REFERENCES
1. Loree JM, Anand S, Dasari A, Unger JM, Gothwal A, Ellis LM, Varadhachary G, Kopetz S, Overman MJ, Raghav K. Disparity of Race Reporting and Representation in Clinical Trials Leading to Cancer Drug Approvals From 2008 to 2018. JAMA Oncol. Oct 1 2019;5(10):e191870.
2. Clark LT, Watkins L, Pina IL, Elmer M, Akinboboye O, Gorham M, Jamerson B, McCullough C, Pierre C, Polis AB, Puckrein G, Regnante JM. Increasing Diversity in Clinical Trials: Overcoming Critical Barriers. Curr Probl Cardiol. May 2019;44(5):148-172.
3. Lee M. We Must Act Now: Building Trust and Increasing Minority Participation in COVID-19 Clinical Trials. Dela J Public Health. Nov 2020;6(5):34-35.
4. Webber-Ritchey KJ, Aquino E, Ponder TN, Lattner C, Soco C, Spurlark R, Simonovich SD. Recruitment Strategies to Optimize Participation by Diverse Populations. Nurs Sci Q. Jul 2021;34(3):235-243.
5. Center for Biologics Evaluation and Research, Center for Drug Evaluation and Research. Enhancing the Diversity of Clinical Trial Populations — Eligibility Criteria, Enrollment Practices, and Trial Designs Guidance for Industry. Silver Spring, MD: Food and Drug Administration; 2020.
6. D’Argenio V. The high-throughput analyses era: Are we ready for the data struggle? high-throughput. 2018;7(8):1-12.
7. McComb M, Bies R, Ramanathan M. Machine learning in pharmacometrics: Opportunities and challenges. Br J Clin Pharmacol. Feb 2022;88(4):1482-1499.
8. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative Adversarial Networks.arXiv. 2014:arXiv:1406.2661 [stat.ML].
9. National Health and Nutrition Examination Survey. About the National Health and Nutrition Examination Survey. Hyattsville, MD: National Center for Health Statistics; 2017.
10. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning; 2010; Haifa, Israel.
11. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proceedings of Machine Learning Research (PMLR); 2015/06/01.
12. Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K. Modeling tabular data using conditional GAN 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 2019; Vancouver, Canada.
13. Lin Z, Khetan A, Fanti G, Oh S. PacGAN: The power of two samples in generative adversarial networks. arXiv.2017:arXiv:1712.04086
14. Parikh J, Rumbell T, Butova X, Myachina T, Acero JC, Khamzin S, Solovyova O, Kozloski J, Khokhlova A, Gurev V. Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action.J Pharmacokinet Pharmacodyn. Oct 29 2021.
15. Mirza M, Osindero S. Conditional Generative Adversarial Nets. arXiv. 2014:arXiv:1411.1784 [cs.LG].
16. National Health and Nutrition Examination Survey. National Health and Nutrition Examination Survey: NHANES 2015-2016 Overview. In: National Center for Health Statistics, ed: Centers for Disease Control; 2015.
17. Allen RJ, Rieger TR, Musante CJ. Efficient Generation and Selection of Virtual Populations in Quantitative Systems Pharmacology Models. CPT Pharmacometrics Syst Pharmacol. Mar 2016;5(3):140-146.
18. Rieger TR, Allen RJ, Bystricky L, Chen Y, Colopy GW, Cui Y, Gonzalez A, Liu Y, White RD, Everett RA, Banks HT, Musante CJ. Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Prog Biophys Mol Biol. Jun 15 2018.
19. Kimko HC, Duffull SB. Simulation for designing clinical trials: a pharmacokinetic-pharmacodynamic modeling perspective. New York: Marcel Dekker; 2003.
20. Goldenholz DM, Tharayil J, Moss R, Myers E, Theodore WH. Monte Carlo simulations of randomized clinical trials in epilepsy.Ann Clin Transl Neurol. Aug 2017;4(8):544-552.
21. Brainard J, Burmaster DE. Bivariate distributions for height and weight of men and women in the United States. Risk Anal. Jun 1992;12(2):267-275.
22. Lu J, Bender B, Jin JY, Guan Y. Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modelling. Nature Machine Intelligence. 2021/08/01 2021;3(8):696-704.
23. Liu X, Liu C, Huang R, Zhu H, Liu Q, Mitra S, Wang Y. Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling. Int J Clin Pharmacol Ther. Feb 2021;59(2):138-146.
24. Mittal S, Vaishay S. A survey of techniques for optimizing deep learning on GPUs. Journal of Systems Architecture.2019/10/01/ 2019;99:101635.
25. Oh K-S, Jung K. GPU implementation of neural networks.Pattern Recognition. 2004/06/01/ 2004;37(6):1311-1314.