REFERENCES
1. Loree JM, Anand S, Dasari A, Unger JM, Gothwal A, Ellis LM,
Varadhachary G, Kopetz S, Overman MJ, Raghav K. Disparity of Race
Reporting and Representation in Clinical Trials Leading to Cancer Drug
Approvals From 2008 to 2018. JAMA Oncol. Oct 1
2019;5(10):e191870.
2. Clark LT, Watkins L, Pina IL, Elmer M, Akinboboye O, Gorham
M, Jamerson B, McCullough C, Pierre C, Polis AB, Puckrein G, Regnante
JM. Increasing Diversity in Clinical Trials: Overcoming Critical
Barriers. Curr Probl Cardiol. May 2019;44(5):148-172.
3. Lee M. We Must Act Now: Building Trust and Increasing
Minority Participation in COVID-19 Clinical Trials. Dela J Public
Health. Nov 2020;6(5):34-35.
4. Webber-Ritchey KJ, Aquino E, Ponder TN, Lattner C, Soco C,
Spurlark R, Simonovich SD. Recruitment Strategies to Optimize
Participation by Diverse Populations. Nurs Sci Q. Jul
2021;34(3):235-243.
5. Center for Biologics Evaluation and Research, Center for
Drug Evaluation and Research. Enhancing the Diversity of Clinical Trial
Populations — Eligibility Criteria, Enrollment Practices, and Trial
Designs Guidance for Industry. Silver Spring, MD: Food and Drug
Administration; 2020.
6. D’Argenio V. The high-throughput analyses era: Are we ready
for the data struggle? high-throughput. 2018;7(8):1-12.
7. McComb M, Bies R, Ramanathan M. Machine learning in
pharmacometrics: Opportunities and challenges. Br J Clin
Pharmacol. Feb 2022;88(4):1482-1499.
8. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y. Generative Adversarial Networks.arXiv. 2014:arXiv:1406.2661 [stat.ML].
9. National Health and Nutrition Examination Survey. About the
National Health and Nutrition Examination Survey. Hyattsville, MD:
National Center for Health Statistics; 2017.
10. Nair V, Hinton GE. Rectified linear units improve
restricted Boltzmann machines. Proceedings of the 27th International
Conference on Machine Learning; 2010; Haifa, Israel.
11. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. Proceedings of
Machine Learning Research (PMLR); 2015/06/01.
12. Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K.
Modeling tabular data using conditional GAN 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019); 2019; Vancouver, Canada.
13. Lin Z, Khetan A, Fanti G, Oh S. PacGAN: The power of two
samples in generative adversarial networks. arXiv.2017:arXiv:1712.04086
14. Parikh J, Rumbell T, Butova X, Myachina T, Acero JC,
Khamzin S, Solovyova O, Kozloski J, Khokhlova A, Gurev V. Generative
adversarial networks for construction of virtual populations of
mechanistic models: simulations to study Omecamtiv Mecarbil action.J Pharmacokinet Pharmacodyn. Oct 29 2021.
15. Mirza M, Osindero S. Conditional Generative Adversarial
Nets. arXiv. 2014:arXiv:1411.1784 [cs.LG].
16. National Health and Nutrition Examination Survey. National
Health and Nutrition Examination Survey: NHANES 2015-2016 Overview. In:
National Center for Health Statistics, ed: Centers for Disease Control;
2015.
17. Allen RJ, Rieger TR, Musante CJ. Efficient Generation and
Selection of Virtual Populations in Quantitative Systems Pharmacology
Models. CPT Pharmacometrics Syst Pharmacol. Mar
2016;5(3):140-146.
18. Rieger TR, Allen RJ, Bystricky L, Chen Y, Colopy GW, Cui Y,
Gonzalez A, Liu Y, White RD, Everett RA, Banks HT, Musante CJ. Improving
the generation and selection of virtual populations in quantitative
systems pharmacology models. Prog Biophys Mol Biol. Jun 15 2018.
19. Kimko HC, Duffull SB. Simulation for designing
clinical trials: a pharmacokinetic-pharmacodynamic modeling
perspective. New York: Marcel Dekker; 2003.
20. Goldenholz DM, Tharayil J, Moss R, Myers E, Theodore WH.
Monte Carlo simulations of randomized clinical trials in epilepsy.Ann Clin Transl Neurol. Aug 2017;4(8):544-552.
21. Brainard J, Burmaster DE. Bivariate distributions for
height and weight of men and women in the United States. Risk
Anal. Jun 1992;12(2):267-275.
22. Lu J, Bender B, Jin JY, Guan Y. Deep learning prediction of
patient response time course from early data via
neural-pharmacokinetic/pharmacodynamic modelling. Nature Machine
Intelligence. 2021/08/01 2021;3(8):696-704.
23. Liu X, Liu C, Huang R, Zhu H, Liu Q, Mitra S, Wang Y. Long
short-term memory recurrent neural network for
pharmacokinetic-pharmacodynamic modeling. Int J Clin Pharmacol
Ther. Feb 2021;59(2):138-146.
24. Mittal S, Vaishay S. A survey of techniques for optimizing
deep learning on GPUs. Journal of Systems Architecture.2019/10/01/ 2019;99:101635.
25. Oh K-S, Jung K. GPU implementation of neural networks.Pattern Recognition. 2004/06/01/ 2004;37(6):1311-1314.