6.0. References
Acreman, M., & Holden, J. (2013). How Wetlands Affect Floods.Wetlands, 33(5), 773–786. https://doi.org/10.1007/s13157-013-0473-2 Ameli, A. A., & Creed, I. F. (2019). Does Wetland Location Matter When Managing Wetlands for Watershed-Scale Flood and Drought Resilience?Journal of the American Water Resources Association,55(3), 529–542. https://doi.org/10.1111/1752-1688.12737 Bertassello, L. E., Rao, P. S. C., Jawitz, J. W., Aubeneau, A. F., & Botter, G. (2020). Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography. Hydrological Processes,34(6), 1460–1474. https://doi.org/10.1002/hyp.13661 Boyle, K. J., Kotchen, M. J., & Smith, V. K. (2017). Deciphering dueling analyses of clean water regulations. Science,358(6359), 49–50. https://doi.org/10.1126/science.aap8023 Capps, K. A., Rancatti, R., Tomczyk, N., Parr, T. B., Calhoun, A. J. K., & Hunter, M. (2014). Biogeochemical Hotspots in Forested Landscapes: The Role of Vernal Pools in Denitrification and Organic Matter Processing. Ecosystems, 17(8), 1455–1468. https://doi.org/10.1007/s10021-014-9807-z Cheng, F. Y., & Basu, N. B. (2017). Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing. Water Resources Research, 53(6), 5038–5056. https://doi.org/10.1002/2016WR020102 Cohen, M. J., Creed, I. F., Alexander, L., Basu, N. B., Calhoun, A. J. K., Craft, C., D’Amico, E., DeKeyser, E., Fowler, L., Golden, H. E., Jawitz, J. W., Kalla, P., Kirkman, L. K., Lane, C. R., Lang, M., Leibowitz, S. G., Lewis, D. B., Marton, J., McLaughlin, D. L., … Walls, S. C. (2016). Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences of the United States of America, 113(8), 1978–1986. https://doi.org/10.1073/pnas.1512650113
Congressional Research Service (CRS). (2019). Evolution of the Meaning of “Waters of the United States” in the Clean Water Act , R44585 March 5, 2019 by S.P. Mulligan. Available at: https://crsreports.congress.gov/product/pdf/R/R44585 (accessed June 1, 2021).
Dahl, T. E. (1990). Wetland Losses in the United States, 1780s to 1980s. U.S Department of the Interior, Fish and Wildlife Service, Washington, D.C. 13pp. Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934–941. https://doi.org/10.1071/MF14173 Elmore, A. J., Julian, J. P., Guinn, S. M., & Fitzpatrick, M. C. (2013). Potential Stream Density in Mid-Atlantic U.S. Watersheds.PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0074819 Evenson, G. R., Golden, H. E., Lane, C. R., McLaughlin, D. L., & D’Amico, E. (2018). Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecological Applications, 28(4), 953–966. https://doi.org/10.1002/eap.1701
Exec. Order No. 13778, 82 Fed. Reg. 12497 (2017).
Federal Water Pollution Control Act Amendments of 1972; 33 U.S.C. §§ 1251–1387, (1972).
Georgia v. Pruitt, 326 F.Supp.3d 1356, 1367 (S.D. Ga. 2018).
Ghermandi, A., Van Den Bergh, J. C. J. M., Brander, L. M., De Groot, H. L. F., & Nunes, P. A. L. D. (2010). Values of natural and human-made wetlands: A meta-analysis. Water Resources Research,46(12), 1–12. https://doi.org/10.1029/2010WR009071 Godsey, S. E., & Kirchner, J. W. (2014). Dynamic, discontinuous stream networks: Hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrological Processes,28(23), 5791–5803. https://doi.org/10.1002/hyp.10310 Golden, H. E., Lane, C. R., Rajib, A., & Wu, Q. (2021). Improving global flood and drought predictions: integrating non-floodplain wetlands into watershed hydrologic models. Environmental Research Letters, 16(9), 091002. https://doi.org/10.1088/1748-9326/ac1fbc Golden, H. E., Rajib, A., Lane, C. R., Christensen, J. R., Wu, Q., & Mengistu, S. (2019). Non-floodplain wetlands affect watershed nutrient dynamics: A critical review. Environmental Science and Technology, 53(13), 7203–7214. https://doi.org/10.1021/acs.est.8b07270 Hey, D. L., & Philippi, N. S. (1995). Flood Reduction through Wetland Restoration: The Upper Mississippi River Basin as a Case History.Restoration Ecology, 3(1), 4–17. https://doi.org/10.1111/j.1526-100X.1995.tb00070.x Lane, C. R., Creed, I. F., Golden, H. E., Leibowitz, S. G., Mushet, D. M., Rains, M. C., Wu, Q., D’Amico, E., Alexander, L. C., Ali, G. A., Basu, N. B., Bennett, M. G., Christensen, J. R., Cohen, M. J., Covino, T. P., DeVries, B., Hill, R. A., Jencso, K., Lang, M. W., … Vanderhoof, M. K. (2022). Vulnerable Waters are Essential to Watershed Resilience. Ecosystems. https://doi.org/10.1007/s10021-021-00737-2 Lane, C. R., Leibowitz, S. G., Autrey, B. C., LeDuc, S. D., & Alexander, L. C. (2018). Hydrological, Physical, and Chemical Functions and Connectivity of Non-Floodplain Wetlands to Downstream Waters: A Review. Journal of the American Water Resources Association,54(2), 346–371. https://doi.org/10.1111/1752-1688.12633 Marton, J. M., Creed, I. F., Lewis, D. B., Lane, C. R., Basu, N. B., Cohen, M. J., & Craft, C. B. (2015). Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape.BioScience, 65(4), 408–418. https://doi.org/10.1093/biosci/biv009 Meyer, R., & Robertson, A. (2019). Clean Water Rule Spatial Analysis: A GIS-based scenario model for comparative analysis of the potential spatial extent of jurisdictional and non-jurisdictional wetlands.Saint Mary’s University of Minnesota, Winona, Minnesota.Mihelcic, J. R., & Rains, M. (2020). Where’s the Science? Recent Changes to Clean Water Act Threaten Wetlands and Thousands of Miles of Our Nation’s Rivers and Streams. Environmental Engineering Science, 37(3), 173–177. https://doi.org/10.1089/ees.2020.0058 North Dakota v. U.S. Environmental Protection Agency, 127 F.Supp.3d 1047, 1052–53 (D.N.D. 2015). Pasqua Yaqui Tribe v. U.S. Environmental Protection Agency, No. CV-20-00266-TUC-RM (D. Ariz. Aug. 30, 2021). Rapanos v. United States, 547 US 715 (2006).
Scheffer, M., van Geest, G. J., Zimmer, K., Jeppesen, E., Søndergaard, M., Á, D., Butler, M. G., Hanson, M. A., Á, U., Declerck, S., & De Meester, L. (2006). Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. OIKOS , 112 (1). https://doi.org/10.1111/j.0030-1299.2006.14145.x
Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers, 531 US 159 (2001).
Sullivan, S. M. P., Rains, M. C., & Rodewald, A. D. (2019). The proposed change to the definition of “waters of the United States” flouts sound science. Proceedings of the National Academy of Sciences, 116(24), 11558–11561. https://doi.org/10.1073/pnas.1907489116 Sullivan, S. M. P., Rains, M. C., Rodewald, A. D., Buzbee, W. W., & Rosemond, A. D. (2020). Distorting science, putting water at risk.Science, 369(6505), 766–768. https://doi.org/10.1126/science.abb6899 Texas v. U.S. Environmental Protection Agency, No. 3:15-cv-00162, 2018 WL 4518230 (S.D. Tex. Sept. 12, 2018). United States v. Riverside Bayview Homes, 474 US 121 (1985). U.S. Department of Defense (1986). Final rule for regulatory programs of the corps of engineers. Fed. Reg. 51, 41206–41260. U.S. Department of Defense and U.S. Environmental Protection Agency (2015). Clean Water Rule: Definition of “Waters of the United States”. Fed. Reg. 80, 37054-37127. U.S. Department of Defense and U.S. Environmental Protection Agency (2019). Definition of “Waters of the United States”-Recodification of Pre-existing Rules. Fed. Reg. 84, 56626-56671. U.S. Department of Defense and U.S. Environmental Protection Agency (2020). The Navigable Waters Protection Rule: Definition of “Waters of the United States”. Fed. Reg. 85, 22250-22342. U.S. Department of Defense and U.S. Environmental Protection Agency (2021). Revised Definition of “Waters of the United States”, 86 Fed. Reg. 69372-69450. U.S. Environmental Protection Agency (2015). Connectivity of Streams and Wetlands To Downstream Waters: A Review and Synthesis of the Scientific Evidence, Final Report. Washington, D.C.: USEPA. U.S. Environmental Protection Agency (2021). EPA, Army Announce Intent to Revise Definition of WOTUS [Press release]. https://www.epa.gov/newsreleases/epa-army-announce-intent-revise-definition-wotus U.S. Fish and Wildlife Service (2021). National Wetlands Inventory. http://www.fws.gov/wetlands/Data/Data-Download.html U.S. Geological Survey (2020), National Hydrography Dataset(ver. NHD 20200622 for New York State or Territory Shapefile Model Version 2.2.1). https://www.sciencebase.gov/catalog/item/5a96cdc5e4b06990606c4d74 Van Meter, K. J., & Basu, N. B. (2015). Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecological Applications, 25(2), 451–465. https://doi.org/10.1890/14-0662.1 Walsh, R., & Ward, A. S. (2019). Redefining Clean Water Regulations Reduces Protections for Wetlands and Jurisdictional Uncertainty.Frontiers in Water, 1(April), 1–6. https://doi.org/10.3389/frwa.2019.00001 Walsh, R., & Ward, A. S. (In Review). An overview of the evolving jurisdictional scope of the U.S. Clean Water Act for hydrologists. https://doi.org/10.31223/X5HK66 Ward, A. S., Schmadel, N. M., & Wondzell, S. M. (2018). Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Advances in Water Resources, 114, 64–82. https://doi.org/10.1016/j.advwatres.2018.01.018 Woznicki, S. A., Baynes, J., Panlasigui, S., Mehaffey, M., & Neale, A. (2019). Development of a spatially complete floodplain map of the conterminous United States using random forest. Science of the Total Environment, 647, 942–953. https://doi.org/10.1016/j.scitotenv.2018.07.353 Yang, W., Wang, X., Liu, Y., Gabor, S., Boychuk, L., & Badiou, P. (2010). Simulated environmental effects of wetland restoration scenarios in a typical Canadian prairie watershed. Wetlands Ecology and Management, 18(3), 269–279. https://doi.org/10.1007/s11273-009-9168-0 Zedler, J. B. (2003). Wetlands at Your Service: Reducing Impacts of Agriculture at the Watershed Scale. Frontiers in Ecology and the Environment, 1(2), 65. https://doi.org/10.2307/3868032