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Abstract. We consider the least energy solutions of Hatree-Fock system with the coupling
term ϕu,v in the two equations, and the nonlinearity are general subcritical with a small
perturbation. By Nehari’s manifold approach, the existence of non-trivial ground state solutions
is obtained. The asymptotic behaviors with respect to parameters λ and β are also studied.

1. Introduction and main result

1.1. Background. In this paper, we consider the following Hatree-Fock system{
−∆u+ u+ λφu,vu = f (u) + βv,

−∆v + v + λφu,vv = g (v) + βu,
in R3,(1.1)

where

φu,v(x) :=

∫
R3

u2(y) + v2(y)

|x− y|
dy ∈ D1,2

(
R3

)
,

and λ > 0 , 0 < β < 1. It can also be seen as a Schrödinger-Poisson type system. In the past ten
years, Schrödinger-Poisson system has been used in various aspects owing to it’s wide application
in physics. From the perspective of physics, if we ignore the manetic effect, the equations
could describes the system which has the interaction between the same charged particles. The
nonlinear term f and g simulate the interaction between particles, and the coupling terms φu,vu
and φu,vv are related to the interaction in the electric field. For more physical knowledge about
the Schrödinger-Poisson system we could refer to [11, 24, 25, 27, 28] and the references therein.
Recently, there has been an increasing attention towards systems like (1.1), and the existence
of ground state solutions and the asymptotic behavior have been investigated when λ = 0 and
β → 0 in [15], more related content could refer to [18,30,31] and references therein.

1.2. Related results. Let us summarize some results related to Schrödinger-Poisson system{
−∆u+ u+ λφu = |u|p−2u,

−∆φ = u2,
in R3.(1.2)

In [22], D’Aprile and Mugnai obtained the existence of a nontrivial radial solution to the problem
(1.2) for p ∈ [4, 6). In [8], Ruiz obtained some nonexistence results for (1.2) and established
the relation between the existence of the positive solutions to system (1.2) with the parameters
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p ∈ (2, 6) and λ > 0. For p ∈ (4, 6), Ruiz [9] investigated the existence of radial ground
states to system (1.2) and obtained the different behavior of the solutions depending on p as
λ → 0. We also would like to cite some works in [4, 21], where system (1.2) was considered as
λ → 0. In [4,21], the authors concerned with the semi-classical states for system (1.2). Precisely,
the authors studied the existence of radial positive solutions concentrating around a sphere.
Recently, some works were focused on the existence of sign-changing solutions to the system
(1.2). Subsequently, Ianni [13] obtained a similar result for p ∈ [4, 6). More recently, Wang and
Zhou [32] considered the non-autonomous system, we also would like to mention [1,10,12,16,29]
and the references therein.

The works discussed above mainly focused on the equation (1.2) with the very special
nonlinearity f(u) = |u|p−2u. In [4], Azzollini et al. concerned with the existence of a positive
radial solution to the single equation of system (1.1) under the effect of a general nonlinear term,
see also [2, 26]. Then, Zhang [7] obtained the existence of positive solutions to the equations
involving a more general critical nonlinearity, where f is at critical growth.{

−∆u+ u+ λφu = f(u),

−∆φ = λu2,
in R3.(1.3)

When λ = 0, (1.1) leads to the local weakly coupled nonlinear Schrödinger-Poisson system{
−∆u+ u = f (u) + βv,

−∆v + v = g (v) + βu,
in RN ,(1.4)

for β ≥ 0, N ≥ 3, which has been intensively studied in the past five years. Zou and Chen [30]
obtained that, if f and g satisfy the critical condition, then there exists β0 ∈ (0, 1) such that for
any 0 < β < β0, (1.4) has a positive radially symmetric bound state (uλ, vλ) ∈ C2(RN )×C2(RN )
when N ≥ 3. In [31], for f(u) = (1 + a(x))|u|p−1u and g(v) = (1 + b(x))|v|p−1v, suppose in
addition that a(x) + b(x) ≥ 0, then, for every 0 < β < 1, (1.4) has a positive ground state
solution. Furthermore, they also proved several properties of the ground states at infinity.

When λ = 0, β = 0 and f , g are special form, the system (1.1) becomes{
−∆u+ u = |u|2q−2u+ γ|v|q|u|q−2u,

−∆v + ω2v = |v|2q−2v + γ|u|q|v|q−2v,
in R3,(1.5)

for 0 < ω2 ≤ 1, which has been intensively studied in the past fifteen years. Applying
variation methods, the first work is considered by Lin and Wei [23] and also by Ambrosetti
and Colorado [5], Maia, Montefusco, and Pellacci [17], Bartsch and Wang [20], Sirakov [6], then
followed by an extensive literature presenting investigations of different aspects and variations
of this problem. In fact this system is obtained when looking for solitary wave solutions of two
coupled nonlinear Schrödinger equations which model, for instance, binary mixtures of Bose-
Einstein condensates or propagation of wave packets in nonlinear optics.

Based on the study of (1.2) by Ruiz, Maia et al. which considered the Schrödinger equation
in the simulation of the interaction force between nucleus and electron from the physical
background. Due to the complexity of the system, it is necessary to consider the interaction
between molecular orbitals and whether Pauli theorem is taken into account when using the
model to approximate. Maia et al. [1] added a perturbation term containing parameter β to the
right end of (1.2), and coupled the two equations into equations through φu,v, then the following
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system is obtained, {
−∆u+ u+ λφu,vu = |u|2q−2u+ β|v|q|u|q−2u,

−∆v + v + λφu,vv = |v|2q−2v + β|u|q|v|q−2v,
in R3,(1.6)

the authors studied the existence of radial state solutions and the asymptotic behaviors with
respect to parameter β. When q ∈ (32 , 3), λ > 0 and β ≥ 0, system (1.6) has a radial ground
state solution (uβ , vβ) 6= (0, 0). Moreover, if β = 0, the ground state solution is semitrivial, if
β is sufficiently small or sufficiently large, the ground state solution has different property and
asymptotic behaviors.

Indeed, when β = 0, the system (1.5) is uncoupled and it reduced to two equations of the same
type, for such type of equations, well known results have been obtained about uniqueness of the
positive solution. In our case, even for β = 0, the system remains coupled by φu,v. Moreover,
compared with equation (1.6), the system considered in this paper is more generally. This form
could better describes the interaction between charged particles and which could be used to
describe more cases in physics.

By the Nehari manifold and Ambrosetti–Rabinowitz condition, a voctorial ground state
solution (u 6= 0, v 6= 0) is obtained when λ > 0 and 0 < β < 1, we also studied the asymptotic
behaviors of the solutions.

1.3. Main result. Here we concerned with positive solutions of (1.1), and in the sequel we
assume without loss of generality that f(s) ≡ g(s) ≡ 0 for all s ≤ 0. Assume that f(s) (the
same as g(s)) satisfies the following properties throughout the paper:

(f1) f : R → R+ is continuous, and lims→0
f(s)
s = 0,

(f2) lim sups→+∞
f(s)
sp−1 < +∞, where 2 < p < 2∗,

(f3) There exists µ > 4 such that f(t)t ≥ µF (t), where F (t) =
∫ t
0 f(s)ds,

(f4) For every t ∈ (0,+∞), f(t)/t3 is an increasing function of t.
The main result is as follows.

Theorem 1.1. Suppose that f (the same as g) satisfies (f1) − (f4), λ > 0 and 0 < β < 1, the
Hatree-Fock system (1.1) has a voctorial ground state solution.

1.4. Main difficulties and ideas. If the problem is discussed in R3, we find the compactness
condition cannot be satisfied. In order to deal with compactness issue, we will work in the
radial setting and use the compact embedding of H1

r (R3) into Lp
(
R3

)
for p ∈ (2, 2∗). Then

the functional will be restricted to Hr := H1
r (R3) ×H1

r (R3) and the solutions will be found in
Hr. The invariance of the functional under rotations and the Palais’ Principle of Symmetric
Criticality [19] makes natural this constraint. According to the variational method under the
condions (f1) − (f4) the energy functional Iλ,β is well defined, and the minimum value of the
energy functional is obtained in Nehari manifold N λ,β := {(u, v) ∈ Hr : Jλ,β(u, v) = 0}. What’s
more, the ground state solution is proved to be positive by the strong maximum principle. At
the end of the paper, because of the Iλ,β has mountain pass geometry, the asymptotic behaviors
are obtained when λ → 0 and β → 0.

The paper is organized as follows.
In Section 2, we present some preliminaries in order to prove our results. Particularly, we recall
some results in [7] and [1], that will be used to rule out the semitrivial solution and briefly
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descript the existence of solution for the limit problem.
In Section 3, the existence of ground state solutions is obtained. Moreover, the solution is
vectorial.
In Section 4, the asymptotic behaviors of ground states with respect to parameters λ and β are
also studied.

Notations.
• Unless otherwise stated, integrals will always be considered on the whole R3 with the Lebesgue
measure.
• We denote with ‖·‖ the norm in H1(R3) and ‖u‖ :=

(∫
R3 |∇u|2 + |u|2 dx

) 1
2 .

• We denote with ‖·‖p the standard Lp− norm and ‖u‖p :=
(∫

R3 |u|p dx
) 1

p for p ∈ [1,+∞).
• H1

r (R3) is the subspace of H1(R3) of radially symmetric functions.
• D1,2(R3) :=

{
u ∈ L2∗(R3) : ∇u ∈ L2(R3)

}
.

2. Preliminaries

Recalling the following well-known facts, λ1 is the first eigenvalue of −4, and Sp denotes the
best constant of Soblolev embedding H1

(
R3

)
↪→ Lp

(
R3

)
,

Sp

(∫
R3

|u|p dx
) 2

p

≤
∫
R3

(
|∇u|2 + |u|2

)
dx, for all u ∈ H1

(
R3

)
.

For (u, v) ∈ H1(R3) ×H1(R3), the Lax–Milgram theorem implies that there exists a unique
φu,v ∈ D1,2(R3) such that

−4 φ = 4π(u2 + v2),

with

φu,v(x) :=

∫
R3

u2(y) + v2(y)

|x− y|
dy ∈ D1,2

(
R3

)
.(2.1)

Assumption (f2) implies f has (possibly) a subcritical growth at infinity. Moreover, for every
ε1, ε2 > 0, there exists Cε1 , Cε1 > 0 such that

|f(t)| ≤ ε1 |t|+ Cε1 |t|
p−1 ,

and

|g(t)| ≤ ε2 |t|+ Cε2 |t|
p−1 ,

where 2 < p < 2∗. Define ε = max {ε1, ε2} and Cε = max {Cε1 , Cε2}, then we have

|f(t)t+ g(t)t| ≤ ε |t|2 + Cε |t|p .(2.2)

For the following system{
−∆u+ u+ λφu,vu = f (u) + βv,

−∆v + v + λφu,vv = g (v) + βu,
in R3,
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we define the energy functional Iλ,β : Hr → R by

Iλ,β(u, v) =
1

2

∫
R3

(
|∇u|2 + |u|2

)
dx+

1

2

∫
R3

(
|∇v|2 + |v|2

)
dx

+
λ

4

∫
R3

(u2 + v2)φu,vdx−
∫
R3

(F (u) +G(v)) dx− β

∫
R3

uvdx.

It is obvious to see that Iλ,β is of class C1 in Hr, and easy to verify that (u, v) ∈ H1
r (R3)×H1

r (R3)
is a solution of (1.1) if and only if (u, v) ∈ Hr is a critical point of the functional Iλ,β .

In order to prove the main result Theorem 1.1, we find the minimizer of C1-functional Iλ,β
under the constraint of

N λ,β := {(u, v) ∈ Hr : Jλ,β(u, v) = 0} ,

where

Jλ,β(u, v) :=
∫
R3

(
|∇u|2 + |u|2

)
dx+

∫
R3

(
|∇v|2 + |v|2

)
dx

+λ
∫
R3(u

2 + v2)φu,vdx−
∫
R3(f(u)u+ g(v)v)dx− 2β

∫
R3 uvdx.

(2.3)

Obviously, N λ,β contains all nontrivial radial critical points of Iλ,β . Moreover, the following
simple result assures us that any couple (u, v) ∈ Hr \ {0} can be uniquely projected on N λ,β via
γu,v(t) (which defined in the following) and gives us a further property of such a projection.

Lemma 2.1. For any (u, v) ∈ Hr\{0}, there exists a unique tu,v > 0 such that γu,v (tu,v) ∈ N λ,β

and

Iλ,β (γu,v (tu,v)) = max
t>0

Iλ,β (γu,v (t)) .(2.4)

Proof. Given (u, v) ∈ Hr \ {0}, we denote with γu,v : [0,+∞) → Hr the curve

γu,v := (tu, tv) .(2.5)

By the simple calculation we get

Iλ,β(γu,v(t)) =
t2

2

∫
R3

(
|∇u|2 + |u|2

)
dx+

t2

2

∫
R3

(
|∇v|2 + |v|2

)
dx

+
λt4

4

∫
R3

(u2 + v2)φu,vdx−
∫
R3

(F (tu) +G(tv))dx− t2β

∫
R3

uvdx,

and

I ′λ,β(γu,v(t)) =t

∫
R3

(
|∇u|2 + |u|2

)
dx+ t

∫
R3

(
|∇v|2 + |v|2

)
dx

+ λt3
∫
R3

(u2 + v2)φu,vdx−
∫
R3

(uf(tu) + vg(tv))dx− 2tβ

∫
R3

uvdx.
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Let (u, v) ∈ Hr \ {0}, we obtain

I ′λ,β(γu,v(t)) = 0 ⇔ (tu, tv) ∈ N λ,β

⇔ ‖u‖2 + ‖v‖2 − 2β

∫
R3

uvdx

=
1

t

∫
R3

(uf(tu) + vg(tv)) dx− t2λ

∫
R3

(u2 + v2)φu,vdx

= t2
(
1

t3

∫
R3

(uf(tu) + vg(tv)) dx− λ

∫
R3

(u2 + v2)φu,vdx

)
.

By (f4), the right hand side is an increasing function of t, thus, there exists a unique t = tu,v > 0,
such that Iλ,β(0) = 0, Iλ,β(γu,v(tu,v)) > 0 for t > 0 small, Iλ,β(γu,v(tu,v)) < 0 for t large.
Therefore maxt>0 Iλ,β (γu,v (tu,v)) is achieved at a unique t = tu,v such that I ′λ,β (γu,v (t)) = 0

and γu,v (tu,v) ∈ N λ,β . We define
m := inf

(u,v)∈Nλ,β

Iλ,β ,

c := inf
(u,v)∈Hr\{o}

max
t>0

Iλ,β (γu,v(t)) ,

hence, by standard proof we obtain

m = c.(2.6)

Lemma 2.2. (see [18]). Let q ∈ (2, 2∗), and {(un, vn)} ∈ Hr be such that (un, vn) ⇀ (u, v) in
Hr as n → +∞. We have , as n → +∞,

φun,vn → φu,v in D1,2
r (R3),(2.7) ∫

R3

(u2n + v2n)φun,vn →
∫
R3

(u2 + v2)φu,v.(2.8)

Moreover, φu,v : H1(R3) 7→ D1,2(R3) is continuous and maps bounded sets into bounded sets,
and if (u, v) is radial function, so is φu,v.

3. The proof of Theorem 1.1

Now we are ready to find the ground state solution of (1.1) by minimizing the functional Iλ,β
on N λ,β .
Proof of Theorem (1.1). We divide the proof in several steps.
Step 1. N λ,β is bounded away from zero, i.e. dist(N λ,β , 0) > 0.
For every (u, v) ∈ N λ,β , thanks to (2.2) and compact embedding of the radial functions we have

‖u‖2 + ‖v‖2 =
∫
R3

(f(u)u+ g(v)v)dx− λ

∫
R3

(u2 + v2)φu,vdx+ 2β

∫
R3

uvdx

≤ ε

∫
R3

(u2 + v2)dx+ Cε
∫
R3

(|u|p + |v|p)dx− λ

∫
R3

(u2 + v2)φu,vdx+ 2β

∫
R3

uvdx

≤ ε(‖u‖22 + ‖v‖22) + Cε(‖u‖pp + ‖v‖pp) + 2β ‖u‖2 ‖v‖2 ,

(1− β)(‖u‖2 + ‖v‖2) ≤ ε

λ1
(‖u‖2 + ‖v‖2) + Cε

Sp
p
(‖u‖p + ‖v‖p),



GROUND STATES SOLUTION TO HATREE-FOCK SYSTEM 7

then

((1− β)− ε

λ1
)(‖u‖2 + ‖v‖2) ≤ Cε

Sp
p
(‖u‖p + ‖v‖p),

where λ1 is the first eigenvalue, we get

‖u‖+ ‖v‖ ≥ δ > 0,

so that

dist(N λ,β , 0) > 0,

which proves the claim.

Step 2. The functional Iλ,β is coercive on N λ,β and m = inf(u,v)∈Nλ,β Iλ,β > 0.
For every (u, v) ∈ N λ,β , by (f3),

Iλ,β(u, v) = Iλ,β(u, v)−
1

µ
Jλ,β(u, v)

=

(
1

2
− 1

µ

)∫
R3

(
|∇u|2 + |u|2

)
dx+

(
1

2
− 1

µ

)∫
R3

(
|∇v|2 + |v|2

)
dx

+

∫
R3

(f(u)u− µF (u)) dx+

∫
R3

(g(v)v − µG(v)) dx

+

(
1

4
− 1

µ

)
λ

∫
R3

φ
(
u2 + v2

)
dx− (

1

2
− 1

µ
)2β

∫
R3

uvdx

≥
(
1

2
− 1

µ

)(
‖u‖2 + ‖v‖2 − 2β

∫
R3

uvdx

)
,

as we can see, 0 < β < 1 and 1
4 − 1

µ > 0, then

Iλ,β(u, v) ≥
(
1

2
− 1

µ

)(
‖u‖2 + ‖v‖2

)
,

which shows that Iλ,β is coercive on N λ,β and that

m = inf
(u,v)∈Nλ,β

Iλ,β (u, v) ≥ inf
(u,v)∈Nλ,β

(
1

2
− 1

µ

)(
‖u‖2 + ‖v‖2

)
≥

(
1

2
− 1

µ

)
δ2 > 0.

by Step1.

Step 3. There exists (u, v) ∈ N λ,β such that Iλ,β (u, v) = m.
Firstly, we prove that if {(un, vn)}∞n=1 is a minimizing sequence for Iλ,β on N λ,β , then it is

bounded. Hence, up to subsequence, it weakly converges to some (u, v) in Hr. As we know
m = inf(u,v)∈Nλ,β Iλ,β , there exists {(un, vn)}∞n=1 ⊂ N λ,β such that Iλ,β (un, vn) → m > 0 and
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(un, vn) ∈ N λ,β , i.e. I ′λ,β (un, vn) (un, vn) = 0 for every n ∈ R. Thus, by (f3) we deduce that

m+ on (1) = Iλ,β (un, vn)− 0

= Iλ,β (un, vn)−
1

µ
I ′λ,β (un, vn) (un, vn)

=

(
1

2
− 1

µ

)∫
R3

(
|∇un|2 + |un|2

)
dx+

(
1

2
− 1

µ

)∫
R3

(
|∇vn|2 + |vn|2

)
dx

+

(
1

4
− 1

µ

)
λ

∫
R3

φ
(
u2n + v2n

)
dx− (

1

2
− 1

µ
)2β

∫
R3

unvndx

+

∫
R3

(
1

µ
f(un)un − F (un)

)
dx+

∫
R3

(
1

µ
g(vn)vn −G(vn)

)
dx

≥ (
1

2
− 1

µ
)

(
‖un‖2 + ‖vn‖2 − 2β

∫
R3

unvndx

)
≥

(
1

2
− 1

µ

)(
‖un‖2 + ‖vn‖2

)
,

then

‖un‖2 + ‖vn‖2 ≤
m+ on(1)(

1
2 − 1

µ

) ,

sup (‖un‖+ ‖vn‖) < +∞,

the sequence {(un, vn)} is bounded.
Since Iλ,β is coercive on N λ,β , the sequence {(un, vn)} is bounded, due to the compact

embedding and up to subsequences, there exists
{(

unj , vnj

)}
⊂ Hr, such that(

unj , vnj

)
⇀ (u, v) in Hr

(
R3

)
,(

unj , vnj

)
→ (u, v) in Lp

(
R3

)
.

As we know, there exists

ω1 ∈ Lp
(
R3

)
s.t.

∣∣∣unj(x)

∣∣∣ ≤ ω1, |u(x)| ≤ ω1,

ω2 ∈ Lp
(
R3

)
s.t.

∣∣∣vnj(x)

∣∣∣ ≤ ω2, |v(x)| ≤ ω2,

then, we deduce

F
(
unj (x)

)
≤ ε

2
ω2
1 +

Cε

P
ωp
1 ,

because F is continuous and unj(x) → u(x) in Lp , we have

F
(
unj (x)

)
→ F (u(x)) a.e. in Lp

(
R3

)
,

using dominated convergence theorem, we get∫
R3

F
(
unj (x)

)
dx →

∫
R3

F (u(x)) dx as j → +∞,(3.1)

∫
R3

f
(
unj

)
unjdx →

∫
R3

f (u)udx as j → +∞.(3.2)
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Similarly, the conclusions above holds for G
(
vnj

)
,∫

R3

G
(
vnj (x)

)
dx →

∫
R3

G (v(x)) dx as j → +∞,(3.3)

∫
R3

g
(
vnj

)
vnjdx →

∫
R3

g (v) vdx as j → +∞.(3.4)

Eventually passing to this suitable subsequence,

‖u‖ ≤ lim
j→∞

inf
∥∥unj

∥∥ and ‖v‖ ≤ lim
j→∞

inf
∥∥vnj

∥∥ .(3.5)

Thus, for one hand, by (2.8) in 2.2, (3.1), (3.3) and (3.5) we deduce

Iλ,β (u, v) =
1

2

∫
R3

(
|∇u|2 + |u|2

)
dx+

1

2

∫
R3

(
|∇v|2 + |v|2

)
dx

+
λ

4

∫
R3

(
u2 + v2

)
φu,vdx−

∫
R3

(F (u) +G(v)) dx− β

∫
R3

uvdx

≤ lim
j→∞

inf
1

2

(∥∥unj

∥∥2 + ∥∥vnj

∥∥2)+
λ

4

∫
R3

(
u2nj

+ v2nj

)
φuj ,vjdx

−
∫
R3

(
F (unj ) +G(vnj )

)
dx− β

∫
R3

unjvnjdx

≤ lim
j→∞

inf Iλ,β(unj , vnj ).

as our previous proof Iλ,β
(
unj , vnj

)
→ m when j → ∞, we deduce

Iλ,β (u, v) ≤ m.

For another hand, because of the constraint condition Jλ,β

(
unj , vnj

)
= 0 for every j ∈ R, thanks

to (3.2), (3.4)and (3.5),∥∥unj

∥∥2 + ∥∥vnj

∥∥2 = ∫
R3

f(unj )unj + g(vnj )vnjdx− λ

∫
R3

(
u2nj

+ v2nj

)
φunj ,vnj

dx+ 2β

∫
R3

unjvnjdx,

‖u‖2 + ‖v‖2 ≤
∫
R3

(f(u)u+ g(v)v) dx− λ

∫
R3

(
u2 + v2

)
φu,vdx+ 2β

∫
R3

uvdx,

I ′λ,β (u, v) (u, v) ≤ 0.

using the derivation process in Step1 we get

δ ≤
(
(1− β)− ε

λ1

)
(‖u‖2 + ‖v‖2) ≤ Cε (‖u‖p + ‖v‖p) ,

where δ =
(
(1− β)− ε

λ1

)
δ, then

‖u‖p + ‖v‖p ≥
(

δ

Cε

) 1
p

> 0,

and

inf (‖u‖p + ‖v‖p) > 0 for every (u, v) ∈ N λ,β .
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Noting that
(
unj , vnj

)
∈ N λ,β , and

(
unj , vnj

)
→ (u, v), then

∥∥unj

∥∥p + ∥∥vnj

∥∥p ≥ (
δ

Cε

) 1
p

,

‖u‖p + ‖v‖p ≥
(

δ

Cε

) 1
p

> 0,

we obtain

(u, v) 6≡ (0, 0) .

According to Lemma 2.1, for every (u, v) ∈ Hr, there exists a unique tu,v > 0, such that
Iλ,β (γu,v (tu,v)) = maxt>0 Iλ,β (γu,v (t)) where (tu,vu, tu,vv) ∈ N λ,β . From [1], we know that, in
paiticular (u, v) ∈ N λ,β if and only if tu,v = 1 and then

0 < m = inf
(u,v)∈Nλ,β

Iλ,β (u, v) = inf
(u,v)∈Hr\{0}

Iλ,β (γu,v (tu,v)) = inf
(u,v)∈Hr\{0}

max
t>0

Iλ,β (γu,v (t))

i.e.

Iλ,β (u, v) ≥ m,

then

Iλ,β (u, v) = m.

Step 4. Let (u, v) ∈ N λ,β be such that Iλ,β (u, v) = m, then I ′λ,β (u, v) = 0.
Firstly, we should prove (u, v) is a regular point of N λ,β , i.e. Jλ,β (u

∗, v∗) 6= 0, we consider the
following formula

Jλ,β (u, v) = I ′λ,β (u, v) (u, v)

=

∫
R3

|∇u|2 + |u|2 dx+

∫
R3

|∇v|2 + |v|2 dx

+ λ

∫
R3

(
u2 + v2

)
φu,vdx−

∫
R3

(f(u)u+ g(v)v) dx− 2β

∫
R3

uvdx.

J ′
λ,β (u, v) (u, v) = 2

∫
R3

(
|∇u|2 + |u|2

)
dx+ 2

∫
R3

(
|∇v|2 + |v|2

)
dx+ 2λ

∫
(u2 + v2)φu,vdx

−
∫
R3

(
f ′(u)u2 + f(u)u

)
dx−

∫
R3

(
g′(v)v2 + g(v)v

)
dx− 4β

∫
R3

uvdx.

because (u, v) ∈ N λ,β ,∫
R3

(
|∇u|2 + |u|2

)
dx+

∫
R3

(
|∇v|2 + |v|2

)
dx

=

∫
R3

(f(u)u+ g(v)v) dx− λ

∫
R3

(
u2 + v2

)
φu,vdx+ 2β

∫
R3

uvdx,
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then, we deduce

J ′
λ,β (u, v) (u, v) = 2

∫
R3

(f(u)u+ g(v)v) dx

−
∫
R3

(
f ′(u)u2 + g′(v)v2

)
dx−

∫
R3

(f(u)u+ g(v)v) dx

=

∫
R3

f(u)udx−
∫

f ′(u)u2dx+

∫
R3

(
g(v)v + g′(v)v2

)
dx

=

∫
R3

u
[
f(u)− f ′(u)u

]
dx+

∫
R3

v
[
g(v)− g′(v)v

]
dx,

noting that f(u)(the same as g(v))satisfies the assumption (f4)�for every (u, v) ∈ N λ,β , and
(u, v) 6≡ (0, 0)�

3f(u)− f ′(u)u < 0 and 3g(v)− g′(v)v < 0,

from (f1) we know f : R → R+ , the same as g, then
f(u)− f ′(u)u < 0 and g(v)− g′(v)v < 0,

i.e.
J ′
λ,β (u, v) (u, v) < 0.

Then, thanks to the lagrange multiplier rule we know that, for some l ∈ R,
I ′λ,β (u, v) + lJ ′ (u, v) = 0.(3.6)

In order to obtain I ′λ,β (u, v) = 0, we only need to prove l = 0. By (3.6),it is obvious that

I ′λ,β (u, v) (u, v) + lJ ′ (u, v) (u, v) = 0,

as we know (u, v) ∈ N λ,β , then I ′λ,β (u, v) (u, v) = 0, and J ′
λ,β (u, v) (u, v) < 0, which deduce

l = 0.
Next, we prove that the ground state solution is vectorial.

Lemma 3.1. Assume that (u, v) is a nontrivial solution of (1.1), then u > 0 and v > 0.

Proof. It is easily seen from above that both u 6≡ 0 and v 6≡ 0. Indeed, if u 6≡ 0, means v = 0,
then the equation only has zero solution� and if u 6≡ 0, the situation is similar, which contradicts
the results we proved earlier.

Assume by contradiction that
{
x ∈ R3 : u (x) < 0

}
is not empty. By a standard regularity

theory, we see that u, v ∈ W 2,q
loc

(
R3

)
for any q ∈ (2, 2∗), which implies

−∆u+ u+ λφu,vu = f(u) + βv, a.e. x ∈ R3,

and u, v ∈ C1,α
loc

(
R3

)
, 0 < α < 1, therefore, ∆u ∈ C

(
R3

)
.

Let u (x1) = infR3 u(x) < 0. We claim that ∆u (x1) ≥ 0. Indeed, if ∆u (x1) < 0, there exists
r > 0 such that

u(x) < 0, ∆u(x) < 0, ∀x ∈ B (x1, r) ,

which implies from the maximum principle(cf. [14]) that infB(x1,r) u(x) ≥ inf∂B(x1,r) u(x). Note
that u (x1) = infR3 u(x), we obtain that u ≡ const in B(x, r) from the strong maximum
principle(cf. [14]), so ∆u (x1) = 0 , which is a contradiction.

Thus ∆u (x1) ≥ 0. Note that f(s) ≡ 0 for s ≤ 0, and if we have f (u (x1)) = 0, then
−∆u (x1)+u(x1)+λφu(x1),v(x1)u (x1) = βv (x1) ≤ u (x1) < βu (x1), that is, v (x1) < infR3 u(x) <
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0 , so infR3 v(x) < infR3 u(x). Similarly, we can obtain that infR3 u(x) < infR3 v(x), which is a
contradiction. Hence,

{
x ∈ R3 : u(x) < 0

}
= ∅, and u ≥ 0. Similarly, v ≥ 0. Then by the strong

maximum principle, we see that u, v > 0.

4. Asymptotic Behavior of Ground State Solutions

As it is usual for elliptic equations, the solutions satisfy a suitable identity called Pohozaev
identity. It can be obtained, at least formally, by the relation

d

dt
Iλ,β (ut, vt)

∣∣∣∣
t=1

= 0 where ut(x) := u(x/t).

Next, Pohozaev identity is given.

Lemma 4.1. If (u, v, φ) is a solution of (1.1) then it satisfies the Pohozaev identity

1
2

(
‖∇u‖22 + ‖∇v‖22

)
+ 3

2

(
‖u‖22 + ‖v‖22

)
+ 5

4λ
∫
R3

(
u2 + v2

)
φu,vdx

= 3
∫
R3 (F (u) +G(v)) dx+ 3β

∫
R3 uvdx.

(4.1)

Proof. The proof is similar to reference [18].
Next, we discuss the asymptotic behaviors of the system (1.1).

Assume that λ > 0, 0 < β < 1. Let (uλ,β , vλ,β) be a solution of

{
−∆u+ u+ λφu,vu = f (u) + βv,

−∆v + v + λφu,vv = g (v) + βu,
in R3.

Then one may prove that (uλ,β , vλ,β) satisfied the Nehari manifold (3.1) and Pohozaev identity
(4.1). Firstly, we consider the energy functional, and write (u, v) for (uλ,β , vλ,β). For one thing,
thanks to Pohozaev identity,

Iλ,β(u, v) =
1

2

∫
R3

(
|∇u|2 + |u|2

)
dx+

1

2

∫
R3

(
|∇v|2 + |v|2

)
dx+

λ

4

∫
R3

(
u2 + v2

)
φu,vdx

− 1

6

∫
R3

(
|∇u|22 + |∇v|22

)
dx− 1

2

∫
R3

(
|u|22 + |v|22

)
dx+

5

12
λ

∫
R3

(
u2 + v2

)
φu,vdx

=
1

3

∫
R3

(
|∇u|2 + |u|2

)
dx+

1

3

∫
R3

(
|∇v|2 + |v|2

)
dx− 1

6
λ

∫
R3

(
u2 + v2

)
φu,vdx

− 1

3

∫
R3

(
|u|2 + |v|2

)
dx

≤1

3

(
‖u‖2 + ‖v‖2

)
.
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For another thing,

Iλ,β(u, v) = Iλ,β(u, v)−
1

µ
Jλ,β(u, v)

=

(
1

2
− 1

µ

)∫
R3

(
|∇u|2 + |u|2

)
dx+

(
1

2
− 1

µ

)∫
R3

(
|∇v|2 + |v|2

)
dx

+

∫
R3

(f(u)u− µF (u)) dx+

∫
R3

(g(v)v − µG(v)) dx

+

(
1

4
− 1

µ

)
λ

∫
R3

φ
(
u2 + v2

)
dx− (

1

2
− 1

µ
)2β

∫
R3

uvdx

≥
(
1

2
− 1

µ

)(
‖u‖2 + ‖v‖2 − 2β

∫
R3

uvdx

)
≥ C

(
‖u‖2 + ‖v‖2

)
.

Obviously, if the uniform boundness of Iλ,β(u, v) is obtained, then ‖u‖2+‖v‖2 will has uniformly
bounded estimates independent of parameters λ and β. Next, we will discuss the asymptotic
behavior of the solution under three asymptotic conditions of the parameter, which ties in find
convergent subsequences under asymptotic behavior.

4.1. The case fixed λ, β → 0. In this condition, the limit equation is{
−∆u+ u+ λφu,vu = f (u) ,

−∆v + v + λφu,vv = g (v) ,
in R3.(4.2)

Suppose the ground state energy of the first equation is minimal and we define the ground state
energy is n1 and satisfied n1 = Iλ,0(m1). Iλ,βn is the ground state energy of the original equation
in this case. Indeed, since for any u ∈ H1

r (R
3) it holds

Iλ,0(u) = Iλ,β(u, 0),

then

0 < n1 = Iλ,0(m1) = inf
u∈H1

r (R
3)\{0}

max
t>0

Iλ,β(ζu(t), 0) ≥ inf
u∈H1

r (R
3)\{0}

max
t>0

Iλ,β(γu,v(t)) = Iλ,βn .

Next, the lower bound considered. Let g be the ground state of

−4 u+ u = f(u) in R3,

then

Iλ,βn ≥ I0,βn(g, 0) = I0,0(g) > 0,(4.3)

thus, Iλ,βn(u, v) is bounded, then (u, v) has uniformly bounded estimates independent of
parameters λ and β.

Fix any λ > 0, and let βn ∈ (0, 1), such that βn → 0 as n → +∞. Let (uλ,βn , vλ,βn)
be any positive radial ground state of (1.1) with β = βn. By the proof above, we see that
{(uλ,βn , vλ,βn)}n∈N is bounded in Hr. Then passing to a subsequence, we may assume that
(uλ,βn , vλ,βn) → (uλ,0, vλ,0) weakly in Hr, and so (uλ,0, vλ,0) satisfies (4.2). We claim that
(uλ,0, vλ,0) 6≡ (0, 0). Assume by controdiction that (uλ,0, vλ,0) ≡ (0, 0), then Iλ,0 = 0, which
controdict to (4.3), so (uλ,0, vλ,0) 6≡ (0, 0), but (uλ,0, vλ,0) would be the semitrivial.
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4.2. The case fixed β, λ → 0. In this condition, the limit equation is{
−∆u+ u = f (u) + βv,

−∆v + v = g (v) + βu,
in R3.(4.4)

Suppose the ground state energy of the first equation is maximum and we define the ground
state energy is n2 and satisfied n2 = I0,β(m2). Iλn,β is the ground state energy of the original
equation in this case. Indeed, since for any u ∈ H1

r (R
3) it holds

I0,β(u) = Iλ,β(u, 0),

then
0 < n2 = Iλ,0(m2) = inf

(u,v)∈Hr\{0}
max
t>0

Iλ,β(ςu(t), 0) ≤ inf
(u,v)∈Hr\{0}

max
t>0

Iλ,β(γu,v(t)) = Iλn,β .(4.5)

Next, we consider to get the desired upper bound. Let s be the ground state of{
−∆u+ u+ λφu = f(u),

−∆φ = λu2,
in R3,

thanks to (2.7), let u = s, v = 0, such that
Iλn,β = inf

(u,v)∈Hr\{0}
max
t>0

Iλn,β(tu, tv) ≤ inf
(u,v)∈Hr\{0}

max
t>0

Iλn,β(ts, 0)

≤ max
t>0

Iλn,β(ts, 0) ≤ max
t>0

I1,β(ts, 0) = I1,β(s, 0).

thus, Iλn,β(u, v) is bounded, then (u, v) has uniformly bounded estimates independent of
parameters λ and β.

Fix any 0 < β < 1, and let λn > 0, such that λn → 0 as n → +∞. Define (uλn,β , vλn,β)
be any positive radial ground state of (1.1) with λ = λn. By the proof above, we see that
{(uλn,β , vλn,β)}n∈N is bounded in Hr. Then passing to a subsequence, we may assume that
(uλn,β , vλn,β) → (u0,β , v0,β) weakly in Hr, and so (u0,β , v0,β) satisfies (4.4). By counter evidence
(u0,β , v0,β) 6≡ (0, 0). Assume (u0,β , v0,β) ≡ (0, 0), then I0,β = 0, which controdict to the (4.5), so
(u0,β , v0,β) 6≡ (0, 0). Furthermore (u0,β , v0,β) would not be the semitrivial, we assume without
loss of generality that u0,β > 0 and (u0,β , 0) is solution to the system above, substitute the
equation, obviously, u0,β = 0, which controdict to the u0,β > 0, thus the solution of the system
would be vectorial.

4.3. The case λ → 0, β → 0. In this condition, the limit equation is{
−∆u+ u = f (u) ,

−∆v + v = g (v) ,
in R3.(4.6)

Suppose the ground state energy of the first equation is minimal and we define the ground state
energy is n3 and satisfied n3 = I0,0(m3). Iλn,βn is the ground state energy of the original equation
in this case. Let g be the ground state of

−4 u+ u = f(u) in R3,

then
Iλn,βn ≥ I0,0(g, 0) = I0,0(g) > 0,(4.7)

thus, Iλ,βn(u, v) is bounded, then (u, v) has uniformly bounded estimates independent of
parameters λ and β. In this condition, let λn > 0 and 0 < βn < 1 such that λn → 0, βn → 0 as
n → +∞. Set (uλn,βn , vλn,βn) be any positive radial ground state of (1.1) with λ = λn, β = βn.
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We see that {(uλn,βn , vλn,βn)}n∈N is bounded in Hr. Then passing to the subsequence, we may
assume that (uλn,βn , vλn,βn) → (u0,0, v0,0) weakly in Hr, and so (u0,0, v0,0) satisfies (4.6), then
the system has a positive radially symmetric ground state solution, and from (4.7), the energy
functional has positive lower bound, this ensures that the solution of the equation is nontrivial.
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