References
1. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and
Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent
Progress, and Future Prospects. Adv. Mater. 2021;33(31):e2007100.
2. Luo Y, Zhang Z, Chhowalla M, Liu B. Recent Advances in
Design of Electrocatalysts for High-Current-Density Water Splitting.Adv. Mater. 2021:e2108133.
3. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of
electrocatalysts for oxygen- and hydrogen-involving energy conversion
reactions. Chem. Soc. Rev. 2015;44(8):2060-2086.
4. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM.
Electrocatalysis for the oxygen evolution reaction: recent development
and future perspectives. Chem. Soc. Rev. 2017;46(2):337-365.
5. Antolini E. Iridium As Catalyst and Cocatalyst for Oxygen
Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers
and Fuel Cells. ACS Catalysis. 2014;4(5):1426-1440.
6. McCrory CC, Jung S, Peters JC, Jaramillo TF. Benchmarking
heterogeneous electrocatalysts for the oxygen evolution reaction.J. Am. Chem. Soc. 2013;135(45):16977-16987.
7. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis
and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen
Evolution in Acid and Alkaline Solutions. J Phys Chem Lett.2012;3(3):399-404.
8. Lyu F, Wang Q, Choi SM, Yin Y. Noble-Metal-Free
Electrocatalysts for Oxygen Evolution. Small.2019;15(1):e1804201.
9. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent
Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical
Water Splitting. Adv. Mater. 2016;28(2):215-230.
10. Gong M, Dai HJ. A mini review of NiFe-based materials as
highly active oxygen evolution reaction electrocatalysts. Nano
Research. 2015;8(1):23-39.
11. Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G. Transition
metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution
bifunctional catalysts in alkaline media. Nano Today.2016;11(5):601-625.
12. Li T, Lv Y, Su J, et al. Anchoring CoFe2O4 Nanoparticles on
N-Doped Carbon Nanofibers for High-Performance Oxygen Evolution
Reaction. Adv. Sci. 2017;4(11):1700226.
13. Tan L, Pan Q-R, Wu X-T, Li N, Song J-H, Liu Z-Q.
Core@Shelled Co/CoO Embedded Nitrogen-Doped Carbon Nanosheets Coupled
Graphene as Efficient Cathode Catalysts for Enhanced Oxygen Reduction
Reaction in Microbial Fuel Cells. ACS Sustainable Chemistry &
Engineering. 2019;7(6):6335-6344.
14. Wang Y, Zhang Y, Liu Z, et al. Layered Double Hydroxide
Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly
Efficient Oxygen Evolution Electrocatalysts. Angew. Chem. Int.
Ed. 2017;56(21):5867-5871.
15. Gao Z-W, Ma T, Chen X-M, et al. Strongly Coupled CoO
Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for
Electrochemical Water Oxidation. Small. 2018;14(17):1800195.
16. Song L, Zhang J, Sarkar S, et al. Interface engineering of
FeCo-Co structure as bifunctional oxygen electrocatalyst for
rechargeable zinc-air batteries via alloying degree control strategy.Chem. Eng. J. 2022;433:133686.
17. Liu M, Li N, Cao S, et al. A ”Pre-Constrained Metal Twins”
Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative
Oxygen Electrocatalysis. Adv. Mater. 2021:e2107421.
18. Bai L, Hsu CS, Alexander DTL, Chen HM, Hu X. A Cobalt-Iron
Double-Atom Catalyst for the Oxygen Evolution Reaction. J. Am.
Chem. Soc. 2019;141(36):14190-14199.
19. Guan BY, Lu Y, Wang Y, Wu MH, Lou XW. Porous Iron-Cobalt
Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex
Metal-Organic Framework Hybrids for Oxygen Reduction. Adv. Funct.
Mater. 2018;28(10):1706738.
20. Wang S, Wang H, Huang C, et al. Trifunctional
electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with
CoFe alloy nanocrystals: The key roles of bimetal components and
high-content graphitic-N. Applied Catalysis B: Environmental.2021;298:120512.
21. Jin T, Liu X, Gao Q, et al. Pyrolysis-free, facile
mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon
for highly efficient water splitting. Chem. Eng. J.2022;433:134089.
22. Wang Z, Xiao S, Zhu Z, et al. Cobalt-Embedded Nitrogen
Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode
Reactions in a Wide pH Range. ACS Appl. Mater. Interfaces.2015;7(7):4048-4055.
23. Du Y, Chen J, Li L, Shi H, Shao K, Zhu M. Core-Shell FeCo
Prussian Blue Analogue/Ni(OH)2 Derived Porous Ternary Transition Metal
Phosphides Connected by Graphene for Effectively Electrocatalytic Water
Splitting. ACS Sustainable Chemistry & Engineering.2019;7(15):13523-13531.
24. Yu M, Budiyanto E, Tuysuz H. Principles of Water
Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based
Oxides for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed.2022;61(1):e202103824.
25. Su CY, Cheng H, Li W, et al. Atomic Modulation of
FeCo-Nitrogen-Carbon Bifunctional Oxygen Electrodes for Rechargeable and
Flexible All-Solid-State Zinc-Air Battery. Advanced Energy
Materials. 2017;7(13):1602420.
26. Bai LC, Hsu CS, Alexander DTL, Chen HM, Hu XL. Double-atom
catalysts as a molecular platform for heterogeneous oxygen evolution
electrocatalysis. Nature Energy. 2021;6(11):1054-1066.
27. Wang YJ, Fan HB, Ignaszak A, et al. Compositing
doped-carbon with metals, non-metals, metal oxides, metal nitrides and
other materials to form bifunctional electrocatalysts to enhance
metal-air battery oxygen reduction and evolution reactions. Chem.
Eng. J. 2018;348:416-437.
28. Wang J, Kong H, Zhang JY, Hao Y, Shao ZP, Ciucci F.
Carbon-based electrocatalysts for sustainable energy applications.Prog. Mater Sci. 2021;116:100717.
29. Li CL, Wu MC, Liu R. High-performance bifunctional oxygen
electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C
nanofibers with embedding FeCo alloy nanoparticles. Applied
Catalysis B-Environmental. 2019;244:150-158.
30. Zhu X, Jin T, Tian C, et al. In Situ Coupling Strategy for
the Preparation of FeCo Alloys and Co4 N Hybrid for Highly Efficient
Oxygen Evolution. Adv. Mater. 2017;29(47):1704091.
31. Meng F, Zhong H, Bao D, Yan J, Zhang X. In Situ Coupling of
Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional
Cathode for Robust, Efficient, and Flexible Zn-Air Batteries. J.
Am. Chem. Soc. 2016;138(32):10226-10231.
32. Shi QR, Zhu CZ, Du D, Lin YH. Robust noble metal-based
electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev.2019;48(12):3181-3192.
33. Zhang LL, Xiao J, Wang HY, Shao MH. Carbon-Based
Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS
Catalysis. 2017;7(11):7855-7865.
34. Cui XJ, Ren PJ, Deng DH, Deng J, Bao XH. Single layer
graphene encapsulating non-precious metals as high-performance
electrocatalysts for water oxidation. Energy & Environmental
Science. 2016;9(1):123-129.
35. Deng J, Ren P, Deng D, Bao X. Enhanced electron penetration
through an ultrathin graphene layer for highly efficient catalysis of
the hydrogen evolution reaction. Angew. Chem. Int. Ed.2015;54(7):2100-2104.
36. Deng J, Deng D, Bao X. Robust Catalysis on 2D Materials
Encapsulating Metals: Concept, Application, and Perspective. Adv.
Mater. 2017;29(43):1606967.
37. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q.
Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as
active electrocatalysts for producing hydrogen in alkaline media.Nat. Commun. 2017;8(1):14969.
38. Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin
valorization: Improving lignin processing in the biorefinery.Science. 2014;344(6185):12013-12018.
39. Wright A, Bandulasena H, Ibenegbu C, et al. Dielectric
barrier discharge plasma microbubble reactor for pretreatment of
lignocellulosic biomass. AIChE Journal. 2018;64(11):3803-3816.
40. Wang J, Qian Y, Zhou Y, Yang D, Qiu X. Atomic Force
Microscopy Measurement in the Lignosulfonate/Inorganic Silica System:
From Dispersion Mechanism Study to Product Design. Engineering.2021;7(8):1140-1148.
41. Qi Y, Xiao X, Mei YQ, et al. Modulation of Bronsted and
Lewis Acid Centers for NixCo3-xO4 Spinel Catalysts: Towards Efficient
Catalytic Conversion of Lignin. Adv. Funct. Mater.2022;n/a(n/a):2111615.
42. Shen YX, Peng F, Cao YH, Zuo JH, Wang HJ, Yu H. Preparation
of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing
bagasse lignin as potential electrocatalyst towards oxygen reduction
reaction in alkaline and acid media. Journal of Energy Chemistry.2019;34:33-42.
43. Wu Y, Cao JP, Zhao XY, et al. High-performance electrode
material for electric double-layer capacitor based on hydrothermal
pre-treatment of lignin by ZnCl2. Appl Surf Sci.2020;508:144536-144547.
44. Gomez-Aviles A, Penas-Garzon M, Bedia J, Rodriguez JJ,
Belver C. C-modified TiO2 using lignin as carbon
precursor for the solar photocatalytic degradation of acetaminophen.Chemical Engineering Journal. 2019;358:1574-1582.
45. Zhang B, Yang D, Qiu X, et al. Fabricating
ZnO/lignin-derived flower-like carbon composite with excellent
photocatalytic activity and recyclability. Carbon.2020;162:256-266.
46. Qin HF, Zhou Y, Bai JR, et al. Lignin-Derived Thin-Walled
Graphitic Carbon-Encapsulated Iron Nanoparticles: Growth,
Characterization, and Applications. ACS Sustainable Chemistry &
Engineering. 2017;5(2):1917-1923.
47. Qin HF, Kang SF, Wang YG, et al. Lignin-Based Fabrication
of Co@C Core-Shell Nanoparticles as Efficient Catalyst for Selective
Fischer-Tropsch Synthesis of C5+ Compounds. Acs Sustainable
Chemistry & Engineering. 2016;4(3):1240-1247.
48. Fei X, Xu Q, Xue L, et al. Aqueous Phase Catalytic
Conversion of Ethanol to Higher Alcohols over NiSn Bimetallic Catalysts
Encapsulated in Nitrogen-Doped Biorefinery Lignin-Based Carbon.Ind. Eng. Chem. Res. 2021;60(49):17959-17969.
49. Pei YX, Chang AY, Liu X, et al. Nitrogen-doped carbon dots
from Kraft lignin waste with inorganic acid catalyst and their brain
cell imaging applications. Aiche Journal. 2021;67(5):e17132.
50. Chen X, Yuan B, Yu F, Xie C, Yu S. Lignin: A Potential
Source of Biomass-Based Catalysts. Progress in Chemistry.2021;33(2):303-317.
51. Linhuo G, Mingsong Z, Dongjie Y, Xueqing Q. Preparation and
Evaluation of Carboxymethylated Lignin as Dispersant for Aqueous
Graphite Suspension Using Turbiscan Lab Analyzer. Journal of
Dispersion Science and Technology. 2013;34(5):644-650.
52. Blochl PE, Jepsen O, Andersen OK. Improved tetrahedron
method for Brillouinzone integrations. Physical Review B.1994;49(23):16223-16233.
53. Pang J, Zhang W, Zhang H, et al. Sustainable
nitrogen-containing hierarchical porous carbon spheres derived from
sodium lignosulfonate for high-performance supercapacitors.Carbon. 2018;132:280-293.
54. Rong Z, Dong C, Zhang S, Dong W, Huang F. Co5.47N loaded
N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a
Zn-air battery. Nanoscale. 2020;12(10):6089-6095.
55. Jin H, Mao S, Zhan G, Xu F, Bao X, Wang Y. Fe incorporated
α-Co(OH)2nanosheets with remarkably improved activity towards the oxygen
evolution reaction. Journal of Materials Chemistry A.2017;5(3):1078-1084.
56. Liu Y, Li J, Li F, et al. A facile preparation of CoFe2O4
nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced
catalysts for the oxygen evolution reaction. Journal of Materials
Chemistry A. 2016;4(12):4472-4478.
57. Pang J, Zhang W, Zhang J, Cao G, Han M, Yang Y. Facile and
sustainable synthesis of sodium lignosulfonate derived hierarchical
porous carbons for supercapacitors with high volumetric energy
densities. Green Chemistry. 2017;19(16):3916-3926.
58. Zhou H, Xu H, Liu Y. Aerobic oxidation of
5‑hydroxymethylfurfural to 2,5-furandicarboxylic acid over Co/Mn-lignin
coordination complexes-derived catalysts. Applied Catalysis B:
Environmental. 2019;244:965-973.
59. Wu MJ, Wei QL, Zhang GX, et al. Fe/Co Double
Hydroxide/Oxide Nanoparticles on N-Doped CNTs as Highly Efficient
Electrocatalyst for Rechargeable Liquid and Quasi-Solid-State Zinc-Air
Batteries. Advanced Energy Materials. 2018;8(30):1801836.
60. Liu H, Lu X, Hu Y, et al. CoxFeyN nanoparticles decorated
on graphene sheets as high-performance electrocatalysts for the oxygen
evolution reaction. Journal of Materials Chemistry A.2019;7(20):12489-12497.