Literature cited
Bagchi, S., Namgail, T., & Ritchie, M. E. (2006). Small mammalian herbivores as mediators of plant community dynamics in the high-altitude arid rangelands of Trans-Himalaya. Biological Conservation ,127 (4), 438–442. https://doi.org/10.1016/j.biocon.2005.09.003
Ballová, Z., Pekárik, L., Píš, V., & Šibík, J. (2019). How much do ecosystem engineers contribute to landscape evolution? A case study on Tatra marmots. Catena , 182 . https://doi.org/10.1016/j.catena.2019.104121
Beca, G., Valentine, L. E., Galetti, M., & Hobbs, R. J. (2021). Ecosystem roles and conservation status of bioturbator mammals.Mammal Review , 1–16. https://doi.org/10.1111/mam.12269
Ben-David, M., Bowyer, R. T., Duffy, L. K., Roby, D. D., & Schell, D. M. (1998). Social behavior and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology ,79 (7), 2567. https://doi.org/10.2307/176846
Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation , 39 , 79–87. https://doi.org/10.1016/j.jag.2015.02.012
Blumstein, D. T. (1998). Quantifying predation risk for refuging animals: a case study with golden marmots. Ethology ,104 (6), 501–516. https://doi.org/10.1111/j.1439-0310.1998.tb00086.x
Blumstein, D. T., & Arnold, W. (1998). Ecology and social behavior of golden marmots (Marmota caudata aurea ). Journal of Mammalogy , 79 (3), 873. https://doi.org/10.2307/1383095
Blumstein, D. T., & Robertson, M. (1995). Summer diets of Tibetan red foxes in Khunjerab National Park, Pakistan. Zeitschrift Fur Saugetierkunde , 60 , 243–245.
Coggan, N. V., Hayward, M. W., & Gibb, H. (2018). A global database and “state of the field” review of research into ecosystem engineering by land animals. Journal of Animal Ecology , 87 (4), 974–994. https://doi.org/10.1111/1365-2656.12819
Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science , 199 (4335), 1302–1310. https://doi.org/10.1126/science.199.4335.1302
Crain, C. M., & Bertness, M. D. (2006). Ecosystem engineering across environmental gradients: Implications for conservation and management.BioScience , 56 (3), 211–218. https://doi.org/10.1641/0006-3568(2006)056[0211:EEAEGI]2.0.CO;2
Craine, J. M., & Jackson, R. D. (2010). Plant nitrogen and phosphorus limitation in 98 North American grassland soils. Plant and Soil ,334 (1–2), 73–84. https://doi.org/10.1007/s11104-009-0237-1
Darcy, J. L., Schmidt, S. K., Knelman, J. E., Cleveland, C. C., Castle, S. C., & Nemergut, D. R. (2018). Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat.Science Advances , 4 (5), 1–8. https://doi.org/10.1126/sciadv.aaq0942
Davidson, A. D., Detling, J. K., & Brown, J. H. (2012). Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Frontiers in Ecology and the Environment , 10 (9), 477–486. https://doi.org/10.1890/110054
Decker, O., Eldridge, D. J., & Gibb, H. (2019). Restoration potential of threatened ecosystem engineers increases with aridity: broad scale effects on soil nutrients and function. Ecography , 42 (8), 1370–1382. https://doi.org/10.1111/ecog.04259
Decker, O., Leonard, S., & Gibb, H. (2019). Rainfall-dependent impacts of threatened ecosystem engineers on organic matter cycling.Functional Ecology , 33 (11), 2254–2266. https://doi.org/10.1111/1365-2435.13437
Delibes-Mateos, M., Smith, A. T., Slobodchikoff, C. N., & Swenson, J. E. (2011). The paradox of keystone species persecuted as pests: A call for the conservation of abundant small mammals in their native range.Biological Conservation , 144 (5), 1335–1346. https://doi.org/10.1016/j.biocon.2011.02.012
Doi, H., Akamatsu, F., & González, A. L. (2017). Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. Royal Society Open Science ,4 (8). https://doi.org/10.1098/rsos.170633
Dotter, D. (2009). Kleinräumige Vegetationsstrukturen im Ostpamir Tadschikistans Der Einfluss anthropogener und naturlicher Storungen. PhD Thesis, Friedrich–Alexander University Erlangen–Nürnberg. [In German with English abstract]
Egli, M., Favilli, F., Krebs, R., Pichler, B., & Dahms, D. (2012). Soil organic carbon and nitrogen accumulation rates in cold and alpine environments over 1Ma. Geoderma , 183184 , 109–123. https://doi.org/10.1016/j.geoderma.2012.03.017
English, E. I., & Bowers, M. A. (1994). Vegetational gradients and proximity to woodchuck (Marmota monax ) burrows in an old field.Journal of Mammalogy , 75 (3), 775–780. https://doi.org/10.2307/1382530
Ewacha, M. V. A., Kaapehi, C., Waterman, J. M., & Roth, J. D. (2016). Cape ground squirrels as ecosystem engineers: modifying habitat for plants, small mammals and beetles in Namib Desert grasslands.African Journal of Ecology , 54 (1), 68–75. https://doi.org/10.1111/aje.12266
Fafard, P. M., Roth, J. D., & Markham, J. H. (2019). Nutrient deposition on Arctic fox dens creates atypical tundra plant assemblages at the edge of the Arctic. Journal of Vegetation Science ,31 (1), 173–179. https://doi.org/10.1111/jvs.12828
Fry, B. (2006). Stable Isotope Ecology. Springer New York. https://doi.org/10.1007/0-387-33745-8
García, L. V., Marañón, T., Ojeda, F., Clemente, L., & Redondo, R. (2002). Seagull influence on soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid Mediterranean islands. Oikos , 98 (1), 75–86. https://doi.org/10.1034/j.1600-0706.2002.980108.x
Gharajehdaghipour, T., Roth, J. D., Fafard, P. M., & Markham, J. H. (2016). Arctic foxes as ecosystem engineers: Increased soil nutrients lead to increased plant productivity on fox dens. Scientific Reports , 6 (September 2015), 7–9. https://doi.org/10.1038/srep24020
Gislason, S. R., Oelkers, E. H., Eiriksdottir, E. S., Kardjilov, M. I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P., & Oskarsson, N. (2009). Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters , 277 (1–2), 213–222. https://doi.org/10.1016/j.epsl.2008.10.018
Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation.Nature , 242 (5396), 344–347. https://doi.org/10.1038/242344a0
Guo, Z. G., Zhou, X. R., & Hou, Y. (2012). Effect of available burrow densities of plateau pika (Ochotona curzoniae ) on soil physicochemical property of the bare land and vegetation land in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica , 32 (2), 104–110. https://doi.org/10.1016/j.chnaes.2012.02.002
Guričeva, N. P. (1985). Die Beeinflussing der Steppenvegetation in östlichen Changai durch bodenbewohnende Nagetiere. Arch. Naturschutz u. Landschaftsforsch. , 25 (1), 47–56.
Harris, R. B., Wenying, W., Badinqiuying, Smith, A. T., & Bedunah, D. J. (2015). Herbivory and competition of Tibetan steppe vegetation in winter pasture: Effects of livestock exclosure and plateau pika reduction. PLOS ONE , 10 (7), e0132897. https://doi.org/10.1371/journal.pone.0132897
He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: a meta‐analysis. New Phytologist , 204 (4), 924–931. https://doi.org/10.1111/nph.12952
Hertz, E., Trudel, M., Cox, M. K., & Mazumder, A. (2015). Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: A meta-analysis. Ecology and Evolution , 5 (21), 4829–4839. https://doi.org/10.1002/ece3.1738
Hwang, Y. T., Millar, J. S., & Longstaffe, F. J. (2007). Do δ15N and δ13C values of feces reflect the isotopic composition of diets in small mammals?Canadian Journal of Zoology , 85 (3), 388–396. https://doi.org/10.1139/Z07-019
Jaramillo, V. J., & Detling, J. K. (1988). Grazing history, defoliation, and competition: Effects on shortgrass production and nitrogen accumulation. Ecology , 69 (5), 1599–1608.
Jumabay-Uulu, K., Wegge, P., Mishra, C., & Sharma, K. (2014). Large carnivores and low diversity of optimal prey: a comparison of the diets of snow leopards Panthera uncia and wolves Canis lupus in Sarychat-Ertash Reserve in Kyrgyzstan. Oryx , 48 (4), 529–535. https://doi.org/10.1017/S0030605313000306
Kabala, C., Chachulski, Ł., Gądek, B., Korabiewski, B., Mętrak, M., & Suska-Malawska, M. (2021). Soil development and spatial differentiation in a glacial river valley under cold and extremely arid climate of East Pamir Mountains. Science of the Total Environment ,758 (December). https://doi.org/10.1016/j.scitotenv.2020.144308
Karels, T. J., Koppel, L., & Hik, D. S. (2004). Fecal pellet counts as a technique for monitoring an alpine-dwelling social rodent, the hoary marmot (Marmota caligata ). Arctic, Antarctic, and Alpine Research , 36 (4), 490–494. https://doi.org/10.1657/1523-0430(2004)036[0490:FPCAAT]2.0.CO;2
Khatoon, R., Hussain, I., Anwar, M., & Nawaz, M. A. (2017). Diet selection of snow leopard (Panthera uncia ) in Chitral, Pakistan.Turkish Journal of Zoology , 41 (5), 914–923. https://doi.org/10.3906/zoo-1604-58
Koerselman, W., & Meuleman, A. F. M. (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology , 33 (6), 1441–1450.
Kohler, T., Giger, M., Hurni, H., Ott, C., Wiesmann, U., Wymann von Dach, S., & Maselli, D. (2010). Mountains and climate change: a global concern. Mountain Research and Development , 30 (1), 53–55. https://doi.org/10.1659/MRD-JOURNAL-D-09-00086.1
Körner, C. (2003). Alpine Plant Life. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-18970-8
Krystufek, B., & Vohralik, V. (2013). Taxonomic revision of the Palaearctic rodents (Rodentia). Part 2. Sciuridae: Urocitellus ,Marmota and Sciurotamias . Lynx , 44 , 27–138.
La, I. M. D. E., Armota, M. M., Sur, M., Diversité, L. A., Des, F., & Alpines, P. (2003). Impact of the alpine marmot (Marmota marmota ) on floristic diversity of the alpine stage in Northern Alps ( France ).International Network on Marmots , 2003 , 269–274. https://doi.org/10.13140/2.1.2932.3044
Laundre, J. W. (1993). Effects of small mammal burrows on water infiltration in a cool desert environment. Oecologia ,94 (1), 43–48. https://doi.org/10.1007/BF00317299
Lindtner, P., Ujházy, K., Svitok, M., & Kubovčík, V. (2018). The European ground squirrel increases diversity and structural complexity of grasslands in the Western Carpathians. Mammal Research ,63 (2), 223–229. https://doi.org/10.1007/s13364-017-0349-6
Lioubimtseva, E., & Henebry, G. M. (2009). Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations.Journal of Arid Environments , 73 (11), 963–977. https://doi.org/10.1016/j.jaridenv.2009.04.022
Louw, M. A., Haussmann, N. S., & le Roux, P. C. (2019). Testing for consistency in the impacts of a burrowing ecosystem engineer on soil and vegetation characteristics across biomes. Scientific Reports ,9 (1), 1–12. https://doi.org/10.1038/s41598-019-55917-x
Mallen-Cooper, M., Nakagawa, S., & Eldridge, D. J. (2019). Global meta-analysis of soil-disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Global Ecology and Biogeography , 28 (5), 661–679. https://doi.org/10.1111/geb.12877
Mętrak, M., Sulwiński, M., Chachulski, Ł., Wilk, M., & Suska-Malawska, M. (2015). Creeping environmental problems in the Pamir Mountains: Landscape conditions, climate change, wise use and threats. InClimate Change Impacts on High-Altitude Ecosystems (pp. 665–694). Springer International Publishing. https://doi.org/10.1007/978-3-319-12859-7_28
Mischke, S., Rajabov, I., Mustaeva, N., Zhang, C., Herzschuh, U., Boomer, I., Brown, E. T., Andersen, N., Myrbo, A., Ito, E., & Schudack, M. E. (2010). Modern hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan): A reconnaissance study.Palaeogeography, Palaeoclimatology, Palaeoecology ,289 (1–4), 10–24. https://doi.org/10.1016/j.palaeo.2010.02.004
Murdoch, J. D., Munkhzul, T., Buyandelger, S., Reading, R. P., & Sillero-Zubiri, C. (2009). The Endangered Siberian marmot Marmota sibirica as a keystone species? Observations and implications of burrow use by corsac foxes Vulpes corsac in Mongolia. Oryx ,43 (3), 431–434. https://doi.org/10.1017/S0030605309001100
Niu, Y., Yang, S., Zhu, H., Zhou, J., Chu, B., Ma, S., Hua, R., & Hua, L. (2020). Cyclic formation of zokor mounds promotes plant diversity and renews plant communities in alpine meadows on the Tibetan Plateau.Plant and Soil , 446 (1–2), 65–79. https://doi.org/10.1007/s11104-019-04302-8
Normatov, I., & Normatov, P. (2020). Climate change impact on hydrological characteristics and water availability of the Mountain Pamir Rivers. Proceedings of the International Association of Hydrological Sciences , 383 , 31–41. https://doi.org/10.5194/piahs-383-31-2020
Pang, X. P., & Guo, Z. G. (2017). Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China. Rangeland Journal , 39 (2), 133–144. https://doi.org/10.1071/RJ16093
Pang, X. P., Yu, C. Q., Zhang, J., Wang, Q., Guo, Z. G., & Tian, Y. (2020). Effect of disturbance by plateau pika on soil nitrogen stocks in alpine meadows. Geoderma , 372 (768), 114392. https://doi.org/10.1016/j.geoderma.2020.114392
Pike, D. A., & Mitchell, J. C. (2013). Burrow-dwelling ecosystem engineers provide thermal refugia throughout the landscape. Animal Conservation , 16 (6), 694–703. https://doi.org/10.1111/acv.12049
Platt, B. F., Kolb, D. J., Kunhardt, C. G., Milo, S. P., & New, L. G. (2016). Burrowing through the literature: The impact of soil-disturbing vertebrates on physical and chemical properties of soil. Soil Science , 181 (3–4), 175–191. https://doi.org/10.1097/SS.0000000000000150
Prugh, L. R., & Brashares, J. S. (2012). Partitioning the effects of an ecosystem engineer: Kangaroo rats control community structure via multiple pathways. Journal of Animal Ecology , 81 (3), 667–678. https://doi.org/10.1111/j.1365-2656.2011.01930.x
QGIS Development Team (2022). QGIS Geographic Information System. QGIS Association. http://www.qgis.org
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Romero, G. Q., Gonçalves-Souza, T., Vieira, C., & Koricheva, J. (2015). Ecosystem engineering effects on species diversity across ecosystems: A Meta-analysis. Biological Reviews , 90 (3), 877–890. https://doi.org/10.1111/brv.12138
Root-Bernstein, M., & Ebensperger, L. A. (2013). Meta-analysis of the effects of small mammal disturbances on species diversity, richness and plant biomass. Austral Ecology , 38 (3), 289–299. https://doi.org/10.1111/j.1442-9993.2012.02403.x
Sare, D. T. ., Millar, J. S., & Longstaffe, F. J. (2005). Tracing dietary protein in red-backed voles (Clethrionomys gapperi ) using stable isotopes of nitrogen and carbon. Canadian Journal of Zoology , 83 (5), 717–725. https://doi.org/10.1139/z05-064
Sasaki, T., Kakinuma, K., & Yoshihara, Y. (2013). Marmot disturbance drives trait variations among five dominant grasses in a Mongolian grassland. Rangeland Ecology and Management , 66 (4), 487–491. https://doi.org/10.2111/REM-D-12-00055.1
Semenov, Y., Ramousse, R., Le Berre, M., & Tutukarov, Y. (2001). Impact of the black-capped marmot (Marmota camtschatica bungei ) on floristic diversity of arctic tundra in Northern Siberia. Arctic, Antarctic, and Alpine Research , 33 (2), 204–210. https://doi.org/10.2307/1552221
Sharma, V. N., & Birla, M. C. (1975). Soil excavation by desert gerbilMeriones hurrianae (Jerdon) in the Shekhawati region of Rajasthan desert (India). Annals of Arid Zone , 14 , 268–273.
Smith, A. T., & Foggin, J. M. (1999). The plateau pika (Ochotona curzoniae ) is a keystone species for biodiversity on the Tibetan plateau. Animal Conservation , 2 (4), S1367943099000566. https://doi.org/10.1017/S1367943099000566
Sorokina, V. S., & Pont, A. C. (2011). Fanniidae and Muscidae (Insecta, Diptera) associated with burrows of the Altai Mountains Marmot (Marmota baibacina baibacina Kastschenko, 1899) in Siberia, with the description of new species. Zootaxa , 3118 , 31–44. https://doi.org/10.11646/zootaxa.3118.1.2
Swihart, R. K. (1991). Influence of Marmota monax on vegetation in hayfields. Journal of Mammalogy , 72 (4), 791–795.
Tang, Z., Zhang, Y., Cong, N., Wimberly, M., Wang, L., Huang, K., Li, J., Zu, J., Zhu, Y., & Chen, N. (2019). Spatial pattern of pika holes and their effects on vegetation coverage on the Tibetan Plateau: An analysis using unmanned aerial vehicle imagery. Ecological Indicators , 107 (January), 105551. https://doi.org/10.1016/j.ecolind.2019.105551
Team, Q. D. (2021). QGIS Geographi Information System . Open Source Geospatial Foundation Project.
Valkó, O., Tölgyesi, C., Kelemen, A., Bátori, Z., Gallé, R., Rádai, Z., Bragina, T. M., Bragin, Y. A., & Deák, B. (2020). Steppe Marmot (Marmota bobak ) as ecosystem engineer in arid steppes.Journal of Arid Environments , December 2019 , 104244. https://doi.org/10.1016/j.jaridenv.2020.104244
Van Staalduinen, M. A., & Werger, M. J. A. (2007). Marmot disturbances in a Mongolian steppe vegetation. Journal of Arid Environments ,69 (2), 344–351. https://doi.org/10.1016/j.jaridenv.2006.08.002
Vander Zanden, M. J., & Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography , 46 (8), 2061–2066.
Villarreal, D., Clark, K. L., Branch, L. C., Hierro, J. L., & Machicote, M. (2008). Alteration of ecosystem structure by a burrowing herbivore, the plains vizcacha (Lagostomus maximus ).Journal of Mammalogy , 89 (3), 700–711. https://doi.org/10.1644/07-mamm-a-025r1.1
Walker, T. W., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma , 15 (1), 1–19. https://doi.org/10.1016/0016-7061(76)90066-5
Wesche, K., Nadrowski, K., & Retzer, V. (2007). Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi ) on vegetation and site conditions in southern Mongolian steppes.Journal of Vegetation Science , 18 (5), 665–674. https://doi.org/10.1111/j.1654-1103.2007.tb02580.x
Whicker, A. D., & Detling, J. K. (1988). Ecological consequences of prairie dog disturbances. BioScience , 38 (11), 778–785.
Whitford, W. G., & Kay, F. R. (1999). Biopedturbation by mammals in deserts: a review. Journal of Arid Environments , 41 (2), 203–230. https://doi.org/10.1006/jare.1998.0482
Whitford, W. G., & Steinberger, Y. (2010). Pack rats (Neotomaspp.): Keystone ecological engineers? Journal of Arid Environments , 74 (11), 1450–1455. https://doi.org/10.1016/j.jaridenv.2010.05.025
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. https://ggplot2.tidyverse.org.
Yahdjian, L., Gherardi, L., & Sala, O. E. (2011). Nitrogen limitation in arid-subhumid ecosystems: A meta-analysis of fertilization studies.Journal of Arid Environments , 75 (8), 675–680. https://doi.org/10.1016/j.jaridenv.2011.03.003
Yan, Y., & Lu, X. (2020). Are N, P, and N:P stoichiometry limiting grazing exclusion effects on vegetation biomass and biodiversity in alpine grassland? Global Ecology and Conservation , 24 , e01315. https://doi.org/10.1016/j.gecco.2020.e01315
Yoshihara, Y., Ohkuro, T., Buuveibaatar, B., Undarmaa, J., & Takeuchi, K. (2010). Pollinators are attracted to mounds created by burrowing animals (marmots) in a Mongolian grassland. Journal of Arid Environments , 74 (1), 159–163. https://doi.org/10.1016/j.jaridenv.2009.06.002
Yu, C., Zhang, J., Pang, X. P., Wang, Q., Zhou, Y. P., & Guo, Z. G. (2017). Soil disturbance and disturbance intensity: Response of soil nutrient concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma , 307 (July), 98–106. https://doi.org/10.1016/j.geoderma.2017.07.041
Zhao, G., Shi, P., Wu, J., Xiong, D., Zong, N., & Zhang, X. (2017). Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Ecology and Evolution , 7 (18), 7201–7212. https://doi.org/10.1002/ece3.3283
Zhao, J., Tian, L., Wei, H., Zhang, T., Bai, Y., Li, R., & Tang, Y. (2021). Impact of plateau pika (Ochotona curzoniae ) burrowing-induced microtopography on ecosystem respiration of the alpine meadow and steppe on the Tibetan plateau. Plant and Soil ,458 (1–2), 217–230. https://doi.org/10.1007/s11104-019-04122-w
Table 1. Plant species collected for nutrient analysis, total number of samples, burrows at which the species were collected (number of samples in brackets) and the content of N and P and stable nitrogen isotope ratios (mean ± SD). Kruskall-Wallis test results are given for the comparisons between species. Letters next to values indicate plant species, that differed significantly based on pairwise comparison using the Dunn’s all-pairs test with Holm adjustment of p-values.