6.0. References
Acreman, M., & Holden, J. (2013). How Wetlands Affect Floods.Wetlands, 33(5), 773–786.
https://doi.org/10.1007/s13157-013-0473-2
Ameli, A. A., & Creed, I. F. (2019). Does Wetland Location Matter When
Managing Wetlands for Watershed-Scale Flood and Drought Resilience?Journal of the American Water Resources Association,55(3), 529–542. https://doi.org/10.1111/1752-1688.12737
Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Aubeneau, A. F., &
Botter, G. (2020). Wetlandscape hydrologic dynamics driven by shallow
groundwater and landscape topography. Hydrological Processes,34(6), 1460–1474. https://doi.org/10.1002/hyp.13661
Boyle, K. J., Kotchen, M. J., & Smith, V. K. (2017). Deciphering
dueling analyses of clean water regulations. Science,358(6359), 49–50. https://doi.org/10.1126/science.aap8023
Capps, K. A., Rancatti, R., Tomczyk, N., Parr, T. B., Calhoun, A. J. K.,
& Hunter, M. (2014). Biogeochemical Hotspots in Forested Landscapes:
The Role of Vernal Pools in Denitrification and Organic Matter
Processing. Ecosystems, 17(8), 1455–1468.
https://doi.org/10.1007/s10021-014-9807-z
Cheng, F. Y., & Basu, N. B. (2017). Biogeochemical hotspots: Role of
small water bodies in landscape nutrient processing. Water
Resources Research, 53(6), 5038–5056.
https://doi.org/10.1002/2016WR020102
Cohen, M. J., Creed, I. F., Alexander, L., Basu, N. B., Calhoun, A. J.
K., Craft, C., D’Amico, E., DeKeyser, E., Fowler, L., Golden, H. E.,
Jawitz, J. W., Kalla, P., Kirkman, L. K., Lane, C. R., Lang, M.,
Leibowitz, S. G., Lewis, D. B., Marton, J., McLaughlin, D. L., …
Walls, S. C. (2016). Do geographically isolated wetlands influence
landscape functions? Proceedings of the National Academy of
Sciences of the United States of America, 113(8), 1978–1986.
https://doi.org/10.1073/pnas.1512650113
Congressional Research Service (CRS). (2019). Evolution of the
Meaning of “Waters of the United States” in the Clean Water Act ,
R44585 March 5, 2019 by S.P. Mulligan. Available at:
https://crsreports.congress.gov/product/pdf/R/R44585 (accessed June 1,
2021).
Dahl, T. E. (1990). Wetland Losses in the United States, 1780s to
1980s. U.S Department of the Interior, Fish and Wildlife Service,
Washington, D.C. 13pp.
Davidson, N. C. (2014). How much wetland has the world lost? Long-term
and recent trends in global wetland area. Marine and Freshwater
Research, 65(10), 934–941. https://doi.org/10.1071/MF14173
Elmore, A. J., Julian, J. P., Guinn, S. M., & Fitzpatrick, M. C.
(2013). Potential Stream Density in Mid-Atlantic U.S. Watersheds.PLoS ONE, 8(8).
https://doi.org/10.1371/journal.pone.0074819
Evenson, G. R., Golden, H. E., Lane, C. R., McLaughlin, D. L., &
D’Amico, E. (2018). Depressional wetlands affect watershed hydrological,
biogeochemical, and ecological functions. Ecological
Applications, 28(4), 953–966. https://doi.org/10.1002/eap.1701
Exec. Order No. 13778, 82 Fed. Reg. 12497 (2017).
Federal Water Pollution Control Act Amendments of 1972; 33 U.S.C. §§
1251–1387, (1972).
Georgia v. Pruitt, 326 F.Supp.3d 1356, 1367 (S.D. Ga. 2018).
Ghermandi, A., Van Den Bergh, J. C. J. M., Brander, L. M., De Groot, H.
L. F., & Nunes, P. A. L. D. (2010). Values of natural and human-made
wetlands: A meta-analysis. Water Resources Research,46(12), 1–12. https://doi.org/10.1029/2010WR009071
Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream
networks: Hydrologically driven variations in active drainage density,
flowing channels and stream order. Hydrological Processes,28(23), 5791–5803. https://doi.org/10.1002/hyp.10310
Golden, H. E., Lane, C. R., Rajib, A., & Wu, Q. (2021). Improving
global flood and drought predictions: integrating non-floodplain
wetlands into watershed hydrologic models. Environmental Research
Letters, 16(9), 091002. https://doi.org/10.1088/1748-9326/ac1fbc
Golden, H. E., Rajib, A., Lane, C. R., Christensen, J. R., Wu, Q., &
Mengistu, S. (2019). Non-floodplain wetlands affect watershed nutrient
dynamics: A critical review. Environmental Science and
Technology, 53(13), 7203–7214.
https://doi.org/10.1021/acs.est.8b07270
Hey, D. L., & Philippi, N. S. (1995). Flood Reduction through Wetland
Restoration: The Upper Mississippi River Basin as a Case History.Restoration Ecology, 3(1), 4–17.
https://doi.org/10.1111/j.1526-100X.1995.tb00070.x
Lane, C. R., Creed, I. F., Golden, H. E., Leibowitz, S. G., Mushet, D.
M., Rains, M. C., Wu, Q., D’Amico, E., Alexander, L. C., Ali, G. A.,
Basu, N. B., Bennett, M. G., Christensen, J. R., Cohen, M. J., Covino,
T. P., DeVries, B., Hill, R. A., Jencso, K., Lang, M. W., …
Vanderhoof, M. K. (2022). Vulnerable Waters are Essential to Watershed
Resilience. Ecosystems.
https://doi.org/10.1007/s10021-021-00737-2
Lane, C. R., Leibowitz, S. G., Autrey, B. C., LeDuc, S. D., &
Alexander, L. C. (2018). Hydrological, Physical, and Chemical Functions
and Connectivity of Non-Floodplain Wetlands to Downstream Waters: A
Review. Journal of the American Water Resources Association,54(2), 346–371. https://doi.org/10.1111/1752-1688.12633
Marton, J. M., Creed, I. F., Lewis, D. B., Lane, C. R., Basu, N. B.,
Cohen, M. J., & Craft, C. B. (2015). Geographically Isolated Wetlands
are Important Biogeochemical Reactors on the Landscape.BioScience, 65(4), 408–418.
https://doi.org/10.1093/biosci/biv009
Meyer, R., & Robertson, A. (2019). Clean Water Rule Spatial Analysis: A
GIS-based scenario model for comparative analysis of the potential
spatial extent of jurisdictional and non-jurisdictional wetlands.Saint Mary’s University of Minnesota, Winona, Minnesota.Mihelcic, J. R., & Rains, M. (2020). Where’s the Science? Recent
Changes to Clean Water Act Threaten Wetlands and Thousands of Miles of
Our Nation’s Rivers and Streams. Environmental Engineering
Science, 37(3), 173–177. https://doi.org/10.1089/ees.2020.0058
North Dakota v. U.S. Environmental Protection Agency, 127 F.Supp.3d
1047, 1052–53 (D.N.D. 2015).
Pasqua Yaqui Tribe v. U.S. Environmental Protection Agency, No.
CV-20-00266-TUC-RM (D. Ariz. Aug. 30, 2021).
Rapanos v. United States, 547 US 715 (2006).
Scheffer, M., van Geest, G. J., Zimmer, K., Jeppesen, E., Søndergaard,
M., Á, D., Butler, M. G., Hanson, M. A., Á, U., Declerck, S., & De
Meester, L. (2006). Small habitat size and isolation can promote species
richness: second-order effects on biodiversity in shallow lakes and
ponds. OIKOS , 112 (1).
https://doi.org/10.1111/j.0030-1299.2006.14145.x
Solid Waste Agency of Northern Cook County v. U.S. Army Corps of
Engineers, 531 US 159 (2001).
Sullivan, S. M. P., Rains, M. C., & Rodewald, A. D. (2019). The
proposed change to the definition of “waters of the United States”
flouts sound science. Proceedings of the National Academy of
Sciences, 116(24), 11558–11561.
https://doi.org/10.1073/pnas.1907489116
Sullivan, S. M. P., Rains, M. C., Rodewald, A. D., Buzbee, W. W., &
Rosemond, A. D. (2020). Distorting science, putting water at risk.Science, 369(6505), 766–768.
https://doi.org/10.1126/science.abb6899
Texas v. U.S. Environmental Protection Agency, No. 3:15-cv-00162, 2018
WL 4518230 (S.D. Tex. Sept. 12, 2018).
United States v. Riverside Bayview Homes, 474 US 121 (1985).
U.S. Department of Defense (1986). Final rule for regulatory programs of
the corps of engineers. Fed. Reg. 51, 41206–41260.
U.S. Department of Defense and U.S. Environmental Protection Agency
(2015). Clean Water Rule: Definition of “Waters of the United States”.
Fed. Reg. 80, 37054-37127.
U.S. Department of Defense and U.S. Environmental Protection Agency
(2019). Definition of “Waters of the United States”-Recodification of
Pre-existing Rules. Fed. Reg. 84, 56626-56671.
U.S. Department of Defense and U.S. Environmental Protection Agency
(2020). The Navigable Waters Protection Rule: Definition of “Waters of
the United States”. Fed. Reg. 85, 22250-22342.
U.S. Department of Defense and U.S. Environmental Protection Agency
(2021). Revised Definition of “Waters of the United States”, 86 Fed.
Reg. 69372-69450.
U.S. Environmental Protection Agency (2015). Connectivity of
Streams and Wetlands To Downstream Waters: A Review and Synthesis of the
Scientific Evidence, Final Report. Washington, D.C.: USEPA.
U.S. Environmental Protection Agency (2021). EPA, Army Announce
Intent to Revise Definition of WOTUS [Press release].
https://www.epa.gov/newsreleases/epa-army-announce-intent-revise-definition-wotus
U.S. Fish and Wildlife Service (2021). National Wetlands
Inventory. http://www.fws.gov/wetlands/Data/Data-Download.html
U.S. Geological Survey (2020), National Hydrography Dataset(ver. NHD 20200622 for New York State or Territory Shapefile Model
Version 2.2.1).
https://www.sciencebase.gov/catalog/item/5a96cdc5e4b06990606c4d74
Van Meter, K. J., & Basu, N. B. (2015). Signatures of human impact:
size distributions and spatial organization of wetlands in the Prairie
Pothole landscape. Ecological Applications, 25(2),
451–465. https://doi.org/10.1890/14-0662.1
Walsh, R., & Ward, A. S. (2019). Redefining Clean Water Regulations
Reduces Protections for Wetlands and Jurisdictional Uncertainty.Frontiers in Water, 1(April), 1–6.
https://doi.org/10.3389/frwa.2019.00001
Walsh, R., & Ward, A. S. (In Review). An overview of the evolving
jurisdictional scope of the U.S. Clean Water Act for hydrologists.
https://doi.org/10.31223/X5HK66
Ward, A. S., Schmadel, N. M., & Wondzell, S. M. (2018). Simulation of
dynamic expansion, contraction, and connectivity in a mountain stream
network. Advances in Water Resources, 114, 64–82.
https://doi.org/10.1016/j.advwatres.2018.01.018
Woznicki, S. A., Baynes, J., Panlasigui, S., Mehaffey, M., & Neale, A.
(2019). Development of a spatially complete floodplain map of the
conterminous United States using random forest. Science of the
Total Environment, 647, 942–953.
https://doi.org/10.1016/j.scitotenv.2018.07.353
Yang, W., Wang, X., Liu, Y., Gabor, S., Boychuk, L., & Badiou, P.
(2010). Simulated environmental effects of wetland restoration scenarios
in a typical Canadian prairie watershed. Wetlands Ecology and
Management, 18(3), 269–279.
https://doi.org/10.1007/s11273-009-9168-0
Zedler, J. B. (2003). Wetlands at Your Service: Reducing Impacts of
Agriculture at the Watershed Scale. Frontiers in Ecology and the
Environment, 1(2), 65. https://doi.org/10.2307/3868032