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Abstract30

Spatially explicit population genetic models have long been developed, yet have rarely been31

used to test hypotheses about the spatial distribution of genetic diversity or the expected neutral32

levels of genetic divergence between populations. Here, we use spatially explicit coalescence33

simulations to explore the properties of the island model and the two-dimensional stepping34

stone model under a wide range of scenarios with spatio-temporal variation in deme size. We35

avoid the simulation of genetic data, using the fact that under the studied models, summary36

statistics of genetic diversity and divergence between demes can be approximated from37

coalescence times. We perform the simulations using gridCoal, a �exible spatial wrapper for the38

software msprime (Kelleher et al., 2016) developed herein. In gridCoal, deme sizes can change39

arbitrarily across space and time, and migration rates between individual demes can be40

speci�ed. We identify the di�erent factors that can cause a deviation from the theoretical41

expectations, such as the simulation time in comparison to the e�ective deme size and the42

spatio-temporal autocorrelation across the grid. Our results highlight that FST , a measure of the43

strength of population structure, principally depends on recent demography, which makes it44

robust to temporal variation in deme size. We also warn that predicting genetic diversity from45

coalescence times requires a much longer run time than needed for the estimation of FST .46

Finally, we illustrate the use of gridCoal on a real-world example, the range expansion of silver47

�r (Abies alba Mill.) since the Last Glacial Maximum, using di�erent degrees of spatio-temporal48

variation in deme size.49

1 Introduction50

The distribution and dynamics of genetic diversity within species are shaped by a myriad of51

evolutionary and ecological processes acting across di�erent spatial and temporal scales52
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(Ellegren & Galtier, 2016). Although the role of space and, in particular, spatial autocorrelation53

in allele frequencies have been recognised since the dawn of population genetics (Wright, 1943;54

Malécot, 1948; Felsenstein, 1976; Sokal & Wartenberg, 1983), disproportionately more theoretical55

and methodological developments have been focused on understanding the e�ect of temporal56

changes in population size and gene �ow among populations without spatial structure (e.g. Hey57

& Nielsen, 2007). Further, most statistical tools have been developed to detect past population58

size changes, either by testing di�erent hypotheses such as exponential growth and bottlenecks59

(e.g. Exco�er et al., 2013), or by using Bayesian methods to detect arbitrary population size60

changes from whole genome sequences (e.g. Drummond et al., 2005). Researchers in landscape61

genetics have set the aim of overcoming the limitation imposed by population genetics methods62

that rely on the assumption of non-spatial and discrete populations (Manel et al., 2003).63

However, the �eld has been mostly in�uenced by meta-population models (Hanski & Gilpin,64

1991) and by spatial statistics and geo-statistics (e.g. Guillot et al., 2005; Smouse et al., 2008;65

Forester et al., 2016), rather than by population genetic theory.66

There is increasing evidence that ignoring space can lead to biases and erroneous inferences67

(Bradburd & Ralph, 2019). Indeed, simulation studies have shown that ignoring isolation by68

distance can lead to false positives in e�orts to detect hierarchical population structure and loci69

under selection (Meirmans, 2012). Similarly, ignoring space can severely bias common70

population genetics summary statistics, especially when the local e�ective population size (i.e.71

neighbourhood size) is small (Battey et al., 2020). However, spatially explicit models are often72

mathematically intractable and theoretical predictions are valid only under limited conditions73

(Slatkin, 1985; Barton et al., 2002; Kelleher et al., 2014; Bradburd & Ralph, 2019). This is74

particularly true for spatially continuous models. For example, the coalescence process under75

the continuous space isolation-by-distance (IBD) model (Wright, 1943; Malécot, 1948) can be76

approximated using the Lambda-Fleming-Viot algorithm (Barton et al., 2010a,b). However,77

results are inconsistent with large-scale patterns and often predict lower diversity than expected78
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from census numbers (Barton et al., 2010a), although some of these issues have been solved by79

the subsequently introduced model of extinction and recolonisation (Kelleher et al., 2014).80

Discrete spatial models are worse at capturing reality but are mathematically more tractable81

(Cox et al., 2002), and several equivalences have been shown across island models,82

two-dimensional (2D) stepping stone models (Kimura, 1953) and IBD models assuming in�nite83

or �nite populations and the absence or presence of mutations (Malécot, 1975; Felsenstein, 1976;84

Slatkin, 1985). In particular, a 2D stepping stone model can approximate the decrease in genetic85

correlation with increasing distance of continuous space (Malécot, 1955; Kimura & Weiss, 1964),86

and when a su�ciently large lattice is used, it can produce summary statistics similar to those87

from a continuous space model (Battey et al., 2020).88

E�cient spatially explicit simulators have recently been developed, both those using a89

forward in time approach, such as SLiM (Haller & Messer, 2019), and those using a mixture of90

forward and coalescent approaches, such as SPLATCHE 3 (Currat et al., 2019). These91

developments have increasingly enabled the inclusion of space in population genetics92

applications(e.g. Battey et al., 2020; González-Serna et al., 2019; Ortego & Knowles, 2020;93

Quilodrán et al., 2019). However, these spatial simulators can be challenging to parametrise.94

This is particularly true for forward simulations, as they require background knowledge on the95

demography, mating system and dispersal patterns. Backward, coalescent simulations have the96

advantage of allowing likelihood calculations while only tracing back the genealogy of sampled97

individuals (Felsenstein, 1992). Nevertheless, they still also require that past population size98

changes are known or follow a predictable pattern, such as constant size, expansion, decline or99

bottleneck. Ecological models, such as species distribution models coupled with recently100

developed paleo-climatic databases (e.g. Lima-Ribeiro et al., 2015; Cook et al., 2015; Karger et al.,101

2021), may be used to predict past species distributions in a spatially and temporally explicit102

manner (e.g. Tallavaara et al., 2015; Wang et al., 2017; Lima-Rezende et al., 2019). Such time103

series of species distribution maps can provide potential input parameters for spatially explicit104
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coalescent simulations (He et al., 2013).105

The aim of this work is to explore the properties of island models and 2D stepping stone106

models under a wide range of scenarios with spatio-temporal variation in population size. To107

this end, we �rst develop a spatially explicit coalescent wrapper, gridCoal, for the most e�cient108

coalescent simulator currently available, msprime (Kelleher et al., 2016). In gridCoal, we109

implement the 2D stepping stone model with population sizes that may vary in space and time,110

and with migration rate that may di�er between demes. gridCoal is di�erent in several ways111

from SPLATCHE 3, the spatially explicit coalescent simulator that is currently used most112

frequently. Most importantly, in gridCoal (i) there is no forward simulation phase; (ii) demes do113

not follow a logistic growth model (as in SPLATCHE 3), instead instantly increasing or114

decreasing to user-de�ned deme sizes; and (iii) colonisation is possible from several seeds115

(without de�ning "layers" as in SPLATCHE 3). Further, unlike SPLATCHE 3, gridCoal does not116

simulate genetic marker data. Instead, we exploit the fact that under the 2D stepping stone117

model, summary statistics of genetic diversity and divergence between populations can be118

approximated from the coalescence times (Slatkin, 1991; Ralph et al., 2020). After developing the119

coalescent wrapper, we use gridCoal to simulate various scenarios of spatial and temporal120

changes in population size and compare their outcome with theoretical expectations of the121

island models and 2D stepping stone models. In particular, we compare simulations with122

expectations for the mean coalescence time, which is proportional to the e�ective population123

size Ne and the amount of genetic diversity, for a measure of the strength of population124

structure FST , and for isolation-by-distance patterns. Our simulated scenarios include simpli�ed125

and biologically realistic cases of population movement and expansion, where the spatial and126

temporal autocorrelation are decoupled. Finally, we illustrate the use of gridCoal on a real-world127

example, the range expansion of silver �r (Abies alba Mill.) since the Last Glacial Maximum,128

using di�erent degrees of spatio-temporal variation in deme size.129
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2 Materials and Methods130

2.1 The simulation tool: gridCoal131

We developed a 2D stepping stone coalescent simulation tool, gridCoal (Appendix A), based on132

msprime (Kelleher et al., 2016). Space is represented by a rectangular grid (size L ⇥ L in most of133

our simulations). Each grid cell contains a single panmictic population, hereafter referred to as a134

deme, whose size (N ) can change in time at equally spaced time points comprising a given135

number of generations. A forward migration matrix de�nes the fraction of individuals that136

migrate from one deme to its four neighbouring demes. Forward migration rates (m) are137

independent from deme sizes, and they can be symmetric or asymmetric between demes, and138

homo- or heterogeneous across space. The backward migration matrix, required for the139

coalescent process, contains elements that specify the fraction of individuals in a given deme140

that have a parent in another deme. Backward migration rates are calculated for each time point141

based on the deme sizes and the forward migration matrix.142

The coalescent process consists of two phases: a scattering phase in the recent past with the143

fully de�ned demographic history of individual demes, and a collecting phase in the more144

distant past assuming panmictic population(s). While spatial structure is important in the145

scattering phase, its e�ect becomes smaller and even negligible in the collecting phase, which146

can be thus approximated by the standard coalescent process (Wakeley, 1998, 1999). This implies147

that it is unnecessary to run the spatially explicit simulations until all lineages coalesce; before148

that point, the lineages can instead be combined to a single or a few spatially non-explicit149

panmictic populations. It is, nevertheless, possible to specify multiple ancestral populations with150

low migration among them, and thus account for the spatial aspect of the collecting phase.151

Time is managed in gridCoal using three parameters: (1) the number of time points T when152

the deme sizes are de�ned, (2) the time period that elapses between two time steps dt (in years, or153
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other suitable time units), and (3) the generation time gt (in years or other time units, compatible154

with dt; see also Table 1). Thus, T ⇥ dt determines the length of the spatially explicit phase. To155

achieve the highest e�ciency, this time should be equal to the scattering phase. After this phase,156

all lineages are combined into one or more panmictic, spatially non-explicit, so-called ancestral157

population(s). This non-spatial phase ensures that all lineages coalesce even when the product of158

the e�ective population size and migration rate (Nm) is small, and it facilitates the simulation of159

di�erent refugial populations that may colonise di�erent parts of the grid. Note that mutation is160

assumed to be negligible throughout this work.161

2.2 Simulated scenarios162

Here, we provide a brief summary of the simulated scenarios, while more details can be found in163

Appendix B. Across all scenarios, we used a forward migration rate that is constant in time and164

homogeneous across the grid. Simulations were run with an average deme size of165

N 2 (10, 50, 100, 250, 500), with migration rate m 2 (10�5, 10�3, 10�2, 10�1, 100) between166

neighbouring cells (see Table 1 for explanations of terms and symbols). To analyse the e�ect of167

spatial heterogeneity, we simulated various maps di�ering in the amount of spatial variation and168

autocorrelation in deme size (Fig. 1). Our simulated scenarios ranged from a homogeneous map,169

where all demes have the same size, to a map with large variance in deme size, with deme sizes170

drawn from a uniform distribution. To investigate the e�ect of temporal changes, we simulated171

scenarios with various demographic histories: static scenarios with �xed deme sizes in time;172

simple demographics, where all demes changed in the same manner on average, such as173

undergoing an expansion, decline or bottleneck; and more biologically realistic scenarios of174

colonisation from one side or from "seeds" (such as refugia), or range expansion and shift (Fig.175

1). For each scenario and combination of N and m in a factorial design, we ran 1000 replicates.176

We sampled lineages across the grid in two di�erent ways. In order to estimate the177

within-deme coalescence time, we sampled two lineages from each deme. In contrast, for178
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studying between-deme coalescence times, we sampled lineages along a horizontal line (L179

demes) in the middle of the grid.180

2.3 Summary statistics181

Hudson et al. (1990) and Slatkin (1991) noted the close relationship between the probabilities of182

identity by descent and coalescence times, which makes it possible to bypass the simulation of183

genetic data, instead estimating diversity and divergence statistics directly from coalescence times184

(Ralph et al., 2020). Additionally, for such calculations it is su�cient to simulate the genealogies185

of two lineages per deme.186

Coalescence times For low and high Nm, the individual demes and the grid as a whole,187

respectively, are nearly panmictic, the distribution of coalescence times is close to exponential,188

and most lineages coalesce within the scattering phase. Under these conditions, the maximum189

likelihood estimate of the mean coalescence time is the sample mean. In contrast, for190

intermediate Nm, the probability that lineages migrate away from their present-time demes191

before coalescing is high, but the probability that they meet again and coalesce within the192

spatially explicit phase of the simulation is low. As a result, the distribution of coalescent times193

is no longer exponential and the sample mean is an incorrect estimate of the coalescent time. In194

order to still consider these intermediate Nm values, we use the sample median, which is195

expected to be less sensitive to the missing tail values (Fig. S1).196

We calculated the expected within-deme coalescence time (TW ) as the coalescence time of197

two lineages from the same deme. Assuming a mutation model, measures of within-population198

genetic diversity can be calculated from TW . Here, we simply used TW as a proxy for within-deme199

diversity and plotted it as a heatmap across the grid. TB is the coalescence time between any two200

lineages from two di�erent demes, and TT is the coalescence time of any two lineages across the201

grid.202
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Population structure (FST) Under the in�nite islandmodel, the extent of population structure203

can be described as in Whitlock & McCauley (1999):204

FST =
1

4Nm+ 1
(1)

Under Kimura’s 2D stepping stone model, given a homogeneous migration rate and equal205

sized demes, FST can be de�ned as follows (Maruyama, 1977; Cox et al., 2002):206

FST =
L2logL
2⇡⌫�2

L2logL
2⇡⌫�2 + 2NL2

(2)

where � = 1/2 is the average axial parent–o�spring distance, ⌫ = 4µ, and L is the grid size.207

The value 2⇡⌫�2 is the neighbourhood size, which is the local panmictic unit that determines the208

amount of variation between populations at the migration–drift equilibrium; thus, it is equivalent209

toNm in the islandmodel. Note that when logL
2⇡⌫�2 << 2N , equation (2) simpli�es toFST = logL

4N⇡⌫�2210

(Cox et al., 2002).211

The link between FST and coalescent theory was introduced by Slatkin (1991):212

FST =
TT � TW

TT
(3)

where TT is the average total coalescence time and TW is the within-deme coalescence time213

averaged across demes. We refer to equation (3) as the global (population-wide) FST , which214

measures the strength of the population structure and can be compared across di�erent215

simulated scenarios, and we use this de�nition throughout the manuscript. Note that216

approximating summary statistics of genetic diversity and FST from coalescence times holds217

only when the mutation rate is low, and migration is possible to neighbouring demes only218

(Slatkin, 1985).219
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Genetic distance (F⇤) In order to investigate the genetic di�erentiation between pairs of220

demes and its relationship with physical distance, we used a measure of genetic distance based221

on coalescence times. If only two demes are considered, Equation 3 transforms into:222

F ⇤ =
TB � TW

TB + TW
(4)

where TB is the mean coalescence time for two lineages sampled from di�erent demes, and TW223

is the mean within-deme coalescence time. Slatkin (1993) pointed out that this equation is not224

appropriate to asses the strength of population structure in general, but it is a useful measure of225

the genetic distances between demes. We used F ⇤ between all pairs of sampled demes against the226

physical (Euclidean) distance between demes to assess isolation-by-distance patterns across the227

grid. Note that if TW ⇡ TB (which is the case for large Nm), F ⇤ = FST
2�FST

and F ⇤ thus does not228

provide any more information about the population structure than FST .229

E�ective population size (Ne) Under the island model, Ne is230

Ne = Ns

✓
1 +

(s� 1)2

4N⌫s2

◆
, (5)

where ⌫ = 4m (the total migration rate for each grid cell), and s is the number of demes in the231

island model. While, Ne under two dimensional stepping stone model can be calculated as Cox232

et al. (2002):233

Ne =
L2 log(L)

4⇡�2⌫
(6)

E�ective population sizes predicted from simulations were obtained by halving the234

coalescence time of lineages from the same deme.235
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3 Results236

3.1 Coalescence times237

The expected coalescence time of two samples drawn from the same deme is TW = 2N , where238

N is the total number of diploid individuals in the deme. This result is independent of the239

migration matrix if all demes are connected by migration. Under the island model with d demes240

each containing N individuals, the expected coalescence time for two samples from the same241

deme is 2Nd (Strobeck, 1987), which is higher then 2N as a result of lineages escaping before242

coalescence occurs. Under the 2D stepping stone model the expected coalescence time is 2NL2
243

(Cox et al., 2002). However, in a 2D stepping stone model, where only the four neighbours are244

connected, strong local di�erentiation across demes occurs when Nm < 1 (Kimura &245

Maruyama, 1971). In contrast, when Nm > 1 local di�erentiation is less pronounced, and when246

Nm � 4 the whole grid behaves like a single panmictic population (Kimura & Maruyama, 1971).247

Our simulations helped us to explore the e�ect of spatial heterogeneity in deme size on these248

theoretical predictions.249

Spatial heterogeneity can be ignored whenm = 0 and thus each individual deme behaves like250

a panmictic population. In these cases, the expected coalescence time for two samples taken from251

the same deme is independent of the spatial heterogeneity of the grid and is thus expected to be252

2N (Fig. 2a and d). However, for the largest deme size considered (N = 500), TW was on average253

larger than 2N . At the other extreme, when m was one, the whole grid behaved like a single254

panmictic population. Here, TW was decoupled from the local deme size and was, on average,255

equal to 2NL2 (Fig. 2c). Additionally, when there was large spatial variance in deme size across256

the grid, the uniform map, the coalescence time was systematically underestimated (Fig. 2f). This257

was because the spatial heterogeneity decreased the total e�ective population size across the grid.258

For low migration rates, the expected coalescence time of two samples from the same deme259
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should be TW = 2NL2, independent of m (Maruyama, 1971). When m is very small, lineages260

coalesce mostly within demes, on average, in time 2N . However, very rarely, they escape and261

coalesce only in time 2NL2/m, which results in a mean coalescence time of TW = 2NL2. The262

spatially explicit phase of our simulations was not long enough for these samples to coalesce263

after they escaped from the deme, and these were thus forced to coalesce sooner, leading to264

underestimation of the average coalescence time (Fig. 2b and e). The problem of escaping265

lineages matters the most in the transition phase from low to high Nm. Recall that in this part266

of the parameter space we could not estimate the sample mean; therefore, we show the median267

TW instead (Fig. 2). Note that these results should be treated with caution and cannot be268

compared with any theoretical expectations. We found that for Nm  0.05, TW was best269

predicted by 2N̄ (Fig. 2b;m = 0.001 and N = 50). Then, for Nm = 0.1, our simulations showed270

that the median coalescence time was best predicted by twice the neighbourhood size, i.e. the271

size of the deme plus its four neighbours (Fig. 2e; m = 0.001 and N = 100). However, we found272

that already at Nm = 0.5 the coalescence time was best predicted by 2NL2 (Fig. 2; see also Fig.273

S1b and e), suggesting that the transition phase is fast, which is in agreement with previous274

observations by Kimura & Maruyama (1971) .275

3.2 Global FST276

The island model (eq. 1) and 2D stepping stone model (eq. 2) provide expectations for the277

strength of population structure (FST ) in subdivided populations. Here, we explored the278

robustness of these predictions with respect to the spatio-temporal heterogeneity in deme size.279

We found that all simulated scenarios deviated the most from theoretical predictions for280

intermediate migration rates (or Nm), where the predictions of the two models also di�ered the281

most (Fig. 3a, b and c). Not surprisingly, the island model provided, on average, a better282

approximation than the spatially explicit 2D stepping stone model when the deme sizes were283

drawn from a uniform distribution across the grid, thus when there was no spatial284
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autocorrelation in deme size (Fig. 3a). In contrast, when deme sizes were homogeneous across285

space, and thus the spatial autocorrelation was maximised, FST was closer to the 2D stepping286

stone model predictions (Fig. 3a). FST of the clustered and low variance maps were in between287

the two model predictions. FST also varied considerably across replicates, with the largest288

variation occurring for the uniform map among all static scenarios considered (Fig. 3d).289

Across the changing scenarios, we observed a consistent bias: scenarios where the mean290

deme size decreased over time gave a lower FST , while scenarios where the mean deme size291

increased (expanding population) gave a higher FST in comparison to the static equivalent292

scenarios (Fig. 3b and c). Similar to with the uniform static map, FST was relatively close to the293

predictions of the island model under the changing scenarios that ended in a uniform map (Fig.294

3b). More unexpectedly, under the realistic changing scenarios, where we decoupled the spatial295

and temporal autocorrelation, on average, FST did not deviate more from the island model296

prediction than the simple changing scenarios for the studied parameter combinations (Fig. 3c).297

These realistic changing scenarios also provided a relatively close match to their static298

equivalents (Fig. 3c). An exception is the range expansion and shift scenario. This is because299

here the theoretical expectation is shown for the average N across the grid, which is lower than300

the row of sampled demes situated in the middle of the grid (Fig. 1). Finally, the variation in FST301

across replicates was important, and FST for di�erent realisations of the same map overlapped302

between values of Nm that were one order of magnitude di�erent, especially for low and303

intermediate values (Fig. 3d, e and f). The sampling variance in FST also increased with spatial304

variance in deme size across the grid, with the highest values corresponding to the two clustered305

maps (Fig. 3d and f).306

3.3 Genetic distance (F ⇤)307

Varying N and m across a homogeneous map showed that increasing the deme size and/or the308

migration rate led, as expected from equation (1), to weaker di�erentiation between demes (Fig.309

14



S2). The degree of spatial variance in deme size a�ected both the average genetic distance between310

demes and the shape of the isolation by distance curves (Fig. 3g). Maps with homogeneous deme311

size had the lowest and �attest isolation by distance curves. Note that these can be treated as a312

baseline expectation under the 2D stepping stone model (Slatkin, 1993). The uniform map gave313

higher F ⇤ values across all the distance classes, i.e. the isolation by distance curve was shifted314

upwards, because the compared pairs of demes had, on average, a di�erent size. The clustered315

map resulted in a lower mean F ⇤ for small distance classes and a higher F ⇤ for larger distance316

classes, meaning that the isolation by distance curve was steeper. This was because pairs of demes317

located close to each other tended to have similar sizes, and those for large distance classes often318

had di�erent sizes. Varying deme classes also caused a large variance in the genetic distance319

across replicates (Fig. 3g, h and i).320

Demographic, i.e. temporal, changes introduced a bias in the same direction as in FST :321

scenarios where the mean deme size decreased over time had a lower F ⇤, while scenarios with322

increasing average deme size had a larger F ⇤ value in comparison to a static uniform map.323

However, the shape of the isolation by distance curve did not change (Fig. 3h). The realistic324

changing scenarios all had increasing deme sizes, so we observed the same upward bias as325

before (Fig. 3i). The fact that the population sizes were changing had the strongest in�uence on326

F ⇤ when the spatial and temporal autocorrelation was the most decoupled, i.e. for the side327

colonisation scenario, and for large distance classes (Fig. 3i).328

3.4 E�ect of spatial and temporal resolution329

Our simulations were carried out on a �nite square grid of L ⇥ L (not a torus), which implies a330

�nite number of demes and that demes on the edge of the grid had only two or three neighbours.331

Not surprisingly, we found that FST estimated from a larger grid provided a better �t to the332

predictions of the island model and the 2D stepping stone model (Fig. 4a). Further, we found that333

there was an edge e�ect, which led to the overestimation of F ⇤ for demes that were L or nearly L334
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steps away from each other (Fig. 4b). Analysing F ⇤ against distance from samples in the middle335

the grid allowed us to disentangle the e�ect of grid size from the edge e�ect. We found that close336

to the edges the genetic distance is overestimated between the demes, mainly due to edge e�ects,337

while grid size principally in�uences the precision of the estimates, i.e. larger grids provide more338

precise estimates of F ⇤ for a given distance class (Fig. 4c).339

We investigated the e�ect of temporal resolution in the case of a simple changing scenario340

where all demes increased linearly in size (Fig. 1). The coarser time resolution (T = 5) did not341

have a noticeable e�ect on the estimation of the mean coalescence time within demes, but the342

between-deme coalescence times were systematically overestimated (not shown). As a result, the343

genetic distances between demes were also overestimated (Fig. 4e). This is because when T = 5,344

the population size at any time is larger than in the �ner time-resolution scenario (T = 25). Time345

resolution is also important in more complex setting such as range expansion and shift (Fig. 1).346

The time necessary for lineages to coalesce during the spatially explicit phase of the347

simulations may become a limitation in practical applications. When the spatially explicit phase348

is too short compared with the deme sizes, the coalescence time between lineages is determined349

by the non-spatial coalescence process of the panmictic ancestral population. Extremely long350

simulations may be required to reliably estimate the coalescence time when the deme sizes are351

large. Fig. 4e shows estimates of Ne calculated as half of the mean total coalescence time. In352

contrast, Fig. 4f demonstrates that it is possible to obtain relatively precise estimates of FST with353

much shorter simulation times. This is because FST is de�ned as a ratio of coalescence times354

and the biases cancel out. Indeed, both the estimation of within-deme and total coalescence355

times are biased because of the same process, i.e. the limited length of the spatially explicit356

phase, which means that their distributions are missing the same amount from the tails on the357

right side. This result also highlights that FST is dependent only on recent demographic events358

and is independent of the deeper ancestry, which makes it a useful measure.359
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3.5 Application example: Abies alba post-glacial colonisation history360

Silver �r (Abies alba Mill.) is a coniferous tree species that has progressively colonised the361

mountainous regions of Europe from di�erent refugia since the Last Glacial Maximum (LGM, 21362

kyrs BP). While the exact location of the refugia are debated, it is generally agreed that the363

Central and/or Northern Apennines hosted the largest populations in pre-LGM times, with364

other important populations occurring on the Balkan Peninsula (Tinner et al., 2013).365

Mitochondrial DNA variation clearly suggests the presence of two haplotypes corresponding to366

the Italian and Balkan Peninsulas (Ziegenhagen et al., 2005; Liepelt et al., 2009) (Fig. S3).367

The demographic history of silver �r over the past 22 kyrs BPwas obtained from the LPX-Bern368

dynamic global vegetation model with a resolution of 1° by 1° Lat/Lon (Sitch et al., 2003; Ruosch369

et al., 2016). The model was forced with climate anomalies and included competition between370

common tree species and plant functional types. The output of LPX-Bern is the Foliar Projective371

Cover (FPC), which is the fraction of a grid cell that is covered by silver �r. We estimated the372

number of trees (N ) in each deme from FPC, assuming that a mature tree occupies 40 m2, and373

that N/Ne = 0.001 (an arbitrary but realistic value (Waples et al., 2011)). The full input data374

consisted 221 time points spaced at 100 year (i.e. four generation) intervals on a 53 ⇥ 24 grid.375

In the following we shall refer to one grid cell of LPX-Bern as one deme. While the population376

size of the whole species (i.e. all demes) showed an overall increasing trend with time (post-LGM377

colonisation), the size �uctuations of individual demes were highly variable (see Fig. 5a). We used378

the expected coalescence time for two samples taken from the same deme as an approximation for379

the genetic diversity in a deme, thus assumed that mutations can be neglected. Finally, we note380

that LPX-Bern has several shortcomings and does not predict the current distribution of silver �r381

accurately. However, the objective of this example was not to make predictions for the expected382

levels of genetic diversity in silver �r, but to study the e�ect of spatio-temporal heterogeneity in383

population size in a biologically realistic scenario.384
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We performed four simulated scenarios. First, we used a homogeneous deme size (i.e. Ne)385

in space and time, which represented our null model. We �xed the deme size to its average size386

based on the last step of the LPX-Bern data. Second, we included the spatial variation in deme387

size, represented by the last step of the LPX-Bern data, but kept deme sizes constant in time.388

Third, we used the full LPX-Bern input data, thus considering realistic deme sizes changing both389

in space and in time. Fourth, we explored the e�ect of having two ancestral populations, i.e. using390

pre-LGM historical information. For this, we used simulations identical to the third scenario,391

but at the oldest time point (i.e. 22 kyrs BP), and we combined the demes into one of the two392

most plausible ancestral populations based on the spatial distribution of mtDNA haplotypes in393

contemporary samples (Fig. ??a). We achieved this by simply assigning each deme with mtDNA394

data to the dominant haplotype (i.e. more than 50% Balkan or Italian type) or to the origin of the395

nearest deme of known origin, in case of missing data (Fig. ??b).396

We found that both space and time had an e�ect on the coalescence times, and thus on the397

distribution of genetic diversity in space (Fig. 5b). As expected, when the deme size was constant398

in space and time, the distribution of genetic diversity only re�ected stochastic e�ects of the399

coalescence process (Fig. 5b, Scenario 1). Spatial variation in deme size introduced variation400

in the expected levels of genetic diversity, which was also proportional to the deme size (Fig.401

5a and b, Scenario 2). When deme size varied both in space and time, the spatial variation in402

the mean coalescence time became even stronger. In particular, the recently colonised areas of403

Northern Europe had a lower expected level of genetic diversity (Fig. 5b, Scenario 3). Finally, when404

we assumed two ancestral populations, their contact zone had much higher levels of expected405

genetic diversity (Fig. 5b, Scenario 4). This is because there was a much longer waiting time for406

the two ancestral populations to coalesce, which is determined by the size of these populations407

and also by the migration rate between them. For a real data application, calibration of these408

two parameters would be necessary to match the observed genetic diversity data. Alternatively,409

the match between simulated and observed data could be used to estimate the divergence time410
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between the two mtDNA haplotypes (e.g. Hickerson et al., 2007).411
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4 Discussion412

The role of spatial and temporal autocorrelation413

Using a wide range of simpli�ed and biologically realistic simulations, we have identi�ed several414

factors that may cause a deviation from theoretical expectations of the island model and the 2D415

stepping stone model. We found that non-spatial null models, such as the island model, are416

inappropriate in the presence of spatial autocorrelation in deme size (Fig. 3). Most real-life417

situations involve some degree of spatial autocorrelation. Previous studies have already418

demonstrated the limitations of non-spatial null models, for example in the presence of isolation419

by distance (Wang & Whitlock, 2003; Meirmans, 2012), due to population structure or biased420

sampling schemes (Chikhi et al., 2010), or to local variation in deme size or barriers to gene �ow421

across the landscape (Duforet-Frebourg & Blum, 2014). Here, we show that the 2D stepping422

stone model can account for spatial autocorrelation, at least when it is homogeneous across the423

landscape, and to some extent when there is local variation in deme size (clustered scenario)424

(Fig. 3). Thus far, the 2D stepping stone model has rarely been used as a null model (but see425

Duforet-Frebourg & Blum 2014 and Battey et al. 2020), partly due to the lack of a simulation tool.426

gridCoal could facilitate more widespread use of the 2D stepping stone model to generate the427

null distributions of neutral statistics, such as genetic diversity (assuming a non-zero mutation428

rate) or FST , in the presence of spatial autocorrelation in population size.429

Demography, or temporal change in population size, is well known to contribute to430

deviations from theoretical expectations of the island model, and can limit the validity of431

statistical procedures that are based on this model. This is particularly true for FST -outlier tests432

used to detect loci under selection (e.g. Chikhi et al., 2010; Bierne et al., 2013; De Mita et al., 2013;433

Lotterhos & Whitlock, 2014) because FST is dependent on recent ancestry (Slatkin, 1991). Here,434

we simulated realistic scenarios with the presence of both spatial and temporal heterogeneity in435
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deme size, and observed that deviations from the theoretical expectations are strongest when436

the spatial and temporal autocorrelation in deme size are decoupled (Fig. 3c, range expansion437

and shift). Our simulations demonstrate that neutral FST is well below the theoretical438

expectations for such a range expansion and shift (Fig. 3c). This result is in agreement with the439

�ndings of Lotterhos & Whitlock (2014), who showed that spatial autocorrelation in deme size440

or recent range expansion resulted in the largest number of false positives for most methods in441

e�orts to detect spatially divergent selection. Spatio-temporal trends in population size are442

expected to be common in nature, especially in the Northern hemisphere, where the443

demographic history is often dominated by expansion from glacial refugia and a shift towards444

the north (e.g. Exco�er et al., 2009). Our example application also illustrates such a case (Fig. 5).445

FST and F ⇤ are based on the same information, but FST is a more integrative and therefore446

more robust measure, while F ⇤ is more sensitive to local di�erentiation patterns (Fig. 3g–i). Note447

that ourF ⇤ is closely related to M̂ of Slatkin (1993), which has the advantage of being independent448

of themutation rateswhen they are small across loci. Based on awide range of scenarios, we found449

that spatial and temporal variation in deme size can in�uence the steepness of the isolation-by-450

distance curve. In agreement with Duforet-Frebourg & Blum (2014), we found that local variation451

in population size, as in our clustered map, caused large variance in local F ⇤ (Fig. 3g). The most452

complex range expansion and shift scenario led to a relatively �at isolation-by-distance curve453

(Fig. 3i). Indeed, Slatkin (1993) already proposed that the lack of an isolation-by-distance pattern454

in a natural population can indicate non-equilibrium populations or recent colonisation, a pattern455

that has been con�rmed through empirical studies (e.g. Leblois et al., 2000; De Kort et al., 2014).456

gridCoal: Guidelines for future users457

gridCoal is a wrapper for the most e�cient algorithm to simulate genealogies: the optimised458

continuous time approximation of the coalescence process implemented in msprime (Kelleher459

et al., 2016). It complements the existing arsenal of spatially explicit simulators (Guillaume &460
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Rougemont, 2006; Landguth &Cushman, 2010; Haller &Messer, 2019; Currat et al., 2019; Dellicour461

et al., 2014; Becheler et al., 2019). The choice of parameters and model calibration are essential for462

running spatially coalescent simulations. Here we provide some guidelines in the case of gridCoal.463

The spatially explicit phase (given by the number of steps T and the time step dt) should be464

long enough so that lineages coalesce during this phase, but also short enough to avoid wasting465

computational time. The choice of dt should be driven by the particular biological question. For466

example, throughout this paper we used a combination of parameter values (number of steps T ,467

time step dt and generation time gt) such that most lineages coalesced in the spatially explicit468

phase across all combinations of N and m (Fig. 4d–f). Note that the largest dt was necessary for469

intermediate values of Nm, where lineages can escape and take a long time to coalesce. We470

suggest that users perform test simulations with the required values of N and m to choose an471

appropriate dt. This is particularly important if it is necessary that all lineages coalesce during472

the spatially explicit phase, e.g. for estimating genetic diversity maps such as those shown in the473

example of post-glacial colonisation of silver �r (Fig. 5). In contrast, if the question concerns a474

particular organism with a given generation time and across a particular time period, the475

parameters can be chosen accordingly. For example, setting dt = 100 and using 210 time points476

takes the ancestral population back to the Last Glacial Maximum (LGM, 21 kya), which could be477

a suitable parameter combination for several species that expanded after the LGM.478

gridCoal avoids the simulation of genetic data and instead simulates summary statistics that479

can be derived from coalescence times, i.e. gene diversity, the strength of population structure480

(FST ), and the genetic distance between pairs of demes (F ⇤). We emphasise that approximating481

summary statistics of genetic diversity and FST from coalescence times holds only when the482

mutation rate is low and when migration is possible to neighbouring demes only (Slatkin, 1985).483

Further, for comparing gridCoal simulations to real data, a calibration of Ne and µ is necessary484

because these parameters are non-identi�able. Such a calibration can be achieved by using485

additional information about the mutation rate of particular genetic markers used and by486
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estimating N/Ne (Waples et al., 2011). Finally, simulations from gridCoal are closer to that of a487

continuous space model, and thus to biological reality, for large grid sizes. Nevertheless, at least488

for small neighbourhood sizes, a grid of 50 ⇥ 50 already appears to be su�cient to accurately489

approximate a continuous space process for many commonly used summary statistics (see490

details in Battey et al. 2020).491

gridCoal for eco-evolutionary data fusion492

gridCoal might be useful for empirical applications of eco-evolutionary data-fusion approaches,493

such as integrative Distributional Demographic Coalescent (iDDC) approach (He et al., 2013;494

Brown & Knowles, 2012). In this context, one key feature of gridCoal is that it is not only495

spatially but also temporally explicit. Temporal explicitness means that the exact population size496

of each deme has to be set by the user at regularly placed time intervals. In this way, gridCoal is497

fully deterministic in terms of the forward-time demography, and stochastic in terms of the498

backward coalescence events. Although this feature may appear as a limitation in some499

situations, it is necessary for applications that make use of species distribution data issued from500

ecological models and paleological data (Svenning et al., 2011; Gavin et al., 2014). This feature501

also represents an important contrast to SPLATCHE 3 (Currat et al., 2019), where each deme502

follows a logistic growth model. As a result, in SPLATCHE 3, user-provided population sizes are503

only approximately achieved, no population declines, and only local extinctions are possible.504

Indeed, to set up explicit temporal changes in population size, Ortego & Knowles (2020) updated505

the population sizes only three times from 21 ky BP to the present, which is a rough506

approximation of actual population size changes and may bias the isolation-by-distance patterns507

(Fig. 4d).508

There is a wide range of possible input data sets that can be used for eco-evolutionary data-509

fusion approaches. First, paleo-climatic databases have opened possibilities for running species510

distribution models (SDMs; Elith & Leathwick 2009; Sexton et al. 2009) and for producing a time511
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series of species distribution maps. Second, process-based dynamic vegetation models (DVMs;512

Pereira et al. 2010) o�er important advantages over SDMs, which are static, correlative approaches,513

and thus DVMs hold a great potential for use in data-fusion approaches. Even thoughDVMs su�er514

from limitations related to their complex parametrisation, they are continually improving as the515

quality and richness of climatic, remote sensing, and other biological data increases (e.g. Hartig516

et al., 2012). Third, fossil data is increasingly being organised in databases (Davis et al., 2013; Peters517

et al., 2019). The most abundant type of fossil data is pollen, particularly from forest trees, which518

has been used to reconstruct past population size �uctuations (e.g. Ruosch et al., 2016; Kaufman519

et al., 2020). Indeed, our example of post-glacial colonisation history in silver �r (see Fig. 5) could520

be made more realistic by using the spatio-temporal interpolation of pollen records (Ruosch et al.,521

2016).522
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Table 1: Symbols and terms and their de�nitions.

Symbol Term De�nition
d deme panmictic population in a single grid cell

map grid with a de�ned distribution of deme sizes
L grid size number of rows (columns) in a square grid
N deme size number of individuals in a deme
Nb neighbourhood size size of a focal deme and its four neighbours
T number of time points number of time points with the de�ned

demographic history
gt generation time the interval between the birth of an individual

and the birth of its o�spring
dt time step time between two de�ned time points, in years
m migration rate fraction of population moving from the ancestral

cell to a neighbouring cell
TW within-deme coalescence time coalescence time between two lineages drawn

from the same deme
TB between-deme coalescence time coalescence time between two lineages drawn

from di�erent demes
TT average coalescence time average coalescence time of any two lineages

drawn from the grid
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Figure 1: The three di�erent groups of scenarios simulated. Static scenarios: demes had a
constant size across the spatially explicit phase of the simulations. Simple changing scenarios:
the size of all demes changed in a correlated manner. In the present time step, all scenarios were
identical to the deme sizes drawn from a uniform distribution. Realistic changing scenarios:
deme sizes changed in space and time to model a colonisation event. The grid size was 30 across
all scenarios. To estimate TW two lineages were sampled in each deme, and to estimate TB two
lineages were sampled from 30 demes in a row in the middle of the grid.
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Figure 2: Within-deme coalescence times (TW ) for di�erent ranges of Nm from zero (a, d) to
m = 1 (panmictic grid) (c, f) across two maps: homogeneous (a, b, c) and uniform (d, e, f). The
theoretical predictions are for a Wright-Fisher model with Ni, where i is an index for demes (a,
d) and for 2L2N̄ , where L is the grid size and N̄ is the average deme size across the grid. There
is no theoretical prediction for intermediate Nm (b, e) because for those parameter ranges the
median TW is shown. Each parameter combination (N andm) is represented by 30 dots showing
TW for individual demes.
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Figure 3: Comparison of FST from di�erent scenarios with theoretical predictions of the island
model and the 2D stepping stone model (a, b, c). Variation in FST across 1 000 replicate
simulations of the same map (d, e, f). Isolation-by-distance patterns characterised as F ⇤ against
distance for di�erent scenarios (g, h, i). Simulation parameters: L = 30, T = 30, dt = 50000,
gt = 25.
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Figure 4: Sensitivity of FST and F ⇤ to L (a, b), T (d), andNe (estimated as TT/2, where TT is the
average coalescence time) and FST to dt (e, f) using a homogeneous map,N = 100, andm = 103.
Unless otherwise speci�ed, dt = 2 ⇥ 108, gt = 25, and T = 5. The edge e�ect (c) was explored
using inner demes sampled along a line in the middle of the grid.
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(a)                                       Input: Demographic history from the Bern-LPX data

(b)                                                     Output: Mean coalescence time

Scenario 3
deme size according to 
Bern-LPX in space and time

Scenario 1
constant deme size 
in space and time

Scenario 2
constant deme size 
in time, Bern-LPX in space

Scenario 4
Identical to Scenario 3 but 
with two ancestral populations

22 kyrs BP                                                    11 krys BP                                                            Today

Figure 5: Real-world example: range expansion of silver �r (Abies albaMill.) since the Last Glacial
Maximum (LGM, 22 kyrs BP). (a) Raw input data for gridCoal: the demographic history from the
global dynamic vegetation model LPX-Bern. Three time points are shown out of the 220: the
LGM, the beginning of the Holocene, and today. (b) Mean coalescence time from the simulated
scenarios with increasing complexity in terms of spatio-temporal variation in deme size from the
top left to the bottom right panel. Note that the colour scale di�ers between maps.
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Supplementary �gures711

Figure S1: Median coalescence time of two lineages from the same demeTW (a) and from di�erent
demes TB (b). Di�erent line types represent di�erent maps (see Fig. 1 for details).
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Figure S2: Isolation-by-distance patterns for di�erent average deme sizes, N̄ (a), and migration
rates,m (b).
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Figure S3: (a) The distribution of silver �r (Abies alba Mill.) mtDNA haplotypes in present day
samples following (Liepelt et al., 2009) (pie charts) and the distribution of silver �r (in green) from
EUFORGEN (http:\\www.euforgen.org). (b) mtDNA data used to assign each grid cell
to one of the two ancestral populations in Scenario 4.
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A gridCoal description and user manual712

A.1 Input �les and parameters713

In order to run the simulations, it is necessary to de�ne the following input �les and parameters.714

Demographic history input �les [required]: The demographic history of the collection of715

demes distributed on a grid is represented by a matrix of size T ⇥ n, where T is the number of716

time points at which one wishes to de�ne the population sizes and n is the number of grid cells.717

The matrix contains the population sizes of the grid cells at given time points. Each row is the718

�attened two dimensional grid, indexed from 0 to n� 1, de�ning the sizes of the subpopulations.719

The �rst line is the oldest time point. In msprime, a population is not allowed to have size 0. In720

our case, however, we do not want to exclude the possibility that populations become extinct and721

the demes are subsequently recolonised, even repeatedly. We therefore set populations with size722

0 as 10�10. This is done automatically – before the simulations start, the program replaces any 0723

in the input data with 10�10.724

Example: demographic history with three data points725

726

1 2 0 4 2 3 4 5 3 4 5 5 4 5 6 7

1 1 1 1 2 2 2 2 3 0 0 3 4 4 4 4

1 2 3 4 2 3 4 5 3 4 5 0 4 5 6 7

727

728

Enter as: -pop InputData.txt or --pop_sizes InputData.txt729

Row number [required]: This number, together with the demographic history �le, de�nes730

the shape of the spatial map. It must be an integer. Additionally, the size of the grid (number of731

all cells – row length of the demographic history input �le) must be divisible by the row number.732

Enter as: -row 5 or --row_number 5733
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Figure A1: Input data preparation.

List or a fraction of sampled cells [optional]: A list of cells from which the samples are734

taken is can be suplied. 1. These cells must not be empty at the �nal time point (present), but735

could be empty in the past. For e�ciency, two samples are taken from each sampled deme. 2 If736

only a number (�oat,< 1) is supplied, random, non-empty cells will be sampled, with the number737

representing the sampled fraction. If no �le is supplied, all samples that are not empty at present738

are sampled.739

Example: SampleList.txt740

0 1 2 3 4 7 8 33 34 35741

Enter as: -sam SampleList.txt or --sample_coords SampleList.txt742

1Mind the indexing of the sampled cells, which also must start from 0.
2It is more e�cient to run more replicates with fewer samples than fewer replicates with more samples. In the

coalescence process, the waiting time until the next coalescence event happens is exponentially distributed, with its
mean proportional to the number of lineages. Thus, in the beginning, several coalescence events happen in quick
succession, yet the mean coalescence time of the deme is largely dominated by the amount of time that the last
remaining few samples took to coalesce.
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Migration matrix A two-dimensional migration matrix capturing backward migration is743

needed to run the simulation itself; however, as an input �le we only need the forward744

migration matrix, M 3. We assume that M remains constant in time because it depends on the745

dispersal ability of the species. The element (Mi,j) de�nes the fraction of the lineages in746

population i that migrates to population j. In order to run coalescence simulations, gridCoal747

calculates a backward migration matrix, BM . BM changes through time, as it depends on the748

actual population sizes of the neighbouring cells. BMi,j(t) de�nes the fraction of lineages in749

population i at time t that have parents in population j and is thus calculated as:750

BMi,j =
Mj,iNj(t� 1)

Ni(t)
(A1)

The fact that the population size changes and migration matrices are not updated at every751

generation, but at arbitrary time steps, represents a signi�cant gain in computing time in752

comparison to other tools such as SPLATCHE 3.753

In the newer version of gridCoal, only a migration list is needed, capturing the migration rate754

from source to target cell.755

A migration list indicating the migration rate between two connected cells is used to build a756

migrationmatrix, and to calculate backwardmigration during the simulation. Even if two cells are757

connected by an edge, if the migration is not speci�ed in the list, it is considered 0. The migration758

list must be formatted as lines of three values: source cell i (integer), target cell j (integer), and759

migration ratemij (positive �oat between 0 and 1). Note that if migration involves the exchange760

of migrants, both directions need to be speci�ed.761

If a �le is not speci�ed but rather a single number m (�oat) is supplied, a migration matrix762

is generated in which migration is assumed to occur between adjacent cells symmetrically with763

rate m.764

Example: MigrationList.txt:765

3The diagonal elements of M must be zero, a requirement for msprime.
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0 1 1.00e-06766

0 5 1.00e-06767

1 0 1.00e-06768

1 2 1.00e-06769

1 6 1.00e-06770

2 1 1.00e-06771

2 3 1.00e-06772

2 7 1.00e-06773

3 2 1.00e-06774

775

Enter as: -mig MigrationList.txt or -mig 0.000001776

or --migration_matrix MigrationList.txt777

or --migration_matrix 0.000001778

Time step and generation time [optional]: The amount of time between two time points,779

denoted dt, is given in arbitrary time units (years, months, days, minutes).780

Time is measured in generations inmsprime, and we therefore need to specify the generation781

time of the population at hand. We de�ne the generation time, dt, as the time it takes for a species782

to reach a reproductive age, expressed in the same units as other supplied times. The timing783

of demographic events (expressed in the same units) is re-calculated by dividing the time point784

of events speci�ed in demography input �les by the generation time of the simulated organism785

expressed in the same units. Therefore, it is possible to run the simulations for any organism with786

an arbitrary generation time, from bacterial populations to trees.787

By default, generation time is set to 1, and the time between two supplied data points is set at788

10.789

Enter as: -dt 100 -gen 25 or --delta_t 100 --generation_time 25790
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Ancestral populations At the point in time beyond which the demography is unknown, all791

lineages are merged into spatially non-explicit ancestral populations where they follow the792

standard coalescence process. We assume either a single or multiple panmictic ancestral793

populations with speci�ed sizes and a very low rate of migration between them (10�8).794

Furthermore, it is necessary to specify which of the cells originate in each ancestral population.795

A list determining the origin of each cell can be supplied as a txt �le with n (number of all796

cells) lines. If no �le is supplied, all cells are expected to originate in a single spatially non-explicit797

population. The size of the ancestral populations can be set, with the default as 1.798

Other inputs It is further possible to specify an output directory, into which outputs (log �le799

with input parameters, demography debugger, random seed numbers and coalescence times) are800

saved. The default value is OUTPUT.801

Enter as: --output_dir 7 or -odir 7802

Print demography �le This option can be used to print a detailed demography debugger803

�le, supplied by msprime. The replicate number must be set to 1. This makes it possible to804

simultaneously run many simulations with only one debugger �le (identical for all).805

Enter as: -pdeb BOOL or --print_debugger BOOL806

Finally, it is possible to set a random seed number, which makes it possible to reproduce a807

given simulation.808

Enter as: --set_seed INT or -seed INT809

A.2 Demographic events810

All demographic changes, including population size and migration rate changes, need to be811

de�ned as a demographic event at a given time point, going backwards in time, and collected to812

a list, which is used by msprime for the coalescence simulation. This is done automatically by813

gridCoal based on the �le containing the demographic history.814
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At each generation, we calculate the backward migration as described above.815

Similarly, we update the population sizes, with one additional constraint. If a deme has816

individuals at a given time point t but was empty in the preceding time point t � 1, we need to817

de�ne the source of those individuals. Speci�cally, we de�ne a mass migration event from this818

cell to its 4 neighbouring cells, at rates proportional to their population sizes in the preceding819

generation. Thinking forward in time, this corresponds to the idea of an empty cell being820

colonised by its neighbours, at rates proportional to their population sizes.821

After a list of demographic events is created, these are supplied tomsprime, together with the822

initial conditions. Single repeats are run in each simulation. The coalescence tree is extracted,823

and the time of coalescence of each pair of samples is saved in matrix format, with sampled cells824

in rows and columns. The matrix is symmetrical, with the diagonal representing the within-deme825

coalescence time.826

A.3 Output �les827

Summary of inputs For REPLICATE = 1, All the input �les are collected and saved into a828

created OUTPUT_DIR_NAME directory as829

OUTPUT_DIR_NAME/Output.txt. The random seed number is saved in the same �le.830

Print demography debugger If --print_debugger is set to True, the detailed831

demographic history – with all changes in population size and migration rate – is produced by832

msprime and printed into the OUTPUT_DIR_NAME directory as833

OUTPUT_DIR_NAME + ’DemographyDebugger.txt’. Note that this output �le can834

be very large.835

Simulation results The result of the simulation itself is a square matrix of coalescence times836

of samples from all sampled demes, saved into OUTPUT_DIR_NAME directory as837
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OUTPUT_DIR_NAME + ’CoalTimes’ + REPLICATE + ’.txt’838
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B Simulated scenarios839

B.1 Static scenarios840

In these simulations, all demes had constant sizes across T = 5 time points and dt = 2 ⇥ 108841

years (8 ⇥ 106 generations, 25 years per generation), on a square grid of size L = 30. Di�erent842

scenarios (maps) were simulated, with increasing spatial variance (see Fig. 1):843

• homogeneous (no spatial variance): equal-sized demes of size N844

• Poisson (low spatial variance): deme sizes drawn from a Poisson distribution with mean N845

• uniform (high spatial variance): deme sizes drawn from a uniform distribution with a range846

from 0 to 2N847

• clustered (spatially autocorrelated): randomly placed seeds grown into clusters, where848

neighbouring deme sizes were correlated and the average deme size across the whole map849

was N850

Table B1: Summary of parameter values used in the simulations of static populations.

Variable Symbol Values
map type homogeneous, Poisson, uniform, clustered

average deme size size N 10, 50, 100, 250, 500
migration rate m 0, 10�8, 10�5, 10�3, 10�2, 10�1, 100

Additionally, to address the e�ects of grid size and edges due to the �nite grid size, we851

simulated the homogeneous maps on grids with L 2 (10, 30, 50) sampling 10, 30 or 50 cells in a852

line, for only three migration rates, m 2 (10�5, 10�3, 10�1). To analyse the e�ect of time853

resolution and the overall simulation time, we ran simulations on a homogeneous map with854

deme size N = 100 on a square grid of size L = 30 with a time step of855

dt 2 (2⇥ 102, 2⇥ 104, 2⇥ 106, 2⇥ 108) years (generation time was assumed to be 25 years),856

with migration ratesm 2 (0, 10�8, 10�5, 10�3, 10�2, 10�1, 100).857
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B.2 Simple changing scenarios858

In these simulations, all demes had a changing but similar demographic history (Fig. 1). Maps859

were updated at each time point and all scenarios had the same uniform map at the last (most860

recent) time point Ufinal = U(0, 2N), where N = 100, which ensured a valid comparison across861

scenarios. Since the deme sizes were changing, we used a �ner resolution of T = 30 time points862

and a time step of dt = 50 000 years (2000 generations, 25 years per generation). The following863

scenarios were simulated:864

• Stable: there was no change in the average deme size across the map, but we started with a865

uniform map UstartStable = U(0, 2N) that di�ered from Ufinal. Therefore, individual deme866

sizes changed linearly between the initial and �nal time points.867

• Linear increase: individual deme sizes changed linearly from a uniform map, with deme868

sizes drawn from UstartLinE = U(0, N) to Ufinal. Note that while the average deme size869

increased, some individual demes shrank.870

• Decline: individual demes changed linearly from a uniform map, with deme sizes drawn871

fromUstartDec = U(2N, 3N) toUfinal. Note that while the overall populationwas declining,872

some demes became larger.873

• Exponential increase: individual deme sizes increased exponentially from their original sizes,874

drawn from a uniform distribution UstartExpE = U(0, 2N), to their �nal sizes Ufinal. Note875

that while the whole population was expanding, a few individual demes became smaller.876

• Bottleneck: deme sizes �rst linearly declined from UstartBot = U(0, 2N) to877

UmidBot = U(0, 0.4N), then expanded to Ufinal. Note that while the mean deme size878

changed from N to 0.2N to N again, some individual demes experienced di�erent879

demographic histories.880

Furthermore, we ran a set of simulations where, instead of the uniform map, we used a881

spatially autocorrelated map (clustered). We ran similar demographic histories, with no change882
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in time, bottleneck, decline or expansion. We used the same parameters ofm, T and step time as883

used for the homogeneous map.884

Table B2: Summary of parameter values used in the simulations of simple demographic histories.

Variable Symbol Values
map type high-variance (uniform)

average deme size N 100
migration rate m 10�5, 10�4, 10�3, 10�2, 100

duration of known demographic history T 5, 20

B.3 Realistic changing scenarios885

These scenarios were inspired by a species range expansion (Fig. 1). Populations colonised the886

grid from di�erent places so that demes had di�erent demographic histories. As a result, the887

temporal and spatial autocorrelation were decoupled to some extent. We used the �ner resolution888

of T = 30 time points and dt = 50 000 years (2000 generations, 25 years per generation). The889

average deme size at the last step was N = 100. The following scenarios were simulated:890

• Side colonisation: demes were colonised from one side of the grid by one column in each of891

the 30 time points. Once a deme was colonised, its size remained constant.892

• Seed colonisation: clusters of populations grew from a small number of initially occupied893

demes or "seeds".894

• Range expansion and shift: a single expanding population travelled across the grid, while895

colonising its surroundings. At the �rst time point, only a kernel of 20 ⇥ 10 demes were896

occupied. During the following time steps, the kernel demes colonised their neighbours and897

their size increased by 20% at the next time points.898
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C Computational run-time of gridCoal simulations899

We performed 17 500 simulations of gridCoal for various parameter sets, to illustrate the900

dependence of the computational run-time on individual parameters. All simulations were901

performed on a personal computer with the following speci�cations:

Operating system: Mac OS Catalina version 10.15.7
Processor: 2.6 GHz 6-Core Intel Core i7
Memory: 16 GB 2667 MHz DDR4

902

For each parameter set, 5 batches of 100 simulations (run in series) were run and timed, to903

account for random e�ects (e.g. CPU usage by other programs). In the tables below, individual904

batch measurements are shown and run-time trends are displayed in graphs as a mean and905

standard deviation of �ve batches against a changing parameter (in bold). Lines highlighted in906

green indicate the simulation batch for the same set of parameters. Time was measured using907

the "time" shell command, with "user" time (measured in seconds) shown in the tables.908
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