;5(3):1078-1084.
56. Liu Y, Li J, Li F, et al. A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A. 2016;4(12):4472-4478.
57. Pang J, Zhang W, Zhang J, Cao G, Han M, Yang Y. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chemistry. 2017;19(16):3916-3926.
58. Zhou H, Xu H, Liu Y. Aerobic oxidation of 5‑hydroxymethylfurfural to 2,5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts. Applied Catalysis B: Environmental. 2019;244:965-973.
59. Wu MJ, Wei QL, Zhang GX, et al. Fe/Co Double Hydroxide/Oxide Nanoparticles on N-Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasi-Solid-State Zinc-Air Batteries. Advanced Energy Materials. 2018;8(30):1801836.
60. Liu H, Lu X, Hu Y, et al. CoxFeyN nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A.2019;7(20):12489-12497.