References

Ahmed, M.Z., Breinholt, J.W. & Kawahara, A.Y. (2016). Evidence for common horizontal transmission of Wolbachia among butterflies and moths.BMC Evolutionary Biology , 16 (1), 118. https://doi.org/10.1186/s12862-016-0660-x
Ahmed, M.Z., Li, S.-J., Xue, X., Yin, X.-J., Ren, S.-X., Jiggins, F.M., Greeff, J.M. & Qiu, B.-L. (2015). The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS pathogens , 11, e1004672
Albery, G.F., Eskew, E.A., Ross, N. & Olival, K.J. (2020). Predicting the global mammalian viral sharing network using phylogeography.Nature Communications , 11 (1), 2260. https://doi.org/10.1038/s41467-020-16153-4
Bailly-Bechet, M., Martins-Simões, P., Szöllősi, G.J., Mialdea, G., Sagot, M.-F. & Charlat, S. (2017). How Long Does Wolbachia Remain on Board? Molecular Biology and Evolution , 34 (5), 1183–1193. https://doi.org/10.1093/molbev/msx073
Balbuena, J.A., Míguez-Lozano, R. & Blasco-Costa, I. (2013). PACo: A Novel Procrustes Application to Cophylogenetic Analysis. PLOS ONE , 8 (4), e61048. https://doi.org/10.1371/journal.pone.0061048
Baldo, L., Hotopp, J.C.D., Jolley, K.A., Bordenstein, S.R., Biber, S.A., Choudhury, R.R., Hayashi, C., Maiden, M.C., Tettelin, H. & Werren, J.H. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology , 72, 7098–7110
Balvín, O., Roth, S., Talbot, B. & Reinhardt, K. (2018). Co-speciation in bedbug Wolbachia parallel the pattern in nematode hosts.Scientific Reports , 8 (1), 8797. https://doi.org/10.1038/s41598-018-25545-y
Bandi, C., Anderson, T.J.C., Genchi, C. & Blaxter, M.L. (1998). Phylogeny of Wolbachia in filarial nematodes. Proceedings of the Royal Society of London B: Biological Sciences , 265 (1413), 2407–2413. https://doi.org/10.1098/rspb.1998.0591
Bleidorn, C. & Gerth, M. (2018). A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiology Ecology , 94 (1), fix163. https://doi.org/10.1093/femsec/fix163
Boyle, L., O’Neill, S.L., Robertson, H.M. & Karr, T.L. (1993). Interspecific and Intraspecific Horizontal Transfer of Wolbachia in Drosophila. Science , 260, 1796–1799. https://doi.org/10.1126/science.8511587
Buckley, R. & Gullan, P. (1991). More Aggressive Ant Species (Hymenoptera: Formicidae) Provide Better Protection for Soft Scales and Mealybugs (Homoptera: Coccidae, Pseudococcidae). Biotropica , 23 (3), 282–286. https://doi.org/10.2307/2388205
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods , 13 (7), 581–583. https://doi.org/10.1038/nmeth.3869
Charleston, M.A. & Perkins, S.L. (2006). Traversing the tangle: Algorithms and applications for cophylogenetic studies. Journal of Biomedical Informatics , 39 (1), 62–71. https://doi.org/10.1016/j.jbi.2005.08.006
Charleston, M.A. & Robertson, D.L. (2002). Preferential Host Switching by Primate Lentiviruses Can Account for Phylogenetic Similarity with the Primate Phylogeny. Systematic Biology , 51 (3), 528–535. https://doi.org/10.1080/10635150290069940
Chrostek, E., Pelz-Stelinski, K., Hurst, G.D.D. & Hughes, G.L. (2017). Horizontal Transmission of Intracellular Insect Symbionts via Plants.Frontiers in Microbiology , 8, 2237. https://doi.org/10.3389/fmicb.2017.02237
Conner, W.R., Blaxter, M.L., Anfora, G., Ometto, L., Rota-Stabelli, O. & Turelli, M. (2017). Genome comparisons indicate recent transfer of wRi-like Wolbachia between sister species Drosophila suzukii and D. subpulchrella. Ecology and Evolution , 7 (22), 9391–9404. https://doi.org/10.1002/ece3.3449
Cook, J.M. & Butcher, R.D.J. (1999). The transmission and effects of Wolbachia bacteria in parasitoids. Researches on Population Ecology , 41 (1), 15–28. https://doi.org/10.1007/PL00011978
Cooper, B.S., Vanderpool, D., Conner, W.R., Matute, D.R. & Turelli, M. (2019). Wolbachia Acquisition by Drosophila yakuba-Clade Hosts and Transfer of Incompatibility Loci Between Distantly Related Wolbachia.Genetics , 212 (4), 1399–1419. https://doi.org/10.1534/genetics.119.302349
De Vienne, D.M., Giraud, T. & Shykoff, J.A. (2007). When can host shifts produce congruent host and parasite phylogenies? A simulation approach. Journal of Evolutionary Biology , 20 (4), 1428–1438. https://doi.org/10.1111/j.1420-9101.2007.01340.x
Didelot, X. & Wilson, D.J. (2015). ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes. PLOS Computational Biology , 11 (2), e1004041. https://doi.org/10.1371/journal.pcbi.1004041
Duplouy, A. & Brattström, O. (2018). Wolbachia in the Genus Bicyclus: a Forgotten Player. Microbial Ecology , 75 (1), 255–263. https://doi.org/10.1007/s00248-017-1024-9
Engelstädter, J. & Fortuna, N.Z. (2019). The dynamics of preferential host switching: Host phylogeny as a key predictor of parasite distribution. Evolution , 73 (7), 1330–1340. https://doi.org/10.1111/evo.13716
Fenn, K. & Blaxter, M. (2004). Are filarial nematode Wolbachia obligate mutualist symbionts? Trends in Ecology & Evolution , 19 (4), 163–166. https://doi.org/10.1016/j.tree.2004.01.002
Fraser, J.E., Bruyne, J.T.D., Iturbe-Ormaetxe, I., Stepnell, J., Burns, R.L., Flores, H.A. & O’Neill, S.L. (2017). Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLOS Pathogens , 13 (12), e1006751. https://doi.org/10.1371/journal.ppat.1006751
Frost, C.L., Fernandez‐Marin, H., Smith, J.E. & Hughes, W.O.H. (2010). Multiple gains and losses of Wolbachia symbionts across a tribe of fungus‐growing ants. Molecular ecology , 19, 4077–4085
García Morales, M., Denno, B.D., Miller, D.R., Miller, G.L., Ben-Dov, Y. & Hardy, N.B. (2016). ScaleNet: a literature-based model of scale insect biology and systematics. Database , 2016. https://doi.org/10.1093/database/bav118
Gerth, M., Röthe, J. & Bleidorn, C. (2013). Tracing horizontal Wolbachia movements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. Molecular Ecology , 22 (24), 6149–6162. https://doi.org/10.1111/mec.12549
Gruwell, M.E., Morse, G.E. & Normark, B.B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Molecular Phylogenetics and Evolution , 44 (1), 267–280. https://doi.org/10.1016/j.ympev.2007.01.014
Gullan, P.J., Buckley, R.C. & Ward, P.S. (1993). Ant-Tended Scale Insects (Hemiptera: Coccidae: Myzolecanium) within Lowland Rain Forest Trees in Papua New Guinea. Journal of Tropical Ecology , 9 (1), 81–91
Gullan, P.J. & Cook, L.G. (2007). Phylogeny and higher classification of the scale insects (Hemiptera : Sternorrhyncha : Coccoidea).Zootaxa , (1668), 413–425
Gupta, M., Kaur, R., Gupta, A. & Raychoudhury, R. (2021). Are ecological communities the seat of endosymbiont horizontal transfer and diversification? A case study with soil arthropod community.Authorea , 5. https://doi.org/10.22541/au.160594402.25622280/v1
Guz, N., Kocak, E., Akpinar, A., Gurkan, M.O. & Kilincer, A.N. (2012). Wolbachia infection in Trissolcus species (Hymenoptera: Scelionidae).European Journal of Entomology , 109 (2), 169–174. https://doi.org/10.14411/eje.2012.022
Haine, E.R., Pickup, N.J. & Cook, J.M. (2005). Horizontal transmission of Wolbachia in a Drosophila community. Ecological Entomology , 30 (4), 464–472. https://doi.org/10.1111/j.0307-6946.2005.00715.x
Heath, B.D., Butcher, R.D.J., Whitfield, W.G.F. & Hubbard, S.F. (1999). Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Current Biology , 9 (6), 313–316. https://doi.org/10.1016/S0960-9822(99)80139-0
Hertig, M. (1936). The Rickettsia, Wolbachia pipientis and Associated Inclusions of the Mosquito, Culex pipiens. Parasitology , 28 (4), 453–486. https://doi.org/10.1017/S0031182000022666
Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J.H. (2008). How many species are infected with Wolbachia? – a statistical analysis of current data. FEMS Microbiology Letters , 281 (2), 215–220. https://doi.org/10.1111/j.1574-6968.2008.01110.x
Hiroki, M., Tagami, Y., Miura, K. & Kato, Y. (2004). Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe. Proceedings of the Royal Society of London. Series B: Biological Sciences , 271 (1549), 1751–1755. https://doi.org/10.1098/rspb.2004.2769
Hoffmann, A.A., Ross, P.A. & Rašić, G. (2015). Wolbachia strains for disease control: ecological and evolutionary considerations.Evolutionary Applications , 8 (8), 751–768. https://doi.org/10.1111/eva.12286
Hölldobler, B., Holldobler, F.P. of B.B., Wilson, E.O. & Wilson, H.C. in E. and U.R.P.E.E.O. (1990). The Ants . Harvard University Press.
Hou, H.-Q., Zhao, G.-Z., Su, C.-Y. & Zhu, D.-H. (2020). Wolbachia prevalence patterns: horizontal transmission, recombination, and multiple infections in chestnut gall wasp-parasitoid communities.Entomologia Experimentalis et Applicata , 168 (9). https://doi.org/10.1111/eea.12962
Hughes, G.L. & Rasgon, J.L. (2014). Transinfection: a method to investigate Wolbachia–host interactions and control arthropod-borne disease. Insect Molecular Biology , 23 (2), 141–151. https://doi.org/10.1111/imb.12066
Ilinsky, Y. & Kosterin, O.E. (2017). Molecular diversity of Wolbachia in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. Molecular Phylogenetics and Evolution , 109, 164–179. https://doi.org/10.1016/j.ympev.2016.12.034
Ishmael, N., Hotopp, J.C.D., Ioannidis, P., Biber, S., Sakamoto, J., Siozios, S., Nene, V., Werren, J., Bourtzis, K., Bordenstein, S.R. & Tettelin, H. (2009). Extensive genomic diversity of closely related Wolbachia strains. Microbiology , 155 (Pt 7), 2211–2222. https://doi.org/10.1099/mic.0.027581-0
Ivens, A.B.F., Gadau, A., Kiers, E.T. & Kronauer, D.J.C. (2018). Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Molecular Ecology , 27 (8), 1898–1914. https://doi.org/10.1111/mec.14506
Jiggins, F.M. (2003). Male-Killing Wolbachia and Mitochondrial DNA: Selective Sweeps, Hybrid Introgression and Parasite Population Dynamics.Genetics , 164 (1), 5–12
Johanowicz, D.L. & Hoy, M.A. (1996). Wolbachia in a Predator–Prey System: 16S Ribosomal Dna Analysis of Two Phytoseiids (Acari: Phytoseiidae) and Their Prey (Acari: Tetranychidae). Annals of the Entomological Society of America , 89 (3), 435–441. https://doi.org/10.1093/aesa/89.3.435
Kageyama, D., Narita, S., Imamura, T. & Miyanoshita, A. (2010). Detection and identification of Wolbachia endosymbionts from laboratory stocks of stored-product insect pests and their parasitoids.Journal of Stored Products Research , 46 (1), 13–19. https://doi.org/10.1016/j.jspr.2009.07.003
Kambris, Z., Cook, P.E., Phuc, H.K. & Sinkins, S.P. (2009). Immune Activation by Life-Shortening Wolbachia and Reduced Filarial Competence in Mosquitoes. Science , 326 (5949), 134–136. https://doi.org/10.1126/science.1177531
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research , 30 (14), 3059–3066. https://doi.org/10.1093/nar/gkf436
Kearney, M. (2006). Habitat, environment and niche: what are we modelling? Oikos , 115 (1), 186–191. https://doi.org/10.1111/j.2006.0030-1299.14908.x
Kittayapong, P., Jamnongluk, W., Thipaksorn, A., Milne, J.R. & Sindhusake, C. (2003). Wolbachia infection complexity among insects in the tropical rice-field community. Molecular Ecology , 12 (4), 1049–1060. https://doi.org/10.1046/j.1365-294X.2003.01793.x
Kondo, T., Gullan, P.J. & Williams, D.J. (2008). Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Corpoica. Ciencia y Tecnología Agropecuaria , 9 (2), 55–61
Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017). PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses.Molecular Biology and Evolution , 34 (3), 772–773. https://doi.org/10.1093/molbev/msw260
Le Clec’h, W., Chevalier, F.D., Genty, L., Bertaux, J., Bouchon, D. & Sicard, M. (2013). Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PloS one , 8, e60232
Legendre, P., Desdevises, Y. & Bazin, E. (2002). A Statistical Test for Host–Parasite Coevolution. Systematic Biology , 51 (2), 217–234. https://doi.org/10.1080/10635150252899734
Li, S.-J., Ahmed, M.Z., Lv, N., Shi, P.-Q., Wang, X.-M., Huang, J.-L. & Qiu, B.-L. (2017). Plantmediated horizontal transmission of Wolbachia between whiteflies. The ISME Journal , 11 (4), 1019–1028. https://doi.org/10.1038/ismej.2016.164
Longdon, B., Hadfield, J.D., Webster, C.L., Obbard, D.J. & Jiggins, F.M. (2011). Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts. PLOS Pathogens , 7 (9), e1002260. https://doi.org/10.1371/journal.ppat.1002260
Ma, Y., Chen, W.-J., Li, Z.-H., Zhang, F., Gao, Y. & Luan, Y.-X. (2017). Revisiting the phylogeny of Wolbachia in Collembola.Ecology and Evolution , 7 (7), 2009–2017. https://doi.org/10.1002/ece3.2738
Miyata, M.N., Nomura, M. & Kageyama, D. (2020). Wolbachia have made it twice: Hybrid introgression between two sister species of Eurema butterflies. Ecology and Evolution , 10 (13). https://doi.org/10.1002/ece3.6539
Morrow, J.L., Frommer, M., Shearman, D.C.A. & Riegler, M. (2014). Tropical tephritid fruit fly community with high incidence of shared Wolbachia strains as platform for horizontal transmission of endosymbionts. Environmental Microbiology , 16 (12), 3622–3637. https://doi.org/10.1111/1462-2920.12382
Narita, S., Nomura, M. & Kageyama, D. (2007). Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiology Ecology , 61 (2), 235–245. https://doi.org/10.1111/j.1574-6941.2007.00333.x
Paradis, E. & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics , 35 (3), 526–528. https://doi.org/10.1093/bioinformatics/bty633
Perlman, S.J. & Jaenike, J. (2003). Infection Success in Novel Hosts: An Experimental and Phylogenetic Study of Drosophila-Parasitic Nematodes. Evolution , 57 (3), 544–557. https://doi.org/10.1111/j.0014-3820.2003.tb01546.x
Perrot-Minnot, M.-J., Guo, L.R. & Werren, J.H. (1996). Single and Double Infections with Wolbachia in the Parasitic Wasp Nasonia vitripennis Effects on Compatibility. Genetics , 143 (2), 961–972
Peterson, A. & Soberón, J. (2012). Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza e Conservação , 10, 1–6. https://doi.org/10.4322/natcon.2012.019
Pringle, E.G. & Moreau, C.S. (2017). Community analysis of microbial sharing and specialization in a Costa Rican ant–plant–hemipteran symbiosis. Proc. R. Soc. B , 284 (1850), 20162770. https://doi.org/10.1098/rspb.2016.2770
Pulliam, H.R. (2000). On the relationship between niche and distribution. Ecology Letters , 3 (4), 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x
R Core Team (2013). R: A language and environment for statistical computing .
Ramalho, M.O. & Moreau, C.S. (2020). The Evolution and Biogeography of Wolbachia in Ants (Hymenoptera: Formicidae). Diversity , 12 (11), 426. https://doi.org/10.3390/d12110426
Raychoudhury, R., Baldo, L., Oliveira, D.C. & Werren, J.H. (2009). Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex.Evolution , 63, 165–183
Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution , 3 (2), 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Riegler, M., Charlat, S., Stauffer, C. & Merçot, H. (2004). Wolbachia Transfer from Rhagoletis cerasi to Drosophila simulans: Investigating the Outcomes of Host-Symbiont Coevolution. Appl. Environ. Microbiol. , 70 (1), 273–279. https://doi.org/10.1128/AEM.70.1.273-279.2004
Ross, P.A., Callahan, A.G., Yang, Q., Jasper, M., Arif, M.A.K., Afizah, A.N., Nazni, W.A. & Hoffmann, A.A. (2020). An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecology and Evolution , 10 (3), 1581–1591. https://doi.org/10.1002/ece3.6012
Ross, P.A., Turelli, M. & Hoffmann, A.A. (2019). Evolutionary Ecology of Wolbachia Releases for Disease Control. Annual Review of Genetics , 53 (1), 93–116. https://doi.org/10.1146/annurev-genet-112618-043609
Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. (1992). Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. Lond. B , 250 (1328), 91–98. https://doi.org/10.1098/rspb.1992.0135
Russell, J.A. (2012). The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts.Myrmecological News , 16, 18
Russell, J.A., Goldman‐Huertas, B., Moreau, C.S., Baldo, L., Stahlhut, J.K., Werren, J.H. & Pierce, N.E. (2009). Specialization and geographic isolation among wolbachia symbionts from ants and lycaenid butterflies.Evolution , 63 (3), 624–640. https://doi.org/10.1111/j.1558-5646.2008.00579.x
Sanaei, E., Charlat, S. & Engelstädter, J. (2021a). Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences.Biological Reviews , 96 (2), 433–453. https://doi.org/10.1111/brv.12663
Sanaei, E., Husemann, M., Seiedy, M., Rethwisch, M., Tuda, M., Toshova, T.B., Kim, M.J., Atanasova, D. & Kim, I. (2019). Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecology and Evolution , 9 (17), 9546–9563. https://doi.org/10.1002/ece3.5474
Sanaei, E., Lin, Y.-P., Cook, L.G. & Engelstädter, J. (2021b). Wolbachia in scale insects: a distinct pattern of infection frequencies and potential transfer routes via ant associates. Environmental Microbiology , 2021.08.23.457441. https://doi.org/10.1101/2021.08.23.457441
Schuler, H., Arthofer, W., Riegler, M., Bertheau, C., Krumböck, S., Köppler, K., Vogt, H., Teixeira, L.A.F. & Stauffer, C. (2011). Multiple Wolbachia infections in Rhagoletis pomonella. Entomologia Experimentalis et Applicata , 139 (2), 138–144. https://doi.org/10.1111/j.1570-7458.2011.01115.x
Schuster, S.C. (2008). Next-generation sequencing transforms today’s biology. Nature Methods , 5 (1), 16–18. https://doi.org/10.1038/nmeth1156
Shoemaker, D.D., Machado, C.A., Molbo, D., Werren, J.H., Windsor, D.M. & Herre, E.A. (2002). The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure.Proceedings of the Royal Society of London B: Biological Sciences , 269, 2257–2267
Sironi, M., Bandi, C., Sacchi, L., Di, B.S., Damiani, G. & Genchi, C. (1995). Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Molecular and biochemical parasitology , 74 (2), 223–227. https://doi.org/10.1016/0166-6851(95)02494-8
Stahlhut, J.K., Desjardins, C.A., Clark, M.E., Baldo, L., Russell, J.A., Werren, J.H. & Jaenike, J. (2010). The mushroom habitat as an ecological arena for global exchange of Wolbachia. Molecular Ecology , 19 (9), 1940–1952. https://doi.org/10.1111/j.1365-294X.2010.04572.x
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics , 30, 1312–1313
Teh, J.J., Berendsen, E.M., Hoedt, E.C., Kang, S., Zhang, J., Zhang, F., Liu, Q., Hamilton, A.L., Wilson-O’Brien, A., Ching, J., Sung, J.J.Y., Yu, J., Ng, S.C., Kamm, M.A. & Morrison, M. (2021). Novel strain-level resolution of Crohn’s disease mucosa-associated microbiota via an ex vivo combination of microbe culture and metagenomic sequencing.The ISME Journal , 15 (11), 3326–3338. https://doi.org/10.1038/s41396-021-00991-1
Terry, C. (2019). bipartiteD3: Interactive bipartite graphs . Version: 0.2.0.
Thompson, J.N. (1987). Symbiont-induced speciation. Biological Journal of the Linnean Society , 32 (4), 385–393. https://doi.org/10.1111/j.1095-8312.1987.tb00439.x
Tolley, S.J.A., Nonacs, P. & Sapountzis, P. (2019). Wolbachia Horizontal Transmission Events in Ants: What Do We Know and What Can We Learn? Frontiers in Microbiology , 10, 296. https://doi.org/10.3389/fmicb.2019.00296
Turelli, M., Cooper, B.S., Richardson, K.M., Ginsberg, P.S., Peckenpaugh, B., Antelope, C.X., Kim, K.J., May, M.R., Abrieux, A., Wilson, D.A., Bronski, M.J., Moore, B.R., Gao, J.-J., Eisen, M.B., Chiu, J.C., Conner, W.R. & Hoffmann, A.A. (2018). Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila. Current Biology , 28 (6), 963-971.e8. https://doi.org/10.1016/j.cub.2018.02.015
Tzuri, N., Caspi-Fluger, A., Betelman, K., Rohkin Shalom, S. & Chiel, E. (2020). Horizontal Transmission of Microbial Symbionts Within a Guild of Fly Parasitoids. Microbial Ecology ,. https://doi.org/10.1007/s00248-020-01618-2
Van Borm, S., Wenseleers, T., Billen, J. & Boomsma, J.J. (2003). Cloning and sequencing of wsp encoding gene fragments reveals a diversity of co-infecting Wolbachia strains in Acromyrmex leafcutter ants. Molecular Phylogenetics and Evolution , 26 (1), 102–109. https://doi.org/10.1016/S1055-7903(02)00298-1
Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. (1999). Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Molecular Biology and Evolution , 16 (12), 1711–1723
Vavre, F., Fouillet, P. & Leury, F. (2003). Between- and Within-Host Species Selection on Cytoplasmic Incompatibility-Inducing Wolbachia in Haplodiploids. Evolution , 57 (2), 421–427. https://doi.org/10.1111/j.0014-3820.2003.tb00275.x
Vivero, R.J., Cadavid-Restrepo, G., Herrera, C.X.M. & Soto, S.I.U. (2017). Molecular detection and identification of Wolbachia in three species of the genus Lutzomyia on the Colombian Caribbean coast.Parasites & Vectors , 10 (1), 110. https://doi.org/10.1186/s13071-017-2031-x
Vo, A.-T.E. & Jedlicka, J.A. (2014). Protocols for metagenomic DNA extraction and Illumina amplicon library preparation for faecal and swab samples. Molecular Ecology Resources , 14 (6), 1183–1197. https://doi.org/10.1111/1755-0998.12269
Wang, X., Xiong, X., Cao, W., Zhang, C., Werren, J.H. & Wang, X. (2019). Genome Assembly of the A-Group Wolbachia in Nasonia oneida Using Linked-Reads Technology. Genome Biology and Evolution , 11 (10), 3008–3013. https://doi.org/10.1093/gbe/evz223
Wang, X., Xiong, X., Cao, W., Zhang, C., Werren, J.H. & Wang, X. (2020). Phylogenomic Analysis of Wolbachia Strains Reveals Patterns of Genome Evolution and Recombination. Genome Biology and Evolution , 12 (12), 2508–2520. https://doi.org/10.1093/gbe/evaa219
Weinert, L.A., Araujo-Jnr, E.V., Ahmed, M.Z. & Welch, J.J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods.Proceedings of the Royal Society B: Biological Sciences , 282 (1807), 20150249. https://doi.org/10.1098/rspb.2015.0249
Werren, J.H. (1997). Biology of wolbachia. Annual review of entomology , 42, 587–609
Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology , 6 (10), 741. https://doi.org/10.1038/nrmicro1969
Werren, J.H., Windsor, D. & Guo, L.R. (1995). Distribution of Wolbachia among neotropical arthropods. Proceedings of the Royal Society of London. Series B: Biological Sciences , 262 (1364), 197–204. https://doi.org/10.1098/rspb.1995.0196
Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 73 (1), 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
Zug, R. & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one , 7, e38544