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Abstract 27 

Modern biotechnological laboratories are equipped with advanced parallel mini-bioreactor 28 

facilities that can perform sophisticated cultivation strategies (e.g. fed-batch or continuous) and 29 

generate significant amounts of measurement data. These systems require not only optimal 30 

experimental designs that find the best conditions in very large design spaces, but also 31 

algorithms that manage to operate a large number of different cultivations in parallel within a 32 

well-defined and tightly constrained operating regime. Existing advanced process control 33 

algorithms have to be tailored to tackle the specific issues of such facilities such as: a very 34 

complex biological system, constant changes in the metabolic activity and phenotypes, shifts 35 

of pH and/or temperature, and metabolic switches, e.g. by product induction, to name a few. 36 

In this work we implement a model-predictive control (MPC) approach based framework to 37 

demonstrate: 1) the challenges in terms of mathematical model structure, state and parameter 38 

estimation, and optimization under highly nonlinear and stiff constraints in biological systems, 39 

2) the adaptations required to enable its application in High Throughput Bioprocess 40 

Development (HTBD), and 3) the added value of MPC implementations when operating 41 

parallel mini-bioreactors aiming to maximize the biomass concentration while coping with hard 42 

constrains on the Dissolved Oxygen Tension profile. 43 

 44 

1 Introduction 45 

The production of recombinant proteins using microbial cell factories has increased 46 

dramatically over the last decades (Huang et al., 2012). However, finding optimal process 47 

conditions remains a challenge, since the number of strains and possible operating conditions 48 

to be tested can be very large (Neubauer et al., 2013). Miniaturization and parallelization with 49 

high-throughput liquid handling stations (LHS) can significantly increase throughput and has 50 

been mostly performed in microwell plates (MWP) (Knepper et al., 2014). However, cultivation 51 

in MWPs has several limitations, including inhomogeneous oxygen transfer rates and limitation 52 

regarding sampling, which led to a more widespread use of via mini-bioreactors (MBR) to get 53 

more reliable results (Hemmerich et al., 2018). Such platforms have successfully been used 54 
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for protein expression studies already 15 years ago (Puskeiler et al., 2005) and computational 55 

tools for design and operation of parallel experiments were integrated later on. Cruz Bournazou 56 

et al. (Cruz Bournazou et al., 2017) have shown that model based re-design of dynamic 57 

experiments can significantly improve information content of the experimental results for the 58 

identification of parametric models. Since then, the potential of computer aided high throughput 59 

cultivations were demonstrated in the context of process characterization (Sawatzki et al., 60 

2018), strain and process characterization (Anane, García, et al., 2019; Anane, Sawatzki, et 61 

al., 2019; Hemmerich et al., 2019) or conditional screening of mutants (Hans et al., 2020; 62 

Hemmerich et al., 2019). However, a major problem with such small-scale cultivation is that 63 

they do not match the conditions in large-scale bioreactors with respect to various process 64 

parameters. While there are several methods that can be used for scaling, there are still major 65 

differences between laboratory-scale and industrial-scale cultivations regarding 66 

inhomogeneous cultivation conditions (Nadal-Rey et al., 2021; Neubauer & Junne, 2016). 67 

Hence, it is essential to ensure that the process behavior and the conclusions drawn from it 68 

are as close as possible to the actual process, i.e. also reflect the conditions on a larger scale. 69 

In particular, the control of the substrate feeding offers a simple way to mirror certain 70 

heterogeneous process conditions. E.g. bolus feeding with pulses has shown to be an easy 71 

yet powerful approach to model the effect of inhomogeneous mixing in large-scale bioreactors 72 

(Anane, Sawatzki, et al., 2019). An important drawback is still the fact that due to the discrete 73 

pulse-based feeding of substrate combined with significant sensor delays, it is difficult to 74 

maintain the fastest modes within the desired process constrains. The dissolved oxygen 75 

tension (DOT) in cultivations with organisms with a high substrate affinity (e.g. E. coli) offers a 76 

perfect example. Here we find a number of difficulties caused by the fast dynamics of DOT 77 

governed by a large oxygen transfer coefficient (kLa), the sudden changes in the oxygen 78 

uptake rate dependent on the substrate availability, and the large delay of the single use DOT 79 

sensor-spots on the MBRs. 80 

The operation of robotic facilities for HT conditional screening is still regarded as a major 81 

challenge (Morschett et al., 2021). The current contribution builds on our previous work, where 82 
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we successfully implemented a framework for high-throughput cultivation with conditional 83 

screening capabilities in a milliliter scale (Hans et al., 2020). Avoidance of DOT limitation is a 84 

crucial part in optimal operation of such devices, since pulse-based feeding typically leads to 85 

drastic stress responses and elevated levels of corresponding genes (Schweder et al., 1999) 86 

as well as elevated secretion of several unwanted byproducts like acetate and reduced 87 

biomass yield (Bylund et al., 1998). As already mentioned, with the pulse-based feeding 88 

approach used in this study, violation of this constraint might easily happen. After applying a 89 

pulse, the DOT drops sharply. Conventional controllers though, could only act after a pulse 90 

had been given and a constraint violation might have already occurred. Hence, a predictive 91 

control algorithms like Model Predictive Controllers (MPC) are required to avoid such 92 

conditions.  93 

MPC is an advanced control approach based on a dynamic model of the system which 94 

computes the control inputs aiming to minimize a given cost function and satisfy predefined 95 

constraints (Rawlings et al., 2017). While widely applied in engineering, MPC has only found 96 

relatively few applications in bioprocess engineering (see e.g. the comprehensive review by 97 

Mears et al., 2017. One of the first (linear) MPC applications was presented by Kovárova-98 

Kovar et al. to maximize product formation (Kovárová-Kovar et al., 2000). Further examples 99 

exist for different cases as e.g. slow growing mammalian cells (Ashoori et al., 2009), yeast 100 

(Chang et al., 2016) and microbial cultivations (Del Rio-Chanona et al., 2016; Ulonska et al., 101 

2018). Another approach is to perform set point tracking to follow a predefined trajectory 102 

(Craven et al., 2014; Zhang & Lennox, 2004). 103 

The main challenges for the application of linear MPC result from the high nonlinearities and 104 

dynamics of biological systems (Biegler, 2010). Therefore, in recent years the application of 105 

nonlinear MPC (NMPC) has become more and more prominent (Allgöwer et al., 2004). MPC 106 

is a powerful approach but is limited by the accuracy of the model and by the data provided to 107 

make optimal decisions. In our specific case, i.e. at the early stage of cultivation, the MPC 108 

framework should be able to find an optimal feeding trajectory in real-time time despite high 109 

the uncertainty on the model parameter estimates and the scarce data on the strains under 110 
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investigation. Hence, it is of great importance to have robust adaptive methods that can 111 

perform well under these difficult conditions. A common approach is to use the counterpart of 112 

MPC, namely moving horizon estimation (MHE), to estimate the parameters of the process 113 

while new data is generated (Rawlings et al., 2017). Using MHE for parameter re-estimation 114 

has been used for process engineering for some time and various examples can be found in 115 

the literature (Hedengren & Eaton, 2017; Hernández Rodríguez et al., 2021). The reader is 116 

referred to Elsheikh et al., 2021 for a comprehensive review. However, none of these 117 

mentioned approaches have been applied to systems that present the difficulties mentioned 118 

before. 119 

We will further discuss in this contribution how we tackled several issues which are commonly 120 

faced in these constrained and highly perturbed fed-batch cultivations in MBRs as (i) the 121 

discontinuity of the feeding regime, i.e., the bolus type addition of glucose to the reactors; (ii) 122 

the delayed response of the most important state variable, the DOT in terms of sensor delay 123 

and system delay to the input, which make predictive control essential to avoid constraint 124 

violation; (iii) the differences in the dynamics of the timescales of the system of differential 125 

equations, particularly regarding growth of biomass and the DOT, where the time dynamics 126 

differ by orders of magnitudes and thus lead to a very stiff system; (iv) the different sampling 127 

frequencies (high for DOT and low for biomass, glucose, and acetate); and (v) the uncertainty 128 

in the parameter values of the model, which are unknown prior to the cultivation and might be 129 

only based on rough knowledge about the strains. Thus, in a limited amount of time, the MHE 130 

needs to solve the highly nonlinear and non-convex parameter estimation problem with 131 

sufficient accuracy for the MPC to compute inputs that guide the real process to the expected 132 

results. 133 

We demonstrate the feasibility and added value of such an approach with real experiments  134 

aiming to find optimal process conditions for the industrial production of Elastin Like Proteins 135 

(ELPs). ELPs are derived from natural tropoelastin and are promising examples of 136 

biocompatible, self-assembling and flexible high-performance materials with a great potential 137 

for various applications (Huber et al., 2015; Huber et al., 2022; MacEwan & Chilkoti, 2014). In 138 



 

5 
 

order to develop specific protein properties, the sequence composition and length must be 139 

changed significantly (Schreiber et al., 2019). The choice of the variable amino acid(s) in the 140 

repetitive pentapeptide sequence as well as the size of the protein determine the phase 141 

transition temperature among other characteristics, encouraging the creation of large clone 142 

libraries with different strains (Huber et al., 2014) for which optimal process conditions for 143 

production are yet to be identified. Due to the diverse use of individual amino acids at the fourth 144 

position of the repeating sequence and a limited set of core amino acids used (especially 145 

proline and valine) the optimization of ELP production depends on multiple parameters such 146 

as feed strategies and oxygen supply.  147 

 148 

2 Materials and Methods 149 

2.1 High throughput bioprocess development facility 150 

Experiments were conducted on our high-throughput bioprocess development platform. The 151 

platform comprises two liquid handling stations (Freedom Evo 200, Tecan, Switzerland; 152 

Microlab Star, Hamilton, Switzerland), a mini bioreactor system (48 BioReactor, 2mag AG, 153 

Munich, Germany) and a Synergy MX microwell plate reader (BioTek Instruments GmbH, Bad 154 

Friedrichshall, Germany. The reader is referred to (Haby et al., 2019) for a detailed description 155 

of the facility and sampling procedure.  156 

 157 

2.2 Strain and cultivation conditions 158 

All experiments were carried out with E. coli BL21(DE3), carrying the plasmid pET28-NMBL-159 

eGFP-TEVrec-(V2Y)15-His, expressing a recombinant fusion protein of ELP and EGFP, under 160 

the isopropyl‐β‐D‐thiogalactopyranosid (IPTG) inducible lacUV5‐promoter. Detailed 161 

information about the plasmid can be found in Huber (Huber et al., 2014) and Schreiber 162 

(Schreiber et al., 2019). All chemicals were purchased from either Roth, VWR or Merck if not 163 

stated otherwise. For the first preculture, 10 mL LB medium, containing 16 g L-1 tryptone, 10 g 164 

L-1 yeast extract and 5 g L-1 NaCl, were directly inoculated with 100 µL cryostock and cultured 165 

in in a 125 mL Ultra Yield flask (Thomson Instrument Company, USA) sealed with an AirOtop 166 
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enhanced flask seal (Thomson Instrument Company, USA) for 5 h at 37°C and 200 rpm in an 167 

orbital shaker (Adolf Kühner AG, Birsfelden, Switzerland). The second pre-culture was 168 

performed with 25 mL EnPresso B (Enpresso GmbH, Berlin, Germany) medium (whose 169 

composition is the same as in the main medium used, besides the glucose polymer) with 9 U 170 

L-1 Reagent A to assure constant glucose release from the polymer in a 250 mL Ultra Yield 171 

flask under the same conditions as mentioned before. This allows for continuous glucose 172 

release over time and prevents overfeeding. After 12 h, while in exponential growth phase, 173 

appropriate volumes of the pre-culture were used to inoculate the MBRs to an OD600 of 0.25. 174 

The bioreactor medium consisted as derived from (Glazyrina et al., 2010) of mineral salt 175 

medium, containing (per L): 2 g Na2SO4, 2.468 g (NH4)2SO4, 0.5 g NH4Cl, 14.6 g K2HPO4, 3.6 176 

g NaH2PO4 × 2 H2O, 1 g (NH4)2-H-citrate and 1 mL antifoam (Antifoam 204, Sigma). Before 177 

inoculation, the medium was supplemented with 2 mL L−1 trace elements solution, 2 mL L−1 178 

MgSO4 solution (1.0 M) and kanamycin to a final concentration of 50 mg L−1. The trace element 179 

solution comprised (per L): 0.5 g CaCl2 × 2 H2O, 0.18 g ZnSO4 × 7 H2O, 0.1 g MnSO4 × H2O, 180 

20.1 g Na-EDTA, 16.7 g FeCl3 × 6 H2O, 0.16 g CuSO4 × 5 H2O, 0.18 g CoCl2 × 6 H2O, 0.132 g 181 

Na2SeO3 × 5 H2O, 0.12 g Na2MoO4 × 2 H2O, 0.725 g Ni(NO3)2 × 6 H2O. The composition is 182 

also derived from (Glazyrina et al., 2010). In all bioreactor cultivations, the initial glucose 183 

concentration for the batch phase was 3 g L−1. At the end of the batch phase, indicated by a 184 

sharp rise of DOT, the MHE/MPC controller was started to fit the model to recent available 185 

data and start calculating an optimal feeding regime. Feeding was performed with pulses every 186 

10 min. This feeding regime exposes the cells to a short time high glucose concentration, so 187 

that they consume a lot of oxygen, which in turn could easily lead to violation of the constraint. 188 

The pulse feed for the cultivations which were not controlled by MPC was calculated according 189 

to (1) and then integrated over the pulse duration to find the volume to be added within a single 190 

pulse. 191 

𝐹(𝑡) =

(
𝜇𝑠𝑒𝑡
𝑌𝑋 𝑆⁄

+ 𝑞𝑚) ∗ 𝑋 ∗ 𝑉

𝑆𝑖
∗ 𝑒𝑥𝑝(𝜇𝑠𝑒𝑡 ∗ 𝑡) 

(1) 
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Where 𝐹 describes the feed rate over the time 𝑡, 𝜇𝑠𝑒𝑡 the specific growth rate, 𝑌𝑋 𝑆⁄  the yield 192 

coefficient of glucose per biomass, 𝑞𝑚 the glucose consumption for maintenance, 𝑆𝑖 the 193 

glucose concentration in the feed and 𝑋 as well as 𝑉 respectively the biomass and volume at 194 

the end of the batch phase.   195 

 196 

2.3 Sampling / Analytics 197 

Throughout the cultivation, DOT and pH were measured online, using photometric sensors at 198 

the bottom of the MBRs. For the other state variables, samples were taken every 20 min from 199 

one of the replicate columns and directly inactivated with dried 2 M NaOH in 96 well plates and 200 

stored at 4°C until further analysis. After collection of 3 columns of samples, the plate was 201 

automatically transferred to the Hamilton robot for at-line analysis to measure OD600, GFP, 202 

glucose and acetate concentration. The reader is referred to (Haby et al., 2019) for a detailed 203 

description of the analysis process.  204 

 205 

2.4 MHE/MPC framework 206 

The strain was cultivated under 6 and 8 different conditions, respectively, in three replicates 207 

each consisting of a batch and an exponential fed-batch phase using a total of 𝑛𝑟 = 18 mini 208 

bioreactors. Each one of the bioreactors 𝑟 ∈ 𝑅 = {1,… , 𝑛𝑟} can be described by the nonlinear 209 

dynamics: 210 

𝑥̇𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃𝑟) 

𝑥𝑟(𝑡0) = 𝑥0,𝑟 

(2) 

The dynamic states are denoted by the vector of ODEs 𝑥̇𝑟 and include biomass, glucose, DOT, 211 

product, volume as well as acetate. The control inputs for each mini bioreactor are 𝑢𝑟 ∈ 𝑅
𝑛𝑢, 212 

while 𝜃𝑟 ∈ 𝑅
𝑛𝜃 denotes the unknown parameter vector of the reactors and cultivation conditions 213 

and 𝑥0,𝑟 is the initial condition for each reactor. The inputs are applied as bolus-type pulses. 214 

This leads to a highly discontinuous operation with jumps in the volume and concentrations. 215 

Thus, after each pulse, the concentrations are recalculated based on the previous 216 
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concentrations and the pulse volume. Time-series evolution of the denoted states can be 217 

described by a system of ordinary differential equations (ODE) and an algebraic equation, a 218 

differential-algebraic system of equations (DAE). The ODE system exhibits dynamics in very 219 

different timescales, especially regarding biomass growth and DOT, leading to a very stiff 220 

system. Since the dynamics of DOT are usually very fast compared to the other dynamics, 221 

they can be expressed in a reduced form as an algebraic equation and thereby reduce the 222 

stiffness of the system significantly (Duan et al., 2020). Since the actual DOT (𝐷𝑂𝑇𝑎) can be 223 

only measured with a first order delay, the measured DOT (𝐷𝑂𝑇𝑚) is also considered as a 224 

state variable, taking the response time of the sensor into account. The model has 6 differential 225 

states, 1 control input and 18 parameters in total. A complete overview about the equations of 226 

the macro kinetic growth model and the meaning of the respective parameters can be found 227 

in (Kim et al., 2021). 228 

 229 

Figure 1: Flowchart of the MHE/MPC framework. During the cultivation, samplings are taken in regular intervals, 230 
processed for at-line analysis and used for subsequent parameter estimation and MPC calculations. 231 

The framework used in the study comprised of two parts: a moving horizon estimator for 232 

estimating the parameters of the model based on the recent measurements and a model 233 

predictive control part, for calculating an optimal feeding profile for each condition. An overview 234 

about the workflow is depicted in Figure 1. Following this procedure, the parameter set is 235 

continuously updated and used for MPC calculations. Considering the 𝑁𝑀𝐻𝐸 last 236 



 

9 
 

measurements, the optimization problem for obtaining a new set of parameters (and in the first 237 

iteration also estimates for the initial conditions 𝑥0,𝑟) can be written as: 238 

𝑚𝑖𝑛
𝜃,𝑥0,𝑟

1

2
‖𝑥0,𝑟 − 𝑥0,𝑟,𝑜𝑙𝑑‖

𝑊𝑥

2

+
1

2
‖𝜃 − 𝜃𝑜𝑙𝑑‖𝑊𝑃

2

+ ∑
1

2
‖ℎ(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) − 𝑦𝑚𝑒𝑎𝑠(𝑡)‖𝑊𝑦

2

𝑁𝑀𝐻𝐸

𝑘=0

 

(3) 

s.t. 

𝑥̇𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) 

𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 

(4) 

The estimate for the states at the initial point of the window are then denoted by 𝑥0,𝑟, the final 239 

optimal parameter set by 𝜃 and the previous parameter estimate is given by 𝜃𝑜𝑙𝑑, while the 240 

final optimal parameter set is then called 𝜃. It further considers the change in the parameters 241 

and the difference in the predicted and measured values by the squared norm. Each norm is 242 

further weighted by the weighting factors 𝑊𝑥 ,𝑊𝑝,𝑊𝑦. The penalty on the parameter changes 243 

assures that the parameters do not drift too much and consider their previous values. 244 

The MPC calculates optimal inputs to maximize biomass at the end of the feeding phase, 245 

considering that the DOT should not drop below a predefined threshold of 30%. A detailed 246 

description of the MPC and its mathematical formulation can be found in (Kim et al., 2021). 247 

The general problem can be written as follows: 248 

𝑚𝑖𝑛
𝑢𝑟

−𝑊𝑀𝑋𝑟(𝑡 + 𝑁𝑀𝑃𝐶𝛥𝑡) −𝑊𝐿 ∑ 𝑋𝑟(𝑡 + 𝑘𝛥𝑡)

𝑁𝑀𝑃𝐶−1

𝑘=0

 (5) 

s.t. 

𝑥̇𝑟(𝑡) = 𝑓(𝑥𝑟(𝑡), 𝑢𝑟(𝑡), 𝜃) 

𝑥𝑟(𝑡0) = 𝑥0,𝑟 

𝐷𝑂𝑇𝑟(𝑡) ≥ 𝑧𝑙𝑏 , 𝑧𝑙𝑏 = 30%,𝑢𝑟(𝑡) ≥ 3 

(6) 

Where 𝑊𝑀 and 𝑊𝐿 denote the weightings for the terminal- and the stage-cost, respectively. 249 

𝑥0,𝑟 refers to the last point of the previous MHE timeframe, which is in turn the first element of 250 

the new MHE frame. In every cycle, the MHE fits the model to the recent measured values by 251 
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updating the parameter values. With the updated parameters, the MPC is started and 252 

calculates new inputs until the end of the feeding phase and beginning of induction. A 253 

schematic overview about the workflow is depicted in Figure 2.  254 

 255 
Figure 2: Overview about the MPC workflow. Glucose pulses (the inputs) are given every 10 min as indicated by 256 
the circles. The current control inputs for each interval are represented by the green solid lines. Every 10 min, the 257 
MHE updates the model parameter (purple lines) by fitting the model to the most recent data. The updated model 258 
is used for the MPC to calculate new feeding inputs until induction. The updated inputs are represented by the 259 
dashed green lines. 260 

 261 

The MHE/MPC framework was compared with a conventional screening approach, which 262 

tested the boundaries of the design space to identify optimal cultivation conditions as shown 263 

in Table 1 (A-D). The values for the growth rates and the respective induction strengths used 264 

for the conventional screening approach were identified by initial screening experiments which 265 

showed that these ranges might be promising boundaries of the design space and the possible 266 

optimum is somewhere in between (data not shown).  267 

Table 1: Overview about the experimental layout. Depicted are the 6 experimental layouts, stating if MPC was 268 
applied (+) or not (-) and in case the DOT constraint, the growth rate, and the induction strengths. The first 4 designs 269 
comprise the boundaries of the design space and are based on early screening results, while the latter 2 were 270 
controlled by MPC. 271 

Exp. setting 
MPC (DOT 
constraint) 

𝜇𝑠𝑒𝑡 IPTG [mM] 

A - 0.15 0.05 

B - 0.30 0.05 

C - 0.15 2.00 

D - 0.30 2.00 
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E + (30 %) Controlled by MPC 0.05 

F + (30 %) Controlled by MPC 2.00 

 272 

3 Results 273 

3.1 Coping with sensor delay 274 

The cultivation is fed via bolus feeding of glucose pulses. Even though continuous glucose 275 

release systems exist to be used on the robotic platform like EnBase (Krause et al., 2016), 276 

these systems would not reach high cell densities and cannot be controlled externally. These 277 

high concentrated glucose pulses lead to rapid oxygen uptake of the cells in the process and 278 

constraint violation, i.e., oxygen limitation, is easily possible. In such situations it is of great 279 

importance to consider the response time of the DOT sensor in the control of the process. This 280 

is especially the case when the inverse of the probe response time 𝜏 is significantly smaller 281 

than the inverse of the kLa (
1

𝜏
≪

1

𝑘𝐿𝑎
) (Tribe et al., 1995). This is a major problem in the control 282 

of a bioprocess, where avoidance of DOT limitation is a crucial process aspect. Moreover, the 283 

DOT drops after a pulse is given, i.e., a change is applied to the system which cannot be 284 

reverted. Since the MPC framework is able to predict the actual DOT considering the sensor 285 

delay, it was possible to find an optimal feeding regime which satisfies the constraint of the 286 

actual DOT not going below 30% or 20% respectively. Figure 3 shows the necessity to also 287 

simulate the actual DOT, since the measured DOT can be only measured with a delay and will 288 

never drop as much as the actual value. Therefore, constraint violation might be possible, even 289 

if the sensor shows that there is no oxygen limitation.  290 

 291 

Figure 3: DOT sensor delay. Depicted are the simulated measured DOT (DOTm, solid black line) with the first 292 
order delay as well as the simulated actual DOT (DOTa, dashed line) and the real DOT measurements (blue circles 293 
and line). As can be seen in the figure, the actual DOT is declining much faster than the measured DOT and could 294 
actually violate the constraint if only the measured DOT was considered for control. 295 

 296 
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3.2 Identifying optimal process conditions and avoiding adverse DOT limitations 297 

Finding optimal process conditions is a significant task in process development of a new 298 

biotechnological process. One of the critical parts is to avoid oxygen limitation in a process, 299 

since this would lead to a substantial change of the internal metabolism and lead to a significant 300 

stress response of the cells (Schweder et al., 1999). To reduce the number of experiments 301 

needed to find optimal process conditions while at the same time avoiding anoxic conditions, 302 

a HT station was combined with an innovative MPC approach. However, the MPC controller 303 

needed to cope with several restrictions in the optimization. Besides the constraint of 30 % 304 

oxygen in the reactors, the MPC had to consider that the LHS was not able to pipette less than 305 

3 µL accurately. Under these restrictions it was possible to find a trajectory which satisfies the 306 

constrains and leads to high final biomass at the end of the feeding phase. Figure 4 shows 307 

such a possible optimal feeding trajectory at one iteration step, indicating that the infeasible 308 

regions, that is, the regions that do not satisfy some of the constraints, are properly avoided. 309 

 310 
Figure 4: Optimal trajectory avoiding infeasible regions. Shown is a possible trajectory calculated by the MPC 311 
framework to obtain high biomass with a pulsed based feeding. Indicated are the infeasible regions as are low levels 312 
of oxygen (<20%) or low pipetting volumes (< 3 µL). 313 

The MPC framework had to calculate an optimal feeding profile based on the parameters 314 

generated from the data which are measured. A critical step in the framework and for the MPC 315 

to work is the estimation of reliable parameter values for the underlying model. If the values, 316 

e.g. for maximum substrate uptake capacity were wrong, the MPC would also suggest a wrong 317 

feeding regime, which in turn could even lead to constraint violation. The MHE updated the 318 

parameter values every 10 min via fitting the model to the most recent 4 h of the process. As 319 
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shown in Figure 5, there is a good agreement between the model predictions (black solid line) 320 

and the measurements from the replicate reactors. While biomass is slightly overestimated by 321 

the model, there is good agreement for substrate and the measured DOT signal. Acetic acid 322 

is underestimated by the model, especially in the beginning of the feeding phase, but the 323 

measured values are still in a low range and the prediction error is small. Underestimating the 324 

acetate could lead to wrong predictions of the substrate, since acetate is inhibiting biomass 325 

growth.  326 

 327 
Figure 5: Fitting the model to the data. Shown are the simulated data with the most recent parameters (black 328 
sold line) and measurements from 3 replicate reactors (colored dots, each color representing one of the triplicate 329 
bioreactors) at a process time of around 6 h.  330 
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 331 

The MPC controller was able to calculate appropriate inputs for the cultivation. The results of 332 

the experiments following the layout of Table 1 are depicted in Figure 6. After a batch phase 333 

of around 4 h, which was indicated by a sharp increase in the DOT signal, the feed was started. 334 

Four reactor rows (running in triplicate) were fed with a predefined feed at a μset of 0.30 h-1 or 335 

0.15 h-1, respectively. The other two reactors were fed with individual feeds which were 336 

calculated from the MPC controller and updated every 10 min. The reactors with the higher 337 

predefined feed rate reached higher biomass values at the end of the process compared to 338 

the reactors with the lower feed rate and therefore also higher values for the product 339 

concentration as indicated by higher fluorescence as depicted in Figure 6. However, especially 340 

after induction, the DOT signal falls below the preset threshold of 30 % in those reactors and 341 

cells entered overflow metabolism, which is also indicated by glucose accumulation and higher 342 

levels of acetate. Induction strength has only minor impact on the production, the cultivations 343 

with the higher IPTG concentration showed slightly higher GFP levels normalized to the 344 

biomass than the cultivations with lower IPTG. In the reactors which were under control of the 345 

MPC framework, the biomass reached comparable levels between the high and the low 346 

predefined feedrate, as also indicated by the feeding rate as shown in Figure 7. All reactors 347 

which were operated using MPC satisfied the constraint of having oxygen levels over 30 %. 348 

Glucose accumulation was only observed after induction in those reactors with the high 349 

induction level and acetate kept roughly constant during the course of the cultivation. GFP 350 

levels were also as high as in the cultivations with the predefined feed. As a result, the biomass 351 

obtained was similar to the high μset but without violating the DOT constrains. This is an 352 

increase of approx. 50 % compared to the non-controlled cultivations that stayed within bounds 353 

was achieved. 354 

  355 
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Figure 6: Results from the first cultivation. In the figures A-D are the cultivations depicted with low (0.15) and 356 
high (0.3) feeding rate as well with low (0.02 mM) and high (2 mM) induction with IPTG. The part figures E and 357 
show the comparison of the processes which are controlled by MPC, again with the low and high induction. Depicted 358 
are the measurements for DOT, cell dry weight (squares), glucose (squares), acetate (hexagons) and normalized 359 
GFP (hexagons). 360 
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 361 

Figure 7: Comparison of the different feeding profiles. Shown are the different pulse volumes at each feeding 362 
time during the exponential feeding phase.   363 

 364 

4 Discussion 365 

4.1 Successful automated optimal operation of the facility 366 

In this study, we extended our already existing platform for automated high-throughput 367 

bioprocess operation with an MHE/MPC framework. The implementation of MHE/MPC now 368 

enables automatic optimal operation of the high-throughput facility with only limited a priori 369 

knowledge of the process under investigation. Only with the parallel cultivation setup with 370 

automated at-line analysis of the most important state variables it is possible to generate 371 

enough data to allow a sufficient online model fitting to previously unknown strains or 372 

conditions. In contrast to the few previous examples of MPC in bioprocess engineering as 373 

mentioned in the introduction, exact parameter values do not need to be known before the 374 

experiment but are estimated by the MHE during the process. Hence, in a single run, it was 375 

possible to identify possibly optimal cultivation conditions, although some further tuning is 376 

necessary to find the optimal trajectory. Moreover, we demonstrate that the control needs to 377 

be tackled with an MPC to fulfill the DOT constraints despite the bolus feeding strategy. A 378 

classical PID controller would only react after a certain glucose pulse had already been added 379 

and a subsequent constraint violation had occurred.  380 

 381 
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4.2 MHE/MPC guides to optimal process conditions 382 

Operating a high-throughput MBR system is a challenging task and violation of several process 383 

constraints might easily happen (Hemmerich et al., 2018). This is especially true when 384 

screening a new strain for optimal process conditions, where the biological parameters are 385 

unknown before the experiment. The MPC controller successfully managed to maintain the 386 

process within the predefined bounds. The approach was compared to a classical approach 387 

with predefined feeding rates: Two different feed rates were applied to the process which are 388 

often applied in bioprocesses: 𝜇𝑠𝑒𝑡 = 0.15 h-1 or 𝜇𝑠𝑒𝑡 = 0.3 h-1, respectively. The lower feed rate 389 

did not operate the cultivation at its maximum capabilities. On the other hand, cultivating the 390 

cells with the higher feed-rate led to significant oxygen limitation as can be seen in Figure 6. 391 

An adaptive computation of the optimal profile was necessary to maximize biomass 392 

concentration without violating process constraints.  393 

Even though the feeding calculated with the MPC led to significantly better results than with 394 

the predefined feed, the optimal feeding profile was not achieved. This is mainly due to plant-395 

model mismatches and inaccuracies of the measurements, which have great influence on the 396 

simulation outcome (Anane, López C, et al., 2019). Due to the uncertainties of the parameters 397 

which are currently not considered in the MPC, the actual optimal feeding rate could have been 398 

higher. This problem could be tackled if for example robust MPC strategies would be applied, 399 

which was not of the scope of this work, but will be applied in later stages. 400 

 401 

4.3 Dealing with uncertainties 402 

Uncertainties in the model parameter estimates affect the optimization of the MPC. Using an 403 

approach which is less sensitive to constraint violation like Multi-Stage MPC could give better 404 

results but is also computational more expensive (Lucia et al., 2013). This method could be 405 

supported by using a subset selection method with sensitivity analysis or further data-driven 406 

approaches like PCA (Thombre et al., 2019). However, only the combination of the MPC 407 

framework with the high-throughput cultivation platform is able to generate enough data to 408 

obtain good model parameters and ensure an optimal control trajectory. Due to the model 409 
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inaccuracies, the optimal feeding trajectory could be even better, but our study shows that 410 

avoidance of oxygen limitation is possible while at the same time retaining a high growth rate. 411 

 412 

5 Conclusion and outlook 413 

Finding optimal experimental conditions in early bioprocess development is time consuming 414 

and laborious. Even though the combination of liquid handling stations and MBR have 415 

decreased the bottleneck in the screening phase, it is still not easy to find process conditions 416 

which yield high biomass without violating predefined constraints which might be adverse to 417 

the process under investigation. However, operating MBRs at their maximum capabilities while 418 

fulfilling the constraints is essential for a fast and robust bioprocess development framework. 419 

We have described how an MPC approach based on a macro-kinetic growth model can be 420 

successful to maintain DOT constraints while maximizing biomass production in the 421 

exponential growth phase. Hence, within a single parallel run it is possible to identify close to 422 

optimal process conditions. Using an adaptive approach like MHE can alleviate this issue and 423 

yield good parameters for the subsequent MPC. However, the current framework is limited by 424 

the uncertainties in the parameters. More robust implementations are suggested to deal with 425 

these uncertainties to ensure a sufficiently accurate parameter estimation.  426 

 427 
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