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Abstract 30 

The potential for forecasting the dynamics of ecological systems is currently unclear, with contrasting opinions 31 

regarding its feasibility due to ecological complexity. To investigate forecast skill within and across system 32 

complexity, we monitored a microbial system exposed to either constant or fluctuating temperatures in a five 33 

months long laboratory experiment. We tested how forecasting of species abundances depends on number and 34 

strength of interactions and on model size (number of predictors). We also tested how greater system complexity 35 

(i.e. the fluctuating temperatures) impacted these relations. We found that the more a species interacted, the 36 

weaker these interactions were and the better its abundance was predicted. Forecast skill increased with model size. 37 

Greater system complexity decreased forecast skill for three out of eight species. These insights into how abundance 38 

prediction depends on the embedding of the species within the system and on overall system complexity could 39 

improve species forecasting and monitoring. 40 

Introduction 41 

Over the last decades, it has become increasingly important to proficiently predict the consequences of climate 42 

change and biodiversity loss (e.g. Godfray and May, 2014; Dietze, 2017). Ecological forecasting, formally defined as 43 

the prediction of natural capital and ecosystems states and services, has advanced to be an imperative scientific and 44 

applied discipline (Clark et al., 2001; Houlahan et al., 2017; Dietze et al., 2018). Examples of its applications include 45 

predicting ecotoxicological effects on community responses (e.g. Clements and Rohr, 2009), forecasting the 46 

successes of species invasions (e.g. Romanuk et al., 2009) and predicting how communities respond to climate 47 

change (e.g. Hattab et al., 2016; Gaüzère et al., 2018; McCarthy et al., 2018). However, in the context of the 48 

complexity of real-world systems, skilful ecological forecasting remains a major challenge to the point that its 49 

feasibility has been questioned (Hayes and Barry, 2008; Beckage et al., 2011; Planque, 2016). 50 

Generally, an ecological network or system is more complex the more variables (e.g. species) are part of it (Mitchell, 51 

2009; Bradbury and Vehrencamp, 2014). The number of possible indirect interaction pathways between variables 52 
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rapidly increases with increasing network size (Borrett and Patten, 2003), and this is believed to hinder skilful 53 

predictions (Yodzis, 1988; Wootton, 2002). In fact, some studies have found that prediction skill deteriorated with 54 

increasing system complexity (e.g. Doak et al., 2008; Novak et al., 2011; Jonsson et al., 2018) and that species 55 

interactions can reduce community predictability (Thompson et al., 2021), resulting in view that ecology is 56 

unpredictable due to its complexity (Beckage et al., 2011). Yet, some recent results suggest the opposite: complexity 57 

can increase rather than decrease prediction skill (Iles and Novak, 2016; Mougi, 2017). For instance, it was found 58 

that the total abundance (the sum of all species abundances) was more predictable when the system consisted of 59 

more species (Dornelas et al., 2011), while another study showed that the prediction of interaction strengths 60 

improved with increasing food web size (Berlow et al., 2009). With evidence pointing in both directions, it remains 61 

unclear whether there is a general relation between system complexity and forecast skill or whether each result is 62 

specific to the system and to the quantity forecasted. 63 

Within a system of a given complexity, commonly only a few strong species interactions are present with most 64 

interactions being weak (e.g. Paine, 1992; Berlow et al., 2004; Wootton and Emmerson, 2005; Bascompte et al., 65 

2005), though still being important for system stability (e.g. McCann et al., 1998; O’Gorman and Emmerson, 2009; 66 

Kadoya et al., 2018). Moreover, there is some evidence indicating that generalists (i.e. species with many possible 67 

interacting partners) mostly have weak interactions, while specialist species (i.e. fewer possible interacting partners) 68 

show the stronger interactions (Wootton and Stouffer, 2016). As in the case of increasing system complexity, the 69 

more interactions a species has in a network the more indirect pathways exist that can influence its abundance. 70 

Hence if prediction skill generally decreases with complexity, we might hypothesize that prediction skill for a given 71 

species will also decrease the more interactions that species has within a network. However, we might alternatively 72 

hypothesize that the sum of many weak interactions will have lower variance through time, making the focal species 73 

easier to predict. 74 

Whether the prediction of species abundances depends on how many interactions the species have has remained 75 

untested so far, to our knowledge. In this study, we investigated this relation as its confirmation could help explain 76 

why some species can be forecast better than others (Harris, 1994). In this context, we also tested whether the 77 

forecast skill of species abundances depends on how much of the system is used in the forecast model. 78 
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Using a laboratory-based aquatic microbial community as our study system, we carried out a five months long 79 

experiment. The community consisted of algae, bacteria, ciliates, flagellates and rotifer species. These species are 80 

characterized by short generation times (e.g Altermatt et al., 2015), which renders them convenient study organisms 81 

for our experiment and questions. We exposed replicates of the community to either a constant temperature or a 82 

fluctuating temperature setting. The fluctuating temperatures added a layer of complexity to the system, by 83 

potentially affecting the species and their interactions in both direct and indirect ways. 84 

We forecasted species abundances and estimated the number and the strength of species interactions using the 85 

nonparametric time-series analysis framework empirical dynamic modelling (EDM). We build iterative forecasts that 86 

included increasingly more variables as predictors. We hypothesized that the more a species is isolated (i.e. fewer 87 

and weaker interactions), the better its abundance can be predicted as it is less dependent on the system state. We 88 

expected that the fluctuating temperatures would decrease forecast skill, unless they are a strong enough driver of 89 

system dynamics to outweigh the effect of increased system complexity. Further, we hypothesized that, in general, 90 

forecasting improves when more system variables are included in the prediction, but that fewer variables are 91 

necessary to achieve the highest or close to the highest forecast skill for more isolated species. Lastly, we also tested 92 

whether a variable that interacts strongly with a focal species is also a good predictor variable of the abundance of 93 

said species. 94 

Material and methods 95 

Experiment: design, setup and sampling 96 

We carried out a laboratory-based experiment to record the dynamics of microbial communities (i.e. microcosms) 97 

at constant (17.3 °C) and at fluctuating temperatures over a period of 154 days. We used three different fluctuating 98 

temperature time series. One was identical to temperature time series of a local small stream (Furtbach ZH, 99 

Switzerland) while we constructed the other two via spectral mimicry to resemble the recorded time series and its 100 

characteristics (equal mean temperature with similar variance and autocorrelation, see Cohen et al., 1999; Petchey, 101 
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2000). For further information regarding the temperature time series see Fig. S1 and Section S2.1 in the 102 

supplementary information. 103 

The tri-trophic microcosms were semi-naturalistic with respect to the potential co-occurances of the species and the 104 

functional groups present (Table S5, Fig. S2). The first trophic level (i.e., the bottom level) of the community consisted 105 

of three bacteria (Serratia fonticola, Brevibacillus brevis and Bacillus subtilis), an autotroph alga (Chlamydomonas 106 

reinhardtii), a mixotroph alga (Euglena gracilis) and a mixotroph ciliate (Euplotes daidaleos). E. gracilis and E. 107 

daidaleos are mixotrophic species and their trophic level is between the first and the second level (Ward and Follows, 108 

2016). The second level contained three bacterivore ciliate species (Colpidium striatum, Dexiostoma campylum and 109 

Spirostomum sp.), one omnivore ciliate species (Paramecium caudatum) and one omnivore rotifer species (Rotifer 110 

sp.), while one ciliate predator species (Didinium nasutum) made up the top level. Further, small non-identified 111 

flagellate species present in the stock cultures of the used species were also part of the microbial communities and 112 

we classified them into the three groups "small and white flagellates", "green and white flagellates" and "big and 113 

white flagellates". Prior to the experiment, we kept the ciliate and algae species in stock culture jars at 20 °C 114 

containing organic protozoan pellet medium (Carolina Biological Supply Company, Burlington NC; concentration of 115 

0.55	gL−1, Altermatt et al., 2015). For the heterorophic and mixotrophic species we bacterized the medium with the 116 

above listed bacteria species. We fed D. nasutum with P. caudatum ad libitum and freshly established all stock 117 

cultures two weeks prior to the experiment. 118 

We set up the microcosms in 2L	 screw-capped glass bottles filled with 250	ml	of the non-bacterized medium 119 

containing C. reinhardtii at 50	cells/ml, 750	ml	of the bacterized medium, a magnetic stirrer and 20 wheat seeds 120 

for slow and continuous nutrient release. We added the remaining species (except D. nasutum and 121 

Spirostomum) at a density of 0.1	cells/ml. As Spirostomum sp. only reached low abundances in the stock cultures 122 

we inoculated it at a density of 0.005	cells/ml. We added the predator D. nasutum at a density of 123 

0.02	 cells/ml	nine days after the start of the experiment. We reintroduced all species (except bacteria and C. 124 

reinhardtii) at very low densities (<0.01	cells/ml) once a week. This rate was high enough so that extinct species 125 

could potentially re-establish in the long-term and low enough to not influence population dynamics in the short-126 

term. 127 
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We kept the experimental bottles in temperature-controlled incubators with a 14/10h light-dark cycle. We had 18 128 

replicates distributed across six incubators. We set three of the incubators to the constant temperature and assigned 129 

one incubator to each of the three fluctuating temperature time series. Thus, nine replicates were in the constant 130 

and nine in the fluctuating temperature environment. 131 

We sampled the microcosms three times per week (Mondays, Wednesdays and Fridays) for 22 weeks (66 data points 132 

per microcosm). We measured dissolved oxygen concentration using a non-invasive oxygen recorder (Precision 133 

Sensing GmbH, Germany) with oxygen sensing optodes attached to the inside of the bottles. Before sampling, we 134 

homogenized the microcosms on a magnetic plate. We sampled 65	ml	from each replicate and added the same 135 

amount of bacterized medium to them afterwards. We measured the abundances of the grouped bacteria species 136 

and of the small, intermediate and large species by respectively using flow cytometry, FlowCAM imaging, video 137 

microscopy and manual counts (supplementary Table S5). Video microscopy involved the R-package bemovi 138 

(Pennekamp et al., 2015). For the video- and the FlowCAM data, we used automated species classification methods. 139 

For more details regarding measurements and classifications see supplementary Section S2.2. 140 

Processing of recorded time series 141 

Preceding analyses, we processed the recorded time as follows (based on e.g. Benincà et al., 2008): we first 142 

interpolated the time series using a cubic hermite spline to obtain equally distanced time points (time step of 2.3 143 

days). To flatten sharp changes in abundances we carried out a fourth-root power transformation. We then 144 

regressed the time series against time and henceforth used the resulting residuals, which are trendless, after we 145 

standardized them. 146 

Throughout the experiment, Spirostomum sp. remained practically extinct (Fig. S3M). As this species was effectively 147 

not part of the microbial community, we did not consider it in the subsequent analyses. Further, the predator D. 148 

nasutum did not show stable abundance. We used this species only as a predictor and interactor variable. 149 

Accordingly, the forecasted target species were C. reinhardtii, E. gracilis, E. daidaleos, 150 

C. striatum, D. campylum, P. caudatum, Rotifer sp. and the three bacteria species considered as one group (note that 151 

for simplicity henceforth we refer to the bacteria group as a species). 152 
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Forecasting of species abundances 153 

We forecasted the abundances of species using multiview empirical dynamic modeling (EDM, Ye et al., 2015; Ye and 154 

Sugihara, 2016), as species dynamics are often nonlinear (Blonder et al., 2017; Clark and Luis, 2020). In EDM, 155 

forecasting is based on the assumption that similar system states will lead to subsequent system states that are 156 

again similar. In this method, state variables are used as predictors in both a non-lagged and a lagged fashion, 157 

following Takens’ theorem that the time series of a variable contains information of interacting variables (Takens, 158 

1981). The lagged and non-lagged time series re-construct the attractor manifold and the number of time series 159 

used for this is the embedding dimension E. For more information regarding EDM, see Ye et al. (2015). 160 

Multiview EDM (Ye and Sugihara, 2016) is an extension of this method in which for a fixed embedding dimension all 161 

possible combinations (called “views”) of the predictor time series are constructed, which are then ranked by in-162 

sample forecast skill and the best k	views are used for an average out-of-sample forecast. We used an embedding 163 

dimension of E	=	3	and a maximum lag of l	=	3	(i.e. we lagged the predictors by zero days, 2.3 days and 4.7 days, 164 

with species generation time ranging from hours to days, see e.g. Leary and Petchey, 2009; Altermatt et al., 2015). 165 

For more information see supplementary Section S3. 166 

For each species, we repeatedly forecasted ist abundance using increasingly more predictors (i.e. we increased 167 

forecast model size). Excluding temperature, there were 13 possible non-lagged predictors for each target species 168 

(the eight target species, D. nasutum, the three flagellate groups and the dissolved oxygen). As the number of 169 

predictors, we used n	=	{1,2,3,4,6,8,10,13}. For each value of n	we calculated the number of possible non-lagged 170 

predictor combinations !!"# ". Out of these combinations, we randomly selected 200 if the number of combinations 171 

exceeded this value. We used the function Multiview() (R-package rEDM, Park et al., 2021) which adds the lags to 172 

the predictor variables. We used the first 44 time points of the time series as the in-sample data and the last 22 173 

points as the time points to be predicted (one-step ahead forecasts). For each predictor combination we evaluated 174 

up to 25 values for k	logarithmically spaced between 1 and 100. We previously determined the upper bound of k	=	175 

100	 to be high enough (Fig. S5). We then repeated all forecasts with the temperature added to the same 176 

combinations of predictors and finally also for when temperature was the sole predictor. In total, we fitted more 177 
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than 7.4 million multiview EDM models (Table S6). As a measure of forecast error, we calculated the RMSE of each 178 

fitted model, with lower RMSE indicating a better forecast skill. Because we standardized the time series, an RMSE 179 

below one indicates that the used model predicts the abundance of a species better than its mean abundance does. 180 

Estimation of number and strength of interactions 181 

For each target species T	we determined which and how many state variables influenced its abundance by employing 182 

convergent cross-mapping (CCM, see Sugihara et al., 2012), following the recommendations of Deyle et al. (2016, 183 

see supplementary Section S4). CCM is a test of causation that reveals whether there is a causal link between the 184 

test variables. We defined the state variables that showed a significant effect on a target species in a replicate as its 185 

interactors and their sum as the number of interactions NT. 186 

We then estimated the interaction strength time series of the species that were causally linked using Smap EDM 187 

(Deyle et al., 2016).The estimated pairwise species interaction strength time series are ST,I(t)	=	∂T(t	+	τ)/∂I(t), 188 

where t	is a time point and τ	=	2.3	is the smallest time step, ∂	indicates the partial derivative and T(t)	and I(t)	are 189 

the transformed abundance time series of the target and the interactor state variable, respectively. In S-map EDM, 190 

at each time point t	the community matrix (i.e. the matrix with elements (∂T/∂I)i,j, where i	and j	are the different 191 

target and interactor state variables) is calculated. This calculation is done by including information of when the 192 

system was in a similar state at other times through the use of locally weighted multivariate linear regressions. The 193 

parameter θ	determines how nearby system states are weighted in the regression. We used an intermediate value 194 

(θ	=	5) and carried out a sensitivity analysis for it (Section S6.1). The interactor variables were limited to those that 195 

influenced the target in a given replicate (based on the CCM analysis described above). We used the same eight 196 

target species as for the abundance forecasting. 197 

Forecast error analyses 198 

Relation between number of interactions, mean interaction strength and forecast error 199 

We calculated the mean interaction strength µT	of target species T	with the NT	state variables it interacted with as: 200 



9 

𝜇$ =
1
𝑁$

1
𝐿( ()𝑆$,&(𝑡))

'

()!&∈&!

. 201 

 (1) 202 

In equation 1, IT	is the set consisting of the interactors that affected the target T, ST,I	is the interaction strength time 203 

series between target T	and interactor I	∈	 IT, |ST,I(t)|	 is its absolute value at time point t, NT	 is the number of 204 

interactions and L	 is the number of time points in the time series. We then computed the sum of interaction 205 

strengths ΣT	by multiplying equation 1 with the number of interactions NT: ΣT	=	NTµT. 206 

We investigated the relations between the three explanatory variables NT, µT	and ΣT	and the forecast error (RMSE) 207 

of species abundances. The RMSE value was based on the forecast model in which all state variables were used as 208 

predictors. We fitted three separate linear mixed models with RMSE as the response variable and one of the three 209 

explanatory variables as the regressor. We fitted a fourth mixed model between µT	and NT. In all of the models we 210 

included the temperature regime (i.e. constant or fluctuating) and its interaction with the other explanatory variable. 211 

Forecast error as a function of number of predictors and number of interactors 212 

We investigated the relation between median forecast error and the number of predictors and the temperature 213 

regime (constant or fluctuating) with a linear mixed model conjointly for the eight different target species. We used 214 

the median RMSE as the response variable, while the log10-transformed number of used predictors, the temperature 215 

regime, a binary variable indicating whether temperature was used as a predictor and the target species were the 216 

explanatory variables, alongside their pairwise interactions. We included bottle ID nested in target species as a 217 

random intercept. 218 

Using the same settings as before, we then forecasted species abundances again using as predictors only variables 219 

that influenced the target species (based on the CCM analysis). Among all forecast models, we selected the ones 220 

that predicted the target species the best. For this, from the models that yielded an RMSE within 1% of the lowest 221 

achieved RMSE (for a given species and replicate) we selected the models with the least predictor variables (i.e. the 222 

smallest models). We then used the number of predictors in the best forecast model as the response variable in a 223 
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mixed model that included the number of interactions, the temperature regime and their interaction as explanatory 224 

variables. 225 

Interactor strength versus predictor importance 226 

We investigated whether stronger interactors are also better predictors. In each replicate we calculated the mean 227 

interaction strength of each evaluated target-interactor species pair as the mean of the absolute values of their 228 

interaction strength time series. We log10-transformed this variable and used it in a mixed model in a three-way 229 

interaction with the temperature regime and the target species. The response variable was the RMSE of the forecast 230 

model in which the interacting species was the only predictor. 231 

We fitted all linear mixed models using the function lmer (R-package lme4, Bates et al., 2015). We included bottle ID 232 

as a random intercept in all models, if not specified otherwise. 233 

Results 234 

Relation between number of interactions, mean interaction strength and forecast error 235 

Both the number of interactions and the mean interaction of a target species had a significant effect on the forecast 236 

error of species abundances (Fig. 1, Table S1). Forecast error decreased (i.e., forecast skill increased) the more 237 

interactions a species had (Fig. 1A). Quantitatively, with every unit increase in number of interactions the forecast 238 

error decreased by 5.2% (constant temperature) and 3.9% (fluctuating temperature) with respect to its biggest value 239 

(t-value=-6.04, df=140, p-value<0.001). Meanwhile, the stronger a species interacted on average, the worse it was 240 

predicted (Fig. 1B): with respect to its biggest value the forecast error increased by 6.5% (constant) and 4.8% 241 

(fluctuating) for every 0.1 increase in mean interaction strength (t-value=6.45, df=127, p-value<0.001). The number 242 

of interactions and the mean interaction strength of a species were negatively correlated, with the mean interaction 243 

strength decreasing by 0.053 (constant) and 0.055 (fluctuating) for every unit increase in number of interactions (t-244 

value=-9.66, df=140, p-value<0.001, Fig. 1C), indicating that the more interactions a species had the weaker these 245 

were. This resulted in the sum of interaction strength (the product of these two quantities) to be unrelated with 246 
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forecast error (t-value=1.40, df=140, p-value=0.163, Fig. 1D). Neither the temperature to which the microcosms 247 

were exposed (constant or fluctuating) nor its interaction with the other considered explanatory variables had 248 

significant effects on any of these results (Table S1). Each target species had a comparable number of interactions 249 

across replicates (Fig. S8). 250 

The described patterns persisted in a sensitivity analysis for the parameter θ	(Fig. S10) and across several robustness 251 

analyses reported in detail in the supplementary Section S6 (e.g. using a different measure of forecast proficiency 252 

and estimating interactions strengths with a multivariate auto-regressive system state model, see Holmes et al., 253 

2012, and Fig. S15). 254 

Forecast error as a function of number of predictors and temperature 255 

In general, as would be expected, median forecast error of species abundances decreased the more state variables 256 

were used as predictors (F-value=1847.81, p-value<0.001, Fig. 2, Table S2): the respective slopes ranged from -0.579 257 

to -0.055 across target species (F-value=175.86, p-value<0.001), with 0.022 subtracted to theses slopes in the case 258 

of fluctuating temperatures (F-value=5.76, p-value=0.016). Overall, fluctuating temperatures increased forecast 259 

errors (F-value=25.09, p-value<0.001), but this was not the case for the forecasting of all target species as the 260 

difference in forecast error ranged from -0.015 to 0.392 across them (F-value=4.79, p-value<0.001). Specifically, the 261 

fluctuating temperatures increased the forecasting error of C. reinhardtii, and there was moderate evidence for the 262 

same being the case for the species Rotifer sp. and P. caudatum (respective differences in forecast errors of 0.392, 263 

0.215 and 0.202, see Fig. 2 and Table S2). Further, the inclusion of temperature as a predictor decreased the forecast 264 

error (F-value=26.62, p-value<0.001), with the change ranging from -0.079 to -0.005 across targets (F-value=7.53, p-265 

value<0.001, with no significant difference between the two temperature regimes (F-value=0.31, p-value=0.580). 266 

The value of using temperature as a predictor decreased the more other predictors were used in the forecasting, 267 

with temperature reducing forecast errors by 0.048 less for every ten predictors added to the model (F-value=27.53, 268 

p-value<0.001). 269 
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The number of predictors used in the best forecast model of the abundance of a species was independent of the 270 

number of interactions of said species (t-value=0.47, df=130, p-value=0.637, Fig. 3A, Table S3) regardless of the 271 

temperature regime (t-value=-0.26, df=137, p-value=0.793). Across replicates, when the temperature was constant 272 

38.9% of the best models had three predictors, 27.8% had two predictors and 22.2% had four predictors, and 273 

similarly when the temperature varied in most cases the best models had three (43.1%), two (30.6%) and four 274 

(15.3%) predictors (Fig. 3B). The highest forecast skill (smallest RMSE values) as a function of number of predictors 275 

confirmed this result (Fig. S6). 276 

Interactor strength versus predictor importance 277 

Overall, we found no relation between the interaction strength of a state variable with a target species and the 278 

forecast error of the abundance of the target species with the state variable as the sole predictor (F-value=2.30, p-279 

value=0.129, Fig. 4, Table S4), regardless of temperature regime (F-value=0.05, pvalue=0.822). The estimated slopes 280 

varied across target species from -0.523 to 0.165 (F-value=7.42, pvalue<0.001), but only for C. reinhardtii and E. 281 

gracilis there was evidence that the stronger interactors predicted these target species with smaller forecast errors. 282 

For C. reinhardtii the slopes were -0.315 and -0.336 and for E. gracilis they were -0.284 and -0.523, respectively in 283 

the constant and in the fluctuating temperature setting (see Figs. 4B,E and Table S4). 284 

Discussion 285 

We found that the forecast skill of the abundance of a species increases the more interactions the species has within 286 

the system (e.g. with other species) but also that it increases the weaker these interactions are on average. We 287 

found that these two measures — the number of interactions and their mean strength — are negatively correlated 288 

resulting in the abundance of species with many but on average weak interactions to be predicted the most skilfully. 289 

While the fluctuating temperatures did not influence these findings, they lowered the median skill of forecasting the 290 

abundances of three out of eight target species. 291 
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Previous studies reported contrasting results as in some cases predictions improved with increasing system 292 

complexity (Berlow et al., 2009; Dornelas et al., 2011; Iles and Novak, 2016; Mougi, 2017), while in others the 293 

opposite was the case (e.g. Doak et al., 2008; Novak et al., 2011; Jonsson et al., 2018). The latter led to the statement 294 

that ecological forecasting is limited by the low intrinsic predictability of real-world systems due to their great 295 

complexity (Beckage et al., 2011). In our study, the addition of complexity (i.e. the fluctuating temperature) to the 296 

system lowered forecast skill for some but not all species. While this result is evidence for a negative relation 297 

between system complexity and forecast skill, it also indicates that this relation can be species-specific. Thus, an 298 

universal association between increasing system complexity and the predictability of the abundance of its 299 

components is less likely to exist. 300 

Contrasting this, the more connected a species was in the system, the better it was forecasted. The negative 301 

correlation between the number of interactions and the mean interaction strength could explain this as it might 302 

indicate that species with many but weak interactions were less dependent on the state of individual system 303 

components and more dependent on the state of the whole system. Regardless, this result provides a first insight 304 

into why certain aspects of ecological systems are more predictable than others (e.g. some species abundances more 305 

than others; Harris, 1994). It suggests that species with few, strong interactions should be sampled more frequently 306 

than those with many weak interactions to achieve a comparable forecast skill. Thus, it has the potential of improving 307 

the monitoring of species in real-world ecosystem, which can be a costly endeavor (e.g. Manley et al., 2004; Jones, 308 

2011). 309 

Yet, it remains unclear why a species with few strong interactions is not predicted more skilfully than a species with 310 

many weaker interactions. However, this result is corroborated by the finding that interaction strength is not a good 311 

indicator of how well an interacting variable predicts the abundance of the target species. Knowledge about good 312 

predictors of species abundances could help our understanding of ecological forecasting and our skill in carrying it 313 

out (Petchey et al., 2015). Based on these results it is likely that interaction strength can be excluded as selection 314 

criteria for good predictors of species abundances. 315 
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In this context, we found that, as expected, median forecast skill increased the more system variables we included 316 

as predictors in the forecast models. However, in most cases we achieved the best forecast skill already with few 317 

predictors included (i.e. between two and four predictors in approximately 90% of forecast models), regardless of 318 

how many interactions the forecast species had. This suggests that if it is known a priori which system components 319 

are good predictors of the abundance of a specific species, then data collection can potentially be streamlined by 320 

focusing on these variables rather than on the whole system. 321 

In our experiment we compared fluctuating and constant temperatures as the former are more truthful to natural 322 

conditions. The lower predictability of the abundance of some species in the fluctuating temperature setting when 323 

compared to the constant temperature setting suggests that prediction skill might be overestimated in experiments 324 

in which temperatures are constant. In fact, in laboratory-based or simulated time series experiments the 325 

temperature is usually kept at one or more constant levels (e.g. in Yeo et al., 2003; Ferguson and Ponciano, 2014; 326 

Daugaard et al., 2019) and only rarely fluctuating temperatures are used (e.g. Descamps-Julien and Gonzalez, 2005; 327 

Jiang and Morin, 2007). Given that temperature is a strong driver of species metabolic rates (Brown et al., 2004) and 328 

thus also of their dynamics (e.g. Lee et al., 2007; Bernhardt et al., 2018), fluctuating temperatures should more 329 

frequently be considered to better reconcile results from laboratory or simulation experiments with real-world 330 

insights. 331 

The distribution of interaction strengths in a system is known to be right-skewed, with the bulk of the interactions 332 

being weak and only comparably few interactions being strong (e.g. Paine, 1992; Wootton, 1997; Wootton and 333 

Emmerson, 2005). This was also the case in our study (supplementary Fig. S9), while the number of interactions 334 

remained comparable within species across replicates (supplementary Fig. S8). Moreover, our finding that the 335 

number of interactions and the average interaction strength are strongly negatively correlated represents novel 336 

empirical evidence of the theoretical finding that generalists have predominately weak interactions while specialist 337 

are responsible for the right-skew of the interaction strength distribution (Wootton and Stouffer, 2016). Given that 338 

weak interactions have been identified as systemstabilizing (e.g. McCann and Hastings, 1997; Neutel et al., 2002; 339 

Otto et al., 2007), our results support previous obeservations stating that generalist species have a stabilizing 340 



15 

function due to the weak interactions they engage in (e.g. Mougi and Nishimura, 2007; Chakraborty, 2015; Brechtel 341 

et al., 2019, note, however, that we did not carry out a stability analysis of the system in this study). 342 

Several robustness analyses confirm that the results are not sensitive to the specifications of the experimentation 343 

and analyses. Noticeably, the analyses of the potential influence of the different measurement methods 344 

(videography, manual count, flowCam, and flow cytometry) on the results revealed that the main results most often 345 

still occurred within measurement methods (Section S6.2.7). However, the 95% confidence intervals often 346 

overlapped zero due to small sample sizes. The analyses also showed that any effect of measurement method was 347 

not due to anything as simple as differences in measurement error across methods (Section S6.2.6). Since 348 

measurement method is confounded with species identity, we cannot tease apart their possible influences on the 349 

main results, and therefore cannot completely rule out that measurement method has, for some reason, some 350 

power in explaining the main results reported. 351 

In conclusion, we provide novel insights into why the abundance of some species are better predictable than others 352 

in the same system. The dependency of forecast skill on the number and the strength of species interactions not 353 

only improves our knowledge of ecological forecasting. It has also the potential of improving the resource allocation 354 

for the sampling and monitoring of species, as comparable forecast skill across species likely requires varying 355 

amounts of data per predicted species based on how much and how strongly this species interacts. We also shed 356 

further light on the relationship between elements of system complexity and forecast skill, showing that the 357 

relationship can be both species-specific and of different sign within and across systems. Thus, forecasting skill may 358 

deteriorate with increasing complexity, but this cannot be taken for granted and can depend on whether one is 359 

comparing across or within systems. 360 
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