References
[1] C. Kaspar, B. J. Ravoo, W. G. van der Wiel, S. V. Wegner and W.
H. P. Pernice, The rise of intelligent matter. Nature, vol. 594,
pp. 345-355, 2021.
[2] M. Medina-Sánchez, V. Magdanz, M. Guix, V. M. Fomin and O. G.
Schmidt, Swimming microrobots: Soft, reconfigurable, and smart.Adv. Funct. Mater., vol. 28, article 1707228, 2018.
[3] B. Wang, K. F. Chan, K. Yuan, Q. Wang, X. Xia, L. Yang, H. Ko,
Y. Wang, J. J. Y. Sung, P. W. Y. Chiu and L. Zhang, Endoscopy-assisted
magnetic navigation of biohybrid soft microrobots with rapid endoluminal
delivery and imaging. Sci. Robot., vol. 6, article eabd2813,
2021.
[4] Y. Yan, Z. Hu, Z. Yang, W. Yuan, C. Song, J. Pan and Y. Shen,
Soft magnetic skin for super-resolution tactile sensing with force
self-decoupling. Sci. Robot., vol. 6, article eabc8801, 2021.
[5] X. Yang, W. Shang, H. Lu, Y. Liu, L. Yang, R. Tan, X. Wu and Y.
Shen, An agglutinate magnetic spray transforms inanimate objects into
millirobots for biomedical applications. Sci. Robot., vol. 5,
article eabc8191, 2020.
[6] X. Hu, I. C. Yasa, Z. Ren, S. R. Goudu, H. Ceylan, W. Hu and M.
Sitti, Magnetic soft micromachines made of linked microactuator
networks. Sci. Adv., vol. 7, article eabe8436, 2021.
[7] M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim and E.
Diller, Biomedical Applications of Untethered Mobile Milli/Microrobots.Pro. IEEE, vol. 103, pp. 205-224, 2015.
[8] B. Shih, D. Shah, J. Li, T. G. Thuruthel, Y.-L. Park, F. Iida,
Z. Bao, R. Kramer-Bottiglio, M. T. Tolley, Electronic skins and machine
learning for intelligent soft robots. Sci. Robot., vol. 5,
article aaz9239, 2020.
[9] F. Ji, B. Wang and L. Zhang, Light-Triggered Catalytic
Performance Enhancement Using Magnetic Nanomotor Ensembles.Research, vol. 2020, article 6380794, 2020.
[10] Q. Wang, K. Chan, K. Schweizer, X. Du, D. Jin, S. C. H. Yu, B.
J. Nelson and L. Zhang, Ultrasound Doppler-guided real-time navigation
of a magnetic microswarm for active endovascular delivery. Sci.
Adv., vol. 7, article eabe5914, 2021.
[11] J. F. Boudet, J. Lintuvuori, C. Lacouture, T. Barois, A.
Deblais, K. Xie, S. Cassagnere, B. Tregon, D. B. Brückner, J. C. Baret
and H. Kellay, From collections of independent, mindless robots to
flexible, mobile, and directional superstructures. Sci. Robot.,
vol. 6, article eabd0272, 2021.
[12] C. Xu, Z. Yang, G. Z. Lum, Small-Scale Magnetic Actuators with
Optimal Six Degrees-of-Freedom. Adv. Mater., vol. 33, article
2100170, 2021.
[13] D. Rus and M. T. Tolley, Design, fabrication and control of
soft robots. Nature, vol. 521, pp. 461-475, 2015.
[14] A. M. Petersen, W. Chin, K. L. Feilich, G. Jung, J. L. Quist,
J. Wang and D. J. Ellerby, Leeches run cold, then hot. Biol.
Lett., vol. 7, pp. 941-943, 2011.
[15] L. Zheng, S. Handschuh-Wang, Z. Ye and B. Wang, Liquid metal
droplets enabled soft robots. Appl. Mater. Today, vol. 27,
article 101423, 2022.
[16] S. M. Mirvakili, D. Sim, I. W. Hunter and R. Langer, Actuation
of untethered pneumatic artificial muscles and soft robots using
magnetically induced liquid-to-gas phase transitions. Sci.
Robot., vol. 5, article eaaz4239, 2020.
[17] H. Wang, Y. Yao, X. Wang, L. Sheng, X. Yang, Y. Cui, P. Zhang,
W. Rao, R. Guo, S. Liang, W. Wu, J. Liu and Z. He, Large-Magnitude
Transformable Liquid-Metal Composites. ACS Omega, vol. 4, pp.
2311–2319, 2019.
[18] B. Wang, K. Kostarelos, B. J. Nelson and L. Zhang, Trends in
Micro-/Nanorobotics: Materials Development, Actuation, Localization, and
System Integration for Biomedical Applications. Adv. Mater., vol.
33, article 2002047, 2021.
[19] L. Zhu, B. Wang, S. Handschuh-Wang and X. Zhou, Liquid
Metal–Based Soft Microfluidics. Small, vol. 16, article 1903841,
2019.
[20] A. Li, H. Li, Z. Li, Z. Zhao, K. Li, M. Li and Y. Song,
Programmable droplet manipulation by a magnetic-actuated robot.Sci. Adv., vol. 6, article eaay5808, 2020.
[21] Y. Si, J. Hu and Z. Dong, Bioinspired magnetically driven
liquid manipulation as microrobot. Cell Rep. Phys. Sci., vol. 2,
article 100439, 2021.
[22] B. Wang, K. F. Chan, F. Ji, Q. Wang, P. W. Y. Chiu, Z. Guo and
L. Zhang, On-Demand Coalescence and Splitting of Liquid Marbles and
Their Bioapplications. Adv. Sci., vol. 6, article 1802033, 2019.
[23] D. Sun, D. Zhou, Y. Gao, H. Yue, W. Wang, X. Ma and L. Li,
Phototaxis Motion Behavior of a Self-propelled Submarine-like Water
Droplet Robot in Oil Solvent. ChemNanoMat, vol. 6, pp. 1611-1616,
2020.
[24] X. Fan, X. Dong, A. C. Karacakol, H. Xie and M. Sitti,
Reconfigurable multifunctional ferrofluid droplet robots. Proc.
Natl. Acad. Sci. U. S. A., vol. 117, pp. 27916-27926, 2020.
[25] D. Chen, Z. Yang, Y. Ji, Y. Dai, L. Feng and F. Arai,
Deformable ferrofluid-based millirobot with high motion accuracy and
high output force. Appl. Phys. Lett., vol. 118, article 134101,
2021.
[26] Q. Wang, L. Yang, B. Wang, E. Yu, J. Yu and L. Zhang,
Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic
Self-Assembly. ACS Appl. Mater. Interfaces, vol. 11, pp.
1630-1637, 2019.
[27] J. Zhang, Y. Yao, L. Sheng and J. Liu, Self-Fueled Biomimetic
Liquid Metal Mollusk. Adv. Mater., vol. 27, pp. 2648-2655, 2015.
[28] F. Li, J. Shu, L. Zhang, N. Yang, J. Xie, X. Li, L. Cheng, S.
Kuang, S. Tang, S. Zhang, W. Li, L. Sun and D. Sun, Liquid metal droplet
robot. Appl. Mater. Today, vol. 19, article 100597, 2020.
[29] Y. Wang, W. Duan, C. Zhou, Q. Liu, J. Gu, H. Ye, M. Li, W. Wang
and X. Ma, Phoretic Liquid Metal Micro/Nano-Motors as Intelligent Filler
for Targeted Micro-Welding. Adv. Mater., vol. 31, article
1905067, 2019.
[30] J. Wu, S. Tang, T. Fang, W. Li, X. Li and S. Zhang, A Wheeled
Robot Driven by a Liquid-Metal Droplet. Adv. Mater., vol. 30,
article 1805039, 2018.
[31] E. Wang, J. Shu, H. Jin, Z. Tao, J. Xie, S. Tang, X. Li, W. Li,
M. Dickey and S. Zhang, Liquid metal motor. iScience, vol. 24,
article 101911, 2021.
[32] D. Wang, C. Gao, W. Wang, M. Sun, B. Guo, H. Xie and Q.
He, Shape-Transformable, Fusible Rodlike Swimming Liquid Metal
Nanomachine. ACS Nano, vol. 12, pp. 10212, 2018.
[33] Z. Li, H. Zhang, D. Wang, C. Gao, M. Sun, Z. Wu and Q.
He. Reconfigurable Assembly of Active Liquid Metal Colloidal
Cluster. Angew. Chem. Int. Ed., vol. 59, pp. 19884-19888, 2020.
[34] Z. Li, H. Zhang, Z. Wu and Q. He, Acoustically-Propelled
Rodlike Liquid Metal Colloidal Motors. ChemNanoMat, vol. 7, pp.
1-6, 2021.
[35] X. Li, S. Li, Y. Lu, M. Liu, F. Li, H. Yang, S. Tang, S. Zhang,
W. Li and L. Sun, Programmable Digital Liquid Metal Droplets in
Reconfigurable Magnetic Fields. ACS Appl. Mater. Interfaces, vol.
12, pp. 37670–37679, 2020.
[36] Z. Lin, C. Gao, D. Wang and Q. He, Bubble-Propelled Janus
Gallium/Zinc Micromotors for the Active Treatment of Bacterial
Infections. Angew. Chem. Int. Ed., vol. 60, pp. 8750-8754, 2021.
[37] S. Y. Tang, K. Khoshmanesh, V. Sivan, P. Petersen, A. P.
O’Mullane, D. Abbott, A. Mitchell and K. Kalantar-zadeh, Liquid metal
enabled pump. Proc. Natl. Acad. Sci. U. S. A., vol. 111, pp.
3304-3309, 2014.
[38] J. V. Timonen, M. Latikka, L. Leibler, R. H. Ras and O. Ikkala,
Switchable static and dynamic self-assembly of magnetic droplets on
superhydrophobic surfaces. Science, vol. 341, pp. 253–257, 2013.
[39] X. Liu, N. Kent, A. Ceballos, R. Streubel, Y. Jiang, Y. Chai,
P. Y. Kim, J. Forth, F. Hellman, S. Shi, D. Wang, B. A. Helms, P. D.
Ashby, P. Fischer and T. P. Russell, Reconfigurable ferromagnetic liquid
droplets. Science, vol. 365, pp. 264–267, 2019.
[40] A. M. Mullis, K. I. Dragnevski and R. F. Cochrane, The
solidification of undercooled melts via twinned dendritic growth.Mater. Sci. Eng. A, vol. 375–377, pp. 547-551, 2004.
[41] S. Handschuh-Wang, L. Zhu, T. Gan, T. Wang, B. Wang and X.
Zhou, Interfacing of surfaces with gallium-based liquid metals –
approaches for mitigation and augmentation of liquid metal adhesion on
surfaces. Appl. Mater. Today, vol. 21, article 100868, 2020.
[42] M. D. Dickey, Stretchable and Soft Electronics using Liquid
Metals. Adv. Mater., vol. 29, article 1606425, 2017.
[43] K. Kim, Y.-G. Park, B. G. Hyun, M. Choi and J.-U. Park, Recent
Advances in Transparent Electronics with Stretchable Forms. Adv.
Mater., vol. 31, article 1804690, 2019.
[44] T. Daeneke, K. Khoshmanesh, N. Mahmood, I. A. de Castro, D.
Esrafilzadeh, S. J. Barrow, M. D. Dickey and K. Kalantar-zadeh, Liquid
metals: fundamentals and applications in chemistry. Chem. Soc.
Rev., vol. 47, pp. 4073-4111, 2018.
[45] K. Khoshmanesh, S.-Y. Tang, J. Y. Zhu, S. Schaefer, A.
Mitchell, K. Kalantar-Zadeh and M. D. Dickey, Liquid metal enabled
microfluidics. Lab Chip, vol. 17, pp. 974-993, 2017.
[46] S. Handschuh-Wang, T. Gan, T. Wang, F. Stadler and X. Zhou,
Surface Tension of the Oxide Skin of Gallium-Based Liquid Metals.Langmuir, vol. 37, pp. 9017-9025, 2021.
[47] G. Wilde, J. L. Sebright and J. H. Perepezko, Bulk liquid
undercooling and nucleation in gold. Acta Mater., vol. 54, pp.
4759-4769, 2006.
[48] M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A.
Weitz and G. M. Whitesides, Eutectic Gallium-Indium (EGaIn): A Liquid
Metal Alloy for the Formation of Stable Structures in Microchannels at
Room Temperature. Adv. Funct. Mater., vol. 18, article 1097,
2008.
[49] H. Wang, S. Chen, B. Yuan, J. Liu and X. Sun, Liquid Metal
Transformable Machines. Accounts of Materials Research, vol.
2, pp. 1227-1238, 2021.
[50] Z. Li, J. Xu, Z. Wu, B. Guo and Q. He, Liquid Metal Swimming
Nanorobots. Accounts of Materials Research, vol. 3, pp. 122–132,
2022.
[51] X. Sun, B. Yuan, H. Wang, L. Fan, M. Duan, X. Wang, R. Guo and
J. Liu, Nano-Biomedicine based on Liquid Metal Particles and Allied
Materials. Adv. NanoBiomed Res., vol. 1, article 2000086, 2021.
[52] S. Chen and J. Liu, Pervasive liquid metal printed electronics:
From concept incubation to industry. iScience, vol. 24, article
102026, 2021.
[53] H. Liu, M. Li, Y. Li, H. Yang, A. Li, T. Lu, F. Li and F. Xu,
Magnetic steering of liquid metal mobiles. Soft Matter, vol. 14,
3236-3245, 2018.
[54] L. Hu, H. Wang, X. Wang, X. Liu, J. Guo and J. Liu, Magnetic
Liquid Metals Manipulated in the Three-Dimensional Free Space. ACS
Appl. Mater. Interfaces, vol. 11, pp. 8685–8692, 2019.
[55] H. Wang, S. Chen, H. Li, X. Chen, J. Cheng, Y. Shao, C. Zhang,
J. Zhang, L. Fan, H. Chang, R. Guo, X. Wang, N. Li, L. Hu, Y. Wei and J.
Liu, A Liquid Gripper Based on Phase Transitional Metallic Ferrofluid.Adv. Funct. Mater., vol. 31, article 2100274, 2021.
[56] S. Handschuh-Wang, L. Zhu, T. Gan, T. Wang, B. Wang and X.
Zhou, Interfacing of surfaces with gallium-based liquid metals –
approaches for mitigation and augmentation of liquid metal adhesion on
surfaces. Appl. Mater. Today, vol. 21, article 100868, 2020.
[57] D. Castelvecchi, New Instrument for Solo Performance.Phys. Rev. Focus, vol. 15, pp. 18, 2005.
[58] J. Ma, V. T. Bharambe, K. A. Persson, A. L. Bachmann, I. D.
Joshipura, J. Kim, K. H. Oh, J. F. Patrick, J. J. Adams and M. D.
Dickey, Metallophobic Coatings to Enable Shape Reconfigurable Liquid
Metal Inside 3D Printed Plastics. ACS Appl. Mater. Interfaces,
vol. 13, pp. 12709–12718, 2021.
[59] I. D. Joshipura, H. R. Ayers, G. A. Castillo, C. Ladd, C. E.
Tabor, J. J. Adams and M. D. Dickey, Patterning and Reversible Actuation
of Liquid Gallium Alloys by Preventing Adhesion on Rough Surfaces.ACS Appl. Mater. Interfaces, vol. 10, pp. 44686–44695, 2018.
[60] S. Handschuh-Wang, F. J. Stadler and X. Zhou, Critical Review
on the Physical Properties of Gallium-Based Liquid Metals and Selected
Pathways for Their Alteration. J. Phys. Chem. C, vol. 125, pp.
20113–20142, 2021.
[61] R. Guo, X. Sun, B. Yuan, H. Wang and J. Liu, Magnetic Liquid
Metal (Fe-EGaIn) Based Multifunctional Electronics for Remote
Self-Healing Materials, Degradable Electronics, and Thermal Transfer
Printing. Adv. Sci., vol. 6, article 1901478, 2019.
[62] E. J. Markvicka, M. D. Bartlett, X. Huang and C. Majid, An
autonomously electrically self-healing liquid metal–elastomer composite
for robust soft-matter robotics and electronics. Nat. Mater.,
vol. 17, pp. 618-624, 2018.
[63] X. Wang, R. Guo and J. Liu, Liquid Metal Based Soft Robotics:
Materials, Designs, and Applications. Adv. Mater. Technol., vol.
4, article 1800549, 2019.
[64] A. Adamatzky, A. Chiolerio and K. Szaciłowski, Liquid metal
droplet solves maze. Soft Matter, vol. 16, pp. 1455-1462, 2020.