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Abstract. In this paper, we study the existence of positive period-

ic solutions of a singular Minkowski-curvature equation. The proof is

based on the Mawhin’s continuation theorem. Moreover, an example

and the corresponding numerical simulations are given to illustrate our

theoretical analysis. Some results in the literature are generalized and

improved.

1. Introduction

Singular differential equations arise from different applied sciences, for

example, in the study of the motion of particles under the influence of grav-

itational or electrostatic forces [12, 16, 32]. Nowadays, there is a wide range

of nonlinear models involving singular terms. For instance, singular equa-

tions can be used to model the interaction between atomic particles [29, 30]

in molecular dynamics, and in [16, 21], the singular term models the restor-

ing force caused by a compressed perfect gas. During the past few decades,

the existence of positive periodic solutions of different kinds of singular e-

quations have been studied by many researchers. We just refer the reader

to classical papers [8, 9, 10, 12, 13, 14, 15, 18, 22, 23, 25, 26, 31, 32, 34, 35]

and the references therein.

In order to present our main results, we first mention the following two

related results. In [34], Zhang studied the existence of positive periodic
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solutions of the following singular Liénard equation

u′′ + f(u)u′ + g(t, u) = 0, (1.1)

where f : R → R is continuous, and g : [0, T ] × (0,∞) → R is an L1-

Carathéodory function, g(t, u) is T -periodic with respect to its first variable

and

lim
u→0+

g(t, u) = −∞ uniformly in t.

Assume that

φ(t) = lim sup
u→+∞

g(t, u)

u

exists uniformly a.e. t ∈ [0, T ] and φ ∈ C(R/TZ,R), which means that for

any ε > 0, there exists gε ∈ L1(0, T ) such that

g(t, u) ≤ (φ(t) + ε)u+ gε(t), (1.2)

for all u > 0 and a.e. t ∈ [0, T ]. The following result was proved in [34] by

using the coincidence degree theory [28].

Theorem 1.1. Assume that the following conditions are satisfied:

(H1) There exist constants M1,M2 with 0 < M1 < M2 and τ ∈ [0, T ] such

that

M1 ≤ u(τ) ≤M2,

if u is a positive T -periodic solution satisfying∫ T

0
g(t, u(t))dt = 0;

(H2) ḡ(u) < 0 for every u ∈ (0,M1) and ḡ(u) > 0 for every u ∈ (M2,+∞),

where ḡ(u) = 1
T

∫ T
0 g(t, u)dt;

(H3) g(t, u) = g0(u) + g1(t, u), where g0 ∈ C((0,+∞),R) and g1 : [0, T ]×

[0,+∞) → R is an L1-Carathéodory function in the following sense

(a1) t→ g1(t, u) is measurable for each u > 0,

(a2) u→ g1(t, u) is continuous for a.e. t ∈ [0, T ],
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(a3) for any b > 0, there exist hb ∈ L1((0, T ); [0,∞)) such that

|g1(t, u)| ≤ hb(t),

for a.e. t ∈ [0, T ] and all u ∈ [0, b];

(H4)
∫ 1
0 g0(u)du = −∞;

(H5) ∥φ+∥1 <
√
3

T , (φ+(t) = max(φ(t), 0)).

Then equation (1.1) has at least one positive T -periodic solution.

In [33], Wang generalized the above result to the following equation

u′′(t) + f(u(t))u′(t) + g(t, u(t− σ)) = 0, (1.3)

where f and g satisfy the same conditions as in (1.1) with g is an L2-

Carathéodory function, and 0 ≤ σ ≤ T is a constant. By using the Mawhin’s

continuation theorem [17], Wang obtained the following result.

Theorem 1.2. Assume that assumptions (H1), (H2) and (H4) are satisfied

together with the following conditions:

(H′
3) g(t, u) = g0(u) + g1(t, u), where g0 ∈ C((0,+∞),R) and g1 : [0, T ]×

[0,+∞) → R is an L2-Carathéodory function in the following sense

(a1) t→ g1(t, u) is measurable for each u > 0,

(a2) u→ g1(t, u) is continuous for a.e. t ∈ [0, T ],

(a′3) for any b > 0, there exist hb ∈ L2((0, T ); [0,∞)) such that

|g1(t, u)| ≤ hb(t),

for a.e. t ∈ [0, T ] and all u ∈ [0, b];

(H′
5) ∥φ∥∞ < ( πT )

2.

Then equation (1.3) has at least one positive T -periodic solution.

The aim of this paper is to generalize and improve the results in [33, 34]

to the following singular Minkowski-curvature equation(
u′√

1− (u′)2

)′

+ f(u)u′ + g(t, u) = e(t), (1.4)
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where f and g satisfy the same conditions as in (1.1), e ∈ C(R/TZ,R)

with zero mean value. The above equation is driven by a strongly nonlinear

differential operator of ψ-Laplacian type

u 7→ −(ψ(u′))′, where ψ(s) :=
s√

1− s2
.

As is well known, this is the one dimensional version of the partial differential

operator

u 7→ −div
( ∇u√

1− |∇u|2
)
,

which in turn is usually meant as a mean-curvature operator in Lorentz-

Minkowski spaces [3, 19]. Recently, there has been a significant interest in

the study of the existence and multiplicity issues of the associated bound-

ary value problems. See for instance [1, 2, 4, 5, 6, 11, 20, 24, 27] and

the references therein. However, the study on the periodic problem of the

Minkowski-curvature equation is considerably fewer [7]. In [7], by using the

Mawhin’s coincidence degree theory and the Poincaré-Birkhoff fixed point

theorem, Boscaggin and Feltrin studied the existence, non-existence, multi-

plicity of positive periodic solutions, both harmonic and subharmonic to an

indefinite Minkowski-curvature equation. To the best of our knowledge, the

problem on the existence of periodic solutions of the singular Minkowski-

curvature equation has not attracted much attention in the literature. The

results of this paper will fill, at least partially, this gap.

Based on the Mawhin’s continuation theorem [17], we obtain the following

result.

Theorem 1.3. Assume that (H1), (H2), (H3) and (H4) hold. Then equation

(1.4) has at least one positive T -periodic solution.

Compared with the results in [33, 34], the novelties of our result are

as follows. First, we dealt with a more meaningful and complex singular

equation. Secondly, the conditions of our result are weakened with compare

to Theorem 1.1 and Theorem 1.2, because we do not need the assumptions
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(H5) and (H′
5). Moreover, the existence results of the singular Minkowski-

curvature equation presented in this paper are the first ones available in the

literature.

The rest of this paper is organized as follows. In Section 2, we state some

preliminary results. The proof of Theorem 1.3 will be presented in Section

3. In Section 4, an example and the corresponding numerical simulations

(phase portrait and time series portrait of the positive periodic solution of

the example) are given to illustrate our theoretical analysis.

2. Preliminaries

Let U and V be two real Banach spaces with norms ∥ · ∥U and ∥ · ∥V ,

respectively. A linear operator

L : D(L) ⊂ U → V

is called a Fredholm operator of index zero if

(i) ImL is a closed subset of V ,

(ii) dim KerL = codim ImL <∞.

A continuous operator N : Ω ⊂ U → V is said to be L-compact in Ω̄ if

(iii) KP (I −Q)N(Ω̄) is a relative compact set of U ,

(iv) QN(Ω̄) is a bounded set of V ,

where P : U → KerL, Q : V → V are continuous linear projectors satisfying

ImP = KerL, KerQ = ImL,

and

KP = L
∣∣−1

KerP∩D(L)
.

Then we have the decompositions

U = KerL⊕KerP, V = ImL⊕ ImP.

Lemma 2.1. [17] Let U, V be as above, Ω be an open and bounded set of U ,

L : D(L) ⊂ U → V be a Fredholm operator of index zero and the continuous
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operator N : Ω̄ ⊂ U → V be L-compact on Ω̄. In addition, if the following

conditions hold:

(h1) Lv ̸= λNv, ∀(v, λ) ∈ ∂Ω× (0, 1);

(h2) QNv ̸= 0, ∀v ∈ KerL ∩ ∂Ω;

(h3) deg{JQN,Ω ∩KerL, 0} ̸= 0,

where J : ImQ → KerL is any homeomorphism and P,Q,KP are given

above. Then Lv = Nv has at least one solution in Ω̄.

3. Proof of Theorem 1.3

Throughout this paper, we set

ḡ(u) =
1

T

∫ T

0
g(t, u)dt.

The equation (1.4) is equivalent to the following system u′(t) = ϕ(v(t)),

v′(t) = −f(u(t))ϕ(v(t))− g(t, u(t)) + e(t),
(3.1)

where ϕ(v) = v√
1+v2

.

Let

U = V = {ω = (u(t), v(t))⊤ ∈ C(R,R2), ω(t) = ω(t+ T )}

with the norm ∥ω∥ = max{∥u∥∞, ∥v∥∞}, where

∥u∥∞ = max
t∈[0,T ]

|u(t)| and ∥v∥∞ = max
t∈[0,T ]

|v(t)|.

Obviously, U and V are Banach space. Let us define the operator

L : U ⊃ D(L) → V, Lω = ω′ = (u′(t), v′(t))⊤,

where

D(L) = {ω|ω(t) = (u(t), v(t))⊤ ∈ C1(R,R2), ω(t) = ω(t+ T )}.

One may easily see that KerL = R2 and

ImL = {u ∈ V,

∫ T

0
u(s)ds = 0}.
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Therefore L is a Fredholm operator of index zero.

Let

X = {ω|ω = (u(t), v(t))⊤ ∈ C1(R,R+ × R), ω(t) = ω(t+ T )}

and define a nonlinear operator N : X ⊃ Ω̄ → V by

Nω = (ϕ(v),−f(u)ϕ(v)− g(t, u) + e(t))⊤ ,

where Ω is an open and bounded set with Ω̄ ⊂ X ⊂ U . Then the system

(3.1) can be written as

Lω = Nω in Ω̄.

Let

P : U → KerL, P (u) =
1

T

∫ T

0
u(s)ds,

Q : V → ImQ, Q(u) =
1

T

∫ T

0
u(s)ds.

Set

KP = L
∣∣−1

KerP∩D(L)
,

we have

[KP (u)](t) =

∫ T

0
G(t, s)u(s)ds,

where

G(t, s) =

 s−T
T , 0 ≤ t ≤ s,

s
T , s ≤ t ≤ T.

For all Ω satisfying Ω̄ ⊂ (U ∩ X) ⊂ U , we get that KP (I − Q)N(Ω̄)

is a relative compact set of U , QN(Ω̄) is a bounded set of V . Thus N is

L-compact in Ω̄.

Proof of Theorem 1.3. To apply Lemma 2.1, we consider the system u′ = λϕ(v(t)),

v′ = −λf(u(t))ϕ(v(t))− λg(t, u(t)) + λe(t),
(3.2)

where λ ∈ (0, 1). The most important work is to find an appropriate Ω such

that all assumptions of Lemma 2.1 are satisfied.
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Firstly, we claim that there exist positive constants R0, R1 and R2 such

that all possible positive T -periodic solutions of the system (3.2) satisfy

R0 ≤ u(t) ≤ R1, | v(t) |≤ R2, ∀t ∈ [0, T ].

Suppose that (u(t), v(t))⊤ is an arbitrary positive T -periodic solution of the

system (3.2), then by the first equation of the system (3.2), we know that

|u′(t)| < 1, for all t ∈ R.

Integrating the second equation of the system (3.2) from 0 to T , we obtain

∫ T

0
λg(t, u(t))dt =

∫ T

0

(
− v′(t)− λf(u(t))ϕ(v(t)) + λe(t)

)
dt

= −
∫ T

0
f(u(t))u′(t)dt = 0. (3.3)

By (H1) and (3.3), we know that there exist positive constants M1,M2 and

τ ∈ [0, T ] such that

M1 ≤ u(τ) ≤M2.

Therefore, for every t ∈ [0, T ], we have

|u(t)| =
∣∣∣∣u(τ) + ∫ t

τ
u′(s)ds

∣∣∣∣
≤ |u(τ)|+

∫ T

0
|u′(s)|ds

< |u(τ)|+ T

≤M2 + T := R1, (3.4)

Set

I+ = {t ∈ [0, T ], g(t, u(t)) ≥ 0}.
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By (1.2) and (3.3), we have∫ T

0
|g(t, u(t))|dt = 2

∫
I+

g(t, u(t))dt

≤ 2

∫
I+

(φ(t) + ε)u(t)dt+ 2

∫
I+

gε(t)dt

≤ 2(∥φ∥∞ + ε)

∫ T

0
|u(t)|dt+ 2

∫ T

0
|gε(t)|dt

≤ 2TR1(∥φ∥∞ + ε) + 2∥gε∥1.

Since u is a T -periodic function, there exists t0 ∈ [0, T ] such that u′(t0) = 0.

It follows from the first equation of the system (3.2) that v(t0) = 0. Then

we have

|v(t)| =
∣∣∣∣v(t0) + ∫ t

t0

v′(s)ds

∣∣∣∣
≤
∫ T

0
|v′(s)|ds

≤ λ

∫ T

0
|f(u(s))||ϕ(v)|ds+ λ

∫ T

0
|g(s, u(s))|ds+ λ

∫ T

0
|e(s)|ds

≤ ρT + 2TR1(∥φ∥∞ + ε) + 2∥gε∥1 + T |e| := R2, (3.5)

where ρ = max
|u|≤R1

|f(u)|. Thus, by the first equation of the system (3.1), we

have

|u′(t)| ≤ |ϕ(v)| ≤ |v(t)|√
1 + v2(t)

≤ R2√
1 +R2

2

:= R3, ∀t ∈ [0, T ], (3.6)

Obviously, R3 < 1.

Multiplying both sides of the second equation of the system (3.2) by u′(t)

and integrating from τ to t, we obtain∫ t

τ
v′(s)u′(s)ds =− λ

∫ t

τ
f(u(s))ϕ(v)u′(s)ds− λ

∫ t

τ
g(s, u(s))u′(s)ds

+ λ

∫ t

τ
e(s)u′(s)ds

=− λ

∫ t

τ
f(u(s))ϕ(v)u′(s)ds− λ

∫ t

τ
g0(u(s))u

′(s)ds

− λ

∫ t

τ
g1(s, u(s))u

′(s)ds+ λ

∫ t

τ
e(s)u′(s)ds, (3.7)
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By (3.6) and the condition (a3), we have∣∣∣∣ ∫ t

τ
g1(s, u(s))u

′(s)ds

∣∣∣∣ ≤ ∫ T

0
|g1(s, u(s))||u′(s)|ds

≤
∫ T

0
hR1(s)|u′(s)|ds

≤ R3∥hR1∥1

and ∣∣∣∣ ∫ t

τ
v′(s)u′(s)ds

∣∣∣∣ = ∣∣∣∣ ∫ t

τ

λv√
1 + v2

v′(s)ds

∣∣∣∣
=
∣∣λ(√1 + v2(t)−

√
1 + v2(τ))

∣∣
≤ λ

√
1 +R2

2.

It follows from (3.7) and the above two inequalities that

λ

∣∣∣∣ ∫ u(t)

u(τ)
g0(u)du

∣∣∣∣ =∣∣∣∣− ∫ t

τ
v′(s)u′(s)ds− λ

∫ t

τ
f(u(s))ϕ(v)u′(s)ds

− λ

∫ t

τ
g1(s, u(s))u

′(s)ds+ λ

∫ t

τ
e(s)u′(s)ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

τ
v′(s)u′(s)ds

∣∣∣∣+ λ

∫ T

0
|f(u(s))||u′(s)|ds

+ λ

∫ t

τ
|g1(s, u(s))||u′(s)|ds+ λ

∫ T

0
|e(s)||u′(s)|ds

≤λ
√

1 +R2
2 + λR3ρT + λR3∥hR1∥1 + λR3T |e|,

which implies that∣∣∣∣ ∫ u(t)

u(τ)
g0(u)du

∣∣∣∣ ≤ 2
√

1 +R2
2 +R3ρT + TR3

¯|e|+R3∥hR1∥1 < +∞.

Since u(τ) > M1, we can deduce from (H4) and the above inequality that

there exists a constant R4 > 0 such that

u(t) ≥ R4, ∀t ∈ [τ, T ].

Analogously, we can prove that there exists a constant R5 > 0 such that

u(t) ≥ R5, ∀t ∈ [0, τ ].
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Set R0 = min{R4, R5}, by the above two inequalities, we have

u(t) ≥ R0, ∀t ∈ [0, T ]. (3.8)

Now, we define the set

Ω = {ω : ω(t) = (u(t), v(t))⊤ ∈ X, r0 < u(t) < r1, |v(t)| < r2, t ∈ [0, T ]},

where r0, r1 and r2 are constants which are independent of λ and satisfy

0 < r0 < min{R0,M1}, r1 > max{R1,M2} and r2 > R2.

By (3.4), (3.5) and (3.8), we konw that the condition (h1) of Lemma 2.1 is

satisfied.

Next, we consider the condition (h2). In fact, if ω ∈ ∂Ω ∩KerL, then

ω = (r0,±r2)⊤ or (r1,±r2)⊤,

in this case , we get

QNω = (ϕ(±r2),−ḡ(r0))⊤,

or

QNω = (ϕ(±r2,−ḡ(r1))⊤.

By condition (H2), we know that

ḡ(r0) ̸= 0, ḡ(r1) ̸= 0,

which means that

QNω ̸= (0, 0)⊤.

That implies the condition (h2) is established.

Finally, in order to verify the condition (h3), we define

J : ImL→ KerL, J(ω) = ω.

If ω ∈ Ω ∩ kerL, then

ω = (b1, b2)
⊤,

where b1, b2 are constant with r0 < b1 < r1, |b2| < r2. We have

JQNω = (ϕ(b2),−ḡ(b1))⊤.
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Note that ϕ(v) is a continuous strictly increasing function, combining with

the condition (H2), one can easy to calculate that

deg{JQN,Ω ∩KerL,0} ̸= 0.

Therefore, the condition (h3) is satisfied.

Up to now, all assumptions of Lemma 2.1 are satisfied. By Lemma 2.1, we

prove that the equation (1.4) has at least one positive T -periodic solution.

4. An example and numerical simulations

In this section, an example and the corresponding numerical simulations

(phase portrait and time series portrait of the positive periodic solution of

the example) are given to illustrate our theoretical analysis.

Consider the following singular equation(
u′√

1− u′2

)′
+ (uα + 1)u′ + u(1 + sin t)− 1

uγ
= cos t, (4.1)

where α > 0 and γ > 0 are constants.

Corollary 4.1. Assume that α > 0 and γ ≥ 1. Then equation (4.1) has at

least one positive 2π-periodic solution.

Proof. Equation (4.1) can be regarded as a problem of the form (1.4), where

f(u) = uα + 1, g(t, u) = u(1 + sin t)− 1

uγ
, e(t) = cos t.

By direct computations, we can obtain

ḡ(u) =
1

2π

∫ 2π

0
g(t, u)dt

=
1

2π

∫ 2π

0
[u(1 + sin t)− 1

uγ
]dt

= u− 1

uγ
, ∀u ∈ R+.

Obviously, if we choose two constants M1, M2 with M1 ∈ (0, 1) and M2 ∈

(1,∞), then we have

ḡ(u) < 0, ∀u ∈ (0,M1)
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and

ḡ(u) > 0, ∀u ∈ (M2,+∞).

Therefore, if ∫ 2π

0
g(t, u(t))dt = 0,

then there exists τ ∈ [0, 2π] such that

M1 ≤ u(τ) ≤M2.

Define

g0(u) = − 1

uγ
, g1(t, u) = u(1 + sin t), hb(t) = b(1 + t),

then

| g1(t, u) |≤ b | 1 + sin t |≤ b(1 + t) = hb(t),

for a.e. t ∈ [0, 2π] and all u ∈ [0, b].

Moreover, we have∫ 1

0
g0(u)du =

∫ 1

0
− 1

uγ
du = −∞.

and

φ(t) = lim sup
u→+∞

g(t, u)

u
= 1 + sin t.

Up to now, all assumptions of Theorem 1.3 are satisfied. By Theorem 1.3,

we know that equation (4.1) has at least one positive 2π-periodic solution.

�

Remark 4.2. In fact, by direct computations, we have

∥φ+∥1 = 2π >

√
3

T
=

√
3

2π
,

which contradicts the condition (H5), and

∥φ∥∞ = 2 > (
π

T
)2 =

1

4
,

which contradicts the condition (H′
5).

Finally, applying Matlab software, we obtain the time series portrait and

phase portrait of the 2π-periodic solution of the equation (4.1) with α = 0.18

and γ = 1.23, which is show in FIGURE 1 and 2.
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Figure 1. Time series portrait of the 2π-periodic solu-

tion of the equation (4.1) with the initial condition u(0) =

1.722, u′(0) = 0.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2. Phase portrait of the 2π-periodic solution of

the equation (4.1) with the initial condition u(0) =

1.722, u′(0) = 0.
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Hainaut., 76 (1962), 3–13.

17. R. E. Gaines and J. L. Mawhin, Coincidence degree, and Nonlinear Differential equa-

tion, Lecture notes in Mathematics, vol.568 Berlin: Springer-Verlag (1977).

18. M. Garzón and P. J. Torres, Periodic solutions for the Lorentz force equation with

singular potentials, Nonlinear Anal. Real World Appl. 56 (2020), 103162.

19. C. Gerhardt, H-surfaces in Lorentzian manifolds, Commun. Math. Phys. 89 (1983),

523–553.

20. D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet

systems with mean curvature operator in Minkowski space and Lane-Emden type

nonlinearities, J. Differential Equations, 266 (2019), 5377–5396.

21. A. Huaux, Sur L’existence d’une solution périodique de l’e quation différentielle non
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