References
- Allan, E., van Ruijven, J., and Crawley, M. J. 2010. Foliar fungal
pathogens and grassland biodiversity. – Ecology 91: 2572–2582.
- Allen, W. J., DeVries, A. E., Bologn, N. J., Bickford, W. A.,
Kowalski, K. P., Meyerson, L. A., and Cronin, J. T. 2020.
Intraspecific and biogeographical variation in foliar fungal
communities and pathogen damage of native and invasivePhragmites australis . – Glob. Ecol. Biogeogr. 29: 1199–1211.
- Bartoń, K. 2022. MuMIn: Multi-Model Inference. Retrieved from
https://CRAN.R-project.org/package=MuMIn
- Bebber, D. P. 2015. Range-expanding pests and pathogens in a warming
world. – Annu. Rev. Phytopathol. 53: 335–356.
- Borenstein, M., Hedges, L., Higgins, J., and Rothstein, H. 2009.Introduction to meta-analysis . New York, NY, USA: John Wiley &
Sons.
- Burdon, J. J., and Chilvers, G. A. 1982. Host density as a factor in
plant-disease ecology. – Annu. Rev. Phytopathol. 20: 143–166.
- Burnham, K. P., Anderson, D.
R., and Huyvaert, K. P. 2011. AIC model selection and multimodel
inference in behavioral ecology: some background, observations, and
comparisons. – Behav. Ecol. Sociobiol. 65: 23–35.
- Cappelli, S. L., Pichon, N. A., Kempel, A., and Allan, E. 2020. Sick
plants in grassland communities: a growth-defense trade-off is the
main driver of fungal pathogen abundance. – Ecol. Lett. 23:
1349–1359.
- Chen, L. F., and Zhou, S. R. 2015. A combination of species evenness
and functional diversity is the best predictor of disease risk in
multihost communities. – Am. Nat. 186: 755–765.
- Chu, C. J. et al . 2019. Direct and indirect effects of climate
on richness drive the latitudinal diversity gradient in forest trees.
– Ecol. Lett. 22: 245–255.
- Coley, P. D., Bryant, J. P., and Chapin, F. S. 1985. Resource
availability and plant antiherbivore defense. – Science 230:
895–899.
- Delgado-Baquerizo, M., Guerra, C. A., Cano-Diaz, C., Egidi, E., Wang,
J. T., Eisenhauer, N., Singh, B. K., and Maestre, F. T. 2020. The
proportion of soil-borne pathogens increases with warming at the
global scale. – Nat. Clim. Chang. 10: 550–554.
- Duplessis, S., Lorrain, C., Peter, B., Figueroa, M., Dodds, P. N., and
Aime, M. C. 2021. Host adaptation and virulence in heteroecious rust
fungi. – Annu. Rev. Phytopathol. 59: 403–422.
- Fick, S. E., and Hijmans, R. J. 2017. WorldClim 2: new 1km spatial
resolution climate surfaces for global land areas. – Int. J.
Climatol. 37: 4302–4315.
- Grace, J. B. 2006. Structural equation modeling and natural
systems . Cambridge University Press, Cambridge, UK.
- Halbritter, A. H., Fior, S.,
Keller, I., Billeter, R., Edwards, P. J., Holderegger, R., Karrenberg,
S., Pluess, A. R., Widmer, A., and Alexander, J. M. 2018. Trait
differentiation and adaptation of plants along elevation gradients. –J. Evol. Biol. 31: 784–800.
- Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., and Mitchell, C. E.
2017. A multivariate test of disease risk reveals conditions leading
to disease amplification. – Proc. R. Soc. B-Biol. Sci. 284:
20171340.
- Halliday, F. W., Heckman, R. W.,
Wilfahrt, P. A., and Mitchell, C. E. 2019. Past is prologue: host
community assembly and the risk of infectious disease over time. –
Ecol. Lett. 22: 138–148.
- Halliday, F. W., and Rohr, J. R. 2019. Measuring the shape of the
biodiversity-disease relationship across systems reveals new findings
and key gaps. – Nat. Commun. 10: 5032.
- Halliday, F. W., Rohr, J. R.,
and Laine, A. L. 2020. Biodiversity loss underlies the dilution effect
of biodiversity. – Ecol. Lett. 23: 1611–1622.
- Halliday, F. W., Jalo, M., and Laine, A. L. 2021. The effect of host
community functional traits on plant disease risk varies along an
elevational gradient. – eLife 10: e67340.
- Hansen, E. M., and Goheen, E. M. 2000 Phellinus weirii and
other native root pathogens as determinants of forest structure and
process in western North America. – Annu. Rev. Phytopathol. 38:
515–539.
- Healey, S. P., Raymond, C. L., Lockman, I. B., Hernandez, A. J.,
Garrard, C., and Huang, C. 2016. Root disease can rival fire and
harvest in reducing forest carbon storage. – Ecosphere 7: e01569.
- Huang, H. Y., Zhou, L., Chen, J., and Wei, T. Y. 2020. ggcor: Extended
tools for correlation analysis and visualization. R package version
0.9.8.1. Retrieved from https://github.com/houyunhuang/ggcor
- Huber, D. M., and Watson, R. D. 1974. Nitrogen form and plant disease.
– Annu. Rev. Phytopathol. 12: 139–165.
- Johnson, P. T., Preston, D. L., Hoverman, J. T., and Richgels, K. L.
2013. Biodiversity decreases disease through predictable changes in
host community competence. – Nature 494: 230–233.
- Kamiya, T., O’Dwyer, K., Nakagawa, S., and Poulin, R. 2014. Host
diversity drives parasite diversity: meta-analytical insights into
patterns and causal mechanisms. – Ecography 37: 689–697.
- Keesing, F., Holt, R. D., and Ostfeld, R. S. 2006. Effects of species
diversity on disease risk. – Ecol. Lett. 9: 485–498.
- Keesing, F. et al . 2010. Impacts of biodiversity on the
emergence and transmission of infectious diseases. – Nature 468:
647–652.
- Lajeunesse, M. J. 2013. Recovering missing or partial data from
studies: a survey of conversions and imputations for meta-analysis .
In: Koricheva J, Gurevitch J, Mengersen K. eds. Handbook of
meta-analysis in ecology and evolution . Princeton, NJ, USA: Princeton
University Press, 195–206.
- Lefcheck, J. S. 2016.
piecewiseSEM: Piecewise structural equation modelling in r for
ecology, evolution, and systematics. – Methods Ecol. Evol. 7:
573–579.
- Liang, M. X., Liu,. X. B.,
Gilbert, G. S., Zheng, Y., Luo, S., Huang, F. M., and Yu, S X. 2016.
Adult trees cause density-dependent mortality in conspecific seedlings
by regulating the frequency of pathogenic soil fungi. – Ecol. Lett.
19: 1448–1456.
- Liu, X., Lyu, S. M., Zhou, S. R., and Bradshaw, C. J. A. 2016. Warming
and fertilization alter the dilution effect of host diversity on
disease severity. – Ecology 97: 1680–1689.
- Liu, X., Lyu, S. M., Sun, D.
X., Bradshaw, C. J. A, and Zhou, S. R. 2017. Species decline under
nitrogen fertilization increases community-level competence of fungal
diseases. – Proc. R. Soc. B-Biol. Sci. 284: e20162621.
- Liu, X., Ma, Z. Y., Cadotte, M. W., Chen, F., He, J. S., and Zhou, S.
R. 2019. Warming affects foliar fungal diseases more than
precipitation in a Tibetan alpine meadow. – New Phytol. 221:
1574–1584.
- Liu, X., Chen, L. F., Liu, M., Garcia-Guzman, G., Gilbert, G. S., and
Zhou, S. R. 2020. Dilution effect of plant diversity on infectious
diseases: latitudinal trend and biological context dependence. –
Oikos 129: 457–465.
- Liu, X., Lu, Y. W., Zhang, Z. H., and Zhou, S. R. 2020. Foliar fungal
diseases respond differently to nitrogen and phosphorus additions in
Tibetan alpine meadows. – Ecol. Res. 35: 162–169.
- Liu, X., Zhang, L., Huang, M. J., and Zhou, S. R. 2021. Plant
diversity promotes soil fungal pathogen richness under fertilization
in an alpine meadow. – J. Plant Ecol. 14: 323–336.
- Liu, Y., and He, F. L. 2019. Incorporating the disease triangle
framework for testing the effect of soil-borne pathogens on tree
species diversity. – Funct. Ecol. 33: 1211–1222.
- Lomolino, M. V. 2001. Elevation gradients of species-density:
historical and prospective views. – Glob. Ecol. Biogeogr. 10:
3-13.
- Lu, J. Y. 1997. Plant disease diagnosis . Beijing, China: China
Agricultural Press.
- Mbareche, H., Veillette, M., Bilodeau, G., and Duchaine, C. 2020.
Comparison of the performance of ITS1 and ITS2 as barcodes in
amplicon-based sequencing of bioaerosols. – PeerJ 8: e8523.
- Mitchell, C. E., Tilman, D., and Groth, J. V. 2002. Effects of
grassland plant species diversity, abundance, and composition on
foliar fungal disease. – Ecology 83: 1713–1726.
- Nakagawa, S., Noble, D. W. A.,
Senio, A. M., and Lagisz, M. 2017. Meta-evaluation of meta-analysis:
ten appraisal questions for biologists. – BMC Biol. 15: 18.
- Nguyen, N. H., Song, Z. W., Bates, S. T., Branco, S., Tedersoo, L.,
Menke, J., Schilling, J. S., and Kennedy, P. G. 2015. FUNGuild: An
open annotation tool for parsing fungal community datasets by
ecological guild. – Fungal Ecol. 20: 241-248.
- Oksanen, J. et al . 2020. vegan: Community Ecology Package. R
package version 2.5.7. Retrieved from
https://CRAN.R-project.org/package=vegan
- Pinheiro, J., Bates, D., DebRoy,
S., Sarkar, D., and R Core Team. 2021. nlme: Linear and Nonlinear
Mixed Effects Models. Retrieved from
https://CRAN.R-project.org/package=nlme
- R Development Core Team. 2021. R: A language and environment for
statistical computing. Version 4.1.1. Vienna, Austria: R Foundation
for Statistical Computing. Retrieved from http://www.R-project.org
- Rohatgi, A. 2020. WebPlotDigitizer (Version 4.4). Retrieved from
https://automeris.io/WebPlotDigitizer
- Romero, F., Cazzato, S., Walder, F., Vogelgsang, S., Bender, S. F.,
and van der Heijden, M. G. A. 2021. Humidity and high temperature are
important for predicting fungal disease outbreaks worldwide. – New
Phytol. 234, 1553–1556.
- Rosenberg, M. S., Rothstein HR, and Gurevitch J. 2013. Effect
sizes: conventional choices and calculations . In: Koricheva J,
Gurevitch J, Mengersen K. eds. Handbook of meta-analysis in
ecology and evolution . Princeton, NJ, USA: Princeton University
Press, 61–71.
- Roslin, T. et al . 2017.
Higher predation risk for insect prey at low latitudes and elevations.
– Science, 356: 742–744.
- Rottstock, T., Joshi, J., Kummer, V., and Fischer, M. 2014. Higher
plant diversity promotes higher diversity of fungal pathogens, while
it decreases pathogen infection per plant. – Ecology 95: 1907–1917.
- Rowe, R. J. 2009. Environmental
and geometric drivers of small mammal diversity along elevational
gradients in Utah. – Ecography 32: 411–422.
- Roy, B. A., Gusewell, S., and Harte, J. 2004. Response of plant
pathogens and herbivores to a warming experiment. – Ecology 85:
2570–2581.
- Siebold, M., and Tiedemann, A.
2013. Effects of experimental warming on fungal disease progress in
oilseed rape. – Glob. Change Biol. 19: 1736–1747.
- Stukenbrock, E. H., McDonald,
B. A. 2008. The origins of plant pathogens in agro-ecosystems. –
Annu. Rev. Phytopathol. 46: 75–100.
- Tedersoo, L. et al . 2014. Global diversity and geography of
soil fungi. – Science 346: 1078–1078.
- Tedersoo, L., and Lindahl, B. 2016. Fungal identification biases in
microbiome projects. – Env. Microbiol. Rep. 8: 774–779.
- Tellenbach, C., Grünig, C. R., and Sieber, T. N. 2010. Suitability of
quantitative real-time PCR to estimate the biomass of fungal root
endophytes. – Appl. Environ. Microb. 76: 5764–5772.
- Wei, J. C. 1979. Fungal Identification Manual . Shanghai Science
and Technology Press, Shanghai, China.
- van Agtmaal, M., Straathof, A., Termorshuizen, A., Teurlincx, S.,
Hundscheid, M., Ruyters, S., Busschaert, P., Lievens, B., and de Boer,
W. 2017. Exploring the reservoir of potential fungal plant pathogens
in agricultural soil. – Appl. Soil Ecol. 121: 152–160.
- Veresoglou, S. D., Barto, E. K., Menexes, G., and Rillig, M. C. 2013.
Fertilization affects severity of disease caused by fungal plant
pathogens. – Plant Pathol. 62: 961–969.
- Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor
package. – J. Stat. Softw. 36: 1–48.
- Xiao, Y., Liu, X., Zhang, L., Song, Z. P., and Zhou, S. R. 2021. The
allometry of plant height explains species loss under nitrogen
addition. – Ecol. Lett. 24: 553–562.
- Zhang, R. 2009. Survey and identification of the alpine grassland’s
major fungal diseases in Gannan region of Gansu province. Master
thesis, Gansu Agricultural University, Lanzhou, Gansu, China.
- Zhu, J. T., Zhang, Y. J., Yang, X., Chen, N., Li, S. P., Wang, P. D.,
Jiang, L. 2020. Warming alters plant phylogenetic and functional
community structure. – J. Ecol. 108: 2406–2415.
Table 1. All abbreviations and their corresponding annotations
in the main text.