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ABSTRACT6

Karst springs are the natural outflow of karst water to the surface. These springs occur where the water table can reach

the surface unimpeded. This study examines the effect of alluvial deposits with varying thickness and permeability,

covering the main outlet (karst spring) of a karst network on karst drainage (e.g., development of the karst water,

drainage patterns, conduit-matrix interaction) as a result of a positive base level shift. This was realized with a

numerical conceptual model (FEFLOW) of a hypothetical karst aquifer with 6 model configurations (inactive vs. active

conduit flow, free vs. confined spring conditions with 20 m and 50 m sediment cover, respectively, with low and high

hydraulic conductivity). Conduit flow and coupled conduit-matrix interactions were incorporated into the model with

one-dimensional discrete feature elements. The results show that the permeability of the sediments has a more

distinctive effect on conduit discharge than their thickness. The conduit network significantly contributes to the drainage

even with a fully confined spring outlet. The conduit system acts as a water collector from the matrix in the recharge

zone. The buried outlet increases the hydrostatic pressure farther along the conduit, and water is pushed upwards

back into the matrix in the vicinity of the stratigraphic contact. Depending on the depositional setting, this results in the

evolution of one to multiple new flow systems towards new potential spring sites. The results obtained here provide

insight into the likely responses of natural karst systems.
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1 INTRODUCTION7

In addition to their role as an essential worldwide water resource, karst areas hold a variety of natural resources8

and provide critical ecosystem functions (Goldscheider, 2019). The evolution of a karst system is closely linked to the9

temporal development of the regional base level as it guides the regional orientation of the runoff pattern and controls10

the main flow gradient. A mature karst system with fast flow in conduits and caves towards major karst springs can11

develop if the base level is stable over a long period. Extremely abrupt changes to the boundary conditions are brought12

by geomorphologically rapid events (often combined with climatic changes). For example, active tectonic processes can13

cause a rapid shift of the base level and changes in the denudation rates (Ford and Williams, 2007). Negative base level14



shifts resulting from tectonic uplift, sea-level fall, or valley deepening by glacial or fluvial erosion cause downward15

development and the rejuvenation of the karst network. Positive shifts can be caused by filling basins with alluvial,16

fluvial, lacustrine, glacial, or volcanic deposits, causing karst outlets to become covered with sediments of varying17

thickness and hydraulic properties. A similar situation can occur to coastal springs due to sea-level rise and the resulting18

increased water head (Bakalowicz, 2005) since the denser saltwater of the sea forms a barrier to the freshwater outflow.19

20

The following is a brief outline of four karst systems that have experienced such a rapid base-level shift and have21

thus evolved to their present state. The most prominent large-scale example of the hydrogeological consequences of22

such a rapid change in groundwater level is the Messinian salinity crisis in the Miocene (Audra et al., 2004; Bakalowicz,23

2005). As a result of the closure of the Strait of Gibraltar and the subsequent evaporation of seawater, the level of the24

Mediterranean sea dropped by up to 1500 m (Gargani and Rigollet, 2007). This extreme base-level drop led to a drastic25

increase in karstification in the depths of the Mediterranean karst aquifers. Rivers like the Rhone formed deep gorges.26

The crisis ended during the Pliocene with the Zanclean flood event caused by the erosion of the Strait of Gibraltar barrier.27

The resulting rapid rise in sea level led to the deposition of thick, low permeable marine and continental sediments in28

the paleo-valleys and the clogging of the outlets of the karst systems. This forced the water to rise through vauclusian29

systems to new discharge points like the eponymous Fontaine de Vaucluse as the best-known example.30

Another example of the effects of a positive base level shift with subsequent valley aggradation is the Presciano31

Spring system (PSS). This spring system is one of the major outlets of the Meso-Cenozoic Gran Sasso fractured karst32

aquifer, located in the Tirino River Valley (Central Italy). The PSS is a 2000 m² seepage area forming several large33

limnocrenic springs at the contact zone of the Meso-Cenozoic karst and Quaternary lacustrine deposits (Fiasca et al.,34

2014). The springs are characterized by a relatively constant discharge, which is atypical for karst springs, and by35

other peculiar hydrogeological, physicochemical, hydrogeochemical, and biological characteristics that suggest a local36

superimposition of a dual groundwater flow system (Petitta et al., 2015; Peleg and Gvirtzman, 2010). The system37

consists of a fast component transported from the core of the aquifer via a subsurface karst conduit or at least a highly38

fractured flow path and a slow base flow path within the microfracture network.39

The Zuqim-Spring-System (also known as Ein Feschchar-Spring) is located on the northwestern shore of the Dead40

Sea (which defines the base-level) close to the escarpment of the Dead Sea transform faulting system is another example.41

The Dead Sea fault system lowered the base level and directed the drainage system away from the Mediterranean Sea42

toward the Dead Sea. The spring system is draining the Albian to Turonian carbonate rocks from the Cretaceous Judea43

Group along a wide area of increased permeability (Burg et al., 2016). Groundwater in the uplifted Judea Group aquifer44

crosses the western fault of the graben eastward and discharges into the young fluvio-lacustrine, graben filling sediments45

of the Dead Sea Group. There it enters a complex system of subaquifers. The groundwater rises along different paths46

within the heterogeneous sediments, discharging at numerous springs and seepage areas. The recent rapid drop in47

the level of the Dead Sea led to the migration of the springs towards the current shoreline and changes in the springs’48
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discharge rates.49

The fourth example is the Donauried gravel aquifer located at the geological contact of the Swabian-Franconian50

Alb, the most extensive karst aquifer system in Germany, and the Molasse foreland basin of the Alps. In this area, the51

Jurassic karst formation dips beneath the wedge-shaped Molasse, which spread northwards during the Tertiary and52

overlaid the paleokarst with heterogeneous, low-permeability deposits of up to several hundred meters. This led to a53

complex interaction between the karst aquifer, the unconsolidated gravel aquifer in the Donauried, and the Molasse,54

which acts as a hydraulic barrier. These various flow paths result in mixtures of multiple water components of different55

ages from the karst- into the gravel-aquifer reservoir (Schloz et al., 2007). A large part of the karst groundwater enters56

the alluvial aquifers in the Danube valley in areas where (a) the gravels lie directly on the Jurassic limestones, (b) the low57

permeability Molasse sediments have been eroded or are only present in minor thicknesses, and (c) vertical upwelling of58

karst water through fractures in the Molasse into the alluvial aquifer is possible (Kolokotronis et al., 2002). Zones of59

upwelling karst groundwater can be located by temperature anomalies, chemical analyses and salt dilution tests (Udluft,60

2000; Fahrmeier et al., 2021, 2022).61

62

Numerous studies present investigations of karst systems with main drainage in conduits and springs (Glennon and63

Groves, 2002; Bonacci, 2001; Jeannin, 2001; Chen and Goldscheider, 2014; Frank et al., 2019, e.g). Most studies have64

in common that they depict karst systems draining through one or more free-draining springs. In contrast, very little65

is known about karst systems with a sediment-covered discharge zone. Modeling groundwater flow in karst aquifers66

is challenging, facing many limitations due to the extreme heterogeneity of hydraulic parameters and the dual flow67

path regime (Scanlon et al., 2003; Kovács and Sauter, 2007). Therefore, the modeling approach, including the model68

complexity, varies widely as a function of the research question, depth of process representation, and, most importantly,69

the data availability. In lumped parameter models, physical processes are conceptually considered as a function of linear70

or nonlinear relationships of storage and discharge at the resolution of the entire aquifer system (Hartmann et al., 2014).71

This type of model is used in studies that aim to determine the dynamic response of karst discharge without consideration72

of spatial variability. In addition to studies that utilize reservoir models (Fleury et al., 2007; Martı́nez-Santos and73

Andreu, 2010; Shi et al., 2013; Ladouche et al., 2014), there has been a recent increase in the use of data-driven models74

(Paleologos et al., 2013; Lakušić, 2018; Liesch et al., 2021). Distributed karst models divide the model area into a subset75

with fixed hydraulic parameters. Distributed model approaches, used in karst modeling, can be categorized into (in order76

of investigation effort, practical applicability, and ability to simulate heterogeneities) (1) Equivalent Porous Medium77

Approaches (EPM) (Ghasemizadeh et al., 2015; Abusaada and Sauter, 2013), (2) Double Continuum Approaches (DC)78

(Kordilla et al., 2012; Bresinsky et al., 2020) and (3) Combined Discrete-Continuum approaches (CDC), which are used79

in this study. This approach was first applied by Kiraly (1998). The matrix is represented by a continuum formulation,80

while the conduits are embedded as one-dimensional discrete elements. The best-known codes that implement this81

approach are MODFLOW with the CFP package (Shoemaker et al., 2008), MODFLOW-USG with the CLN package82
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(Panday et al., 2013) as well as proprietary FEFLOW Discrete Feature Elements (DFN) (Diersch, 2014). The latter is83

used in this study and has been applied elsewhere (e.g Green et al., 2006; Berglund et al., 2020; Ninanya et al., 2018;84

Kavouri and Karatzas, 2016).85

86

The main objective of this study is to investigate the hydraulic conditions that develop in a mature karst system when87

the base level rises, and thus the main spring outlets become clogged with sediments of varying hydraulic conductivity88

and thickness. Using a simplified three-dimensional numerical model with different model settings (with and without89

a sediment layer with varying thickness and permeability), this study aimed to investigate how deposits overlying90

the discharge zone alter the karst drainage and the structure of the groundwater flow pattern. Two specific objectives91

motivate the work:92

• What is the effect of a discharge zone confinement or semi-confinement on flow velocities and flow rates in the93

conduit network, the matrix, and the conduit matrix-interaction?94

• What is the influence of thickness and/or permeability of the confining cover layer for the karst drainage and its95

drainage patterns?96

2 METHODOLOGY97

2.1 Description of the model scenarios98

We have developed six model configurations to investigate the hydrologic effects of discharge zone confining99

sediments with varying thickness and permeabilities (Fig. 1) on karst drainage (e.g., development of the karst water100

table, the drainage patterns, conduit-matrix interaction):101

• A: Flow through the aquifer system with no karst featured added. This configuration serves as a reference to102

quantify the influence of the conduit networks in the other configurations.103

• B: Karst drainage primarily through the main conduit network with a non-covered karst spring outlet. This variant104

shows the initial state before beginning the positive base level shift and the discharge zone confinement.105

• C: Thin sediment cover (20 m) on the discharge zone with highly permeable unconsolidated sediments (10-2 m/s)106

such as fluvial sand to gravel deposits.107

• D: Thin (20 m) sediment cover on the discharge zone with low permeable sediments (10-8 m/s) such as silt or108

loess.109

• E: Thick sediment cover (50 m) of the discharge zone consisting of the highly permeable unconsolidated sediments110

described in C.111

• F: Thick sediment cover of the discharge zone consisting of the low permeable sediments described in D.112
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Figure 1. Schematic overview of the six model configurations (A-F) used in this study to investigate the influence of
discharge zone confinement on karst drainage

.

2.2 Hydrogeological Conceptual Model113

The conceptual model represents a hypothetical karst aquifer that is drained at the base level by a large perennial114

(fault- or dammed-) spring at the contact with an impermeable formation that acts as a barrier (Fig. 2). The spring can be115

characterized as a Vauclusian type. Therefore, the water emerges at the ground surface through a shaft that rises upwards116

at the stratigraphic boundary. The dimensions and geometry roughly correspond to those of the karst systems on the117

southern edge of the Swabian Alb (Villinger, 1977; Villinger and Ufrecht, 1989; Lauber et al., 2013, 2014). The spring118

is fed by a high-conductivity hierarchically organized karst conduit system with typical branchwork patterns. The model119

has a length of 21 km (length karst aquifer: 16 km) and a width of 10 km. The model was deliberately developed in a120

highly simplified and schematic way, neglecting a realistic karst aquifer’s spatial complexity and heterogeneity, including121

the influence of a soil cover and the epikarst. Furthermore, it is assumed that Darcy’s law governs the matrix flow. The122

model comprises four geological units: a karst aquifer with a matrix and a conduit conductivity, an impermeable layer123

below the karst layer, a sedimentary cover layer, and a drainage layer (required by the model geometry to drain the124

water). The karst aquifer has a constant thickness of 140 m and a catchment area of 150 km². A groundwater recharge of125

200 mm/a, results in a total spring discharge rate of 0.95 m³/s. The uniform hydraulic matrix conductivity is 5 ·10-5 m/s.126

The embedded branchwork conduit system is located at the aquifer base is divided into three sections which increase in127

diameter towards the outlet (I, II, III).128
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Figure 2. Schematic overview of the numerical FEFLOW model domain with all the features and the parameterization.
1: 3D view with clipping plane and view of the conduit network. 2: model domain from above. 3: Model cross-section
along the main conduit, the discharge zone with different cover thicknesses of the configurations A-F. 4: Top view of
the cross-section shown in Fig. 4.

2.3 Groundwater Flow Model129

The groundwater flow was modeled steady-state, using the finite element, groundwater flow, and transport modeling130

software FEFLOW 7.3 by DHI WASY (Diersch, 2014). The model is composed of 14 slices of 455.103 elements131

per slice. Since the model represents a complete catchment area of the karst spring, a no-flow boundary condition132

was applied along the model boundary. Therefore, the total groundwater recharge (84.000 m³/d) comes entirely from133

recharge into the model from the top of the karst layer (groundwater recharge). The base-level was set with a specific134

head boundary condition according to the six configurations A-F at the height of the respective cover layer at the model135

outlet to represent the discharge in this elevation. The hydrodynamic and flow processes in soil, epikarst, and conduit136

evolution processes were neglected. The conduit flow and the conduit matrix interaction were embedded into the model137

with 880 discrete feature elements (DFE). These are connected 1-D and 2-D elements with increased fluid conductivity138

than the porous medium. DFEs are connected to the porous medium at model nodes, where they interact hydraulically139

with it. This approach allows the model to approximate structures such as specific faults, boreholes, tunnels, or karst140

channels. For the conduit network, the Hagen-Poiseuille law was iteratively chosen with apertures of 0.01 m for Section141

I, 0.1 m for Section II, and 0.5 m for Section III, thus providing sufficient drainage through the conduit. Still, the whole142

network is entirely within the phreatic zone. The governing balance equations for discrete features can be found in143

Diersch (2014).144
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3 RESULTS145

3.1 Impact on Conduit Flow Rates146

Fig. 3 illustrates the simulated conduit discharge in section II/III as a function of sediments’ thickness and hydraulic147

conductivity covering the discharge zone. The left panel (1) shows the effect of a 20 m thick sediment layer, and the148

right panel (2) the effect of a 50 m thick cover layer. The hydraulic conductivity of the deposits were systematically149

reduced from 10-2 m/s (blue line) to 10-8 m/s. (red line). The black line represents the conduit discharge of the initial150

free-draining spring. The two middle panels give information on the locations of the conduit flow change within the151

model. The blue area represents the uncovered karst, and the yellow area is the karst covered by the sediments. The flow152

rate at a distance of 0 corresponds to the (covered) conduit outlet. The discharge of the free-draining spring is about153

900 l/s, representing 90.5% of the total recharge. In the simulations with highly permeable sediments (K = 5 · 10-5 m/s),154

the spring discharge (seepage of water from in the deposits respectively) is reduced to 400 l/s (20 m cover layer) and155

300 l/s (50 m cover layer). Sediments with a lower hydraulic conductivity cause rapid plugging of the conduit outlet
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Figure 3. Discharge in conduit II/III with unaffected drainage on the outlet (black line) and with discharge zone
sediment cover with thicknesses of 20 m (1) and 50 m (2). The hydraulic conductivity of the cover layer varies between
10-2 m/s - 10-8 m/s. Blue area: uncovered karst; yellow area: karst covered by deposits

156

with a decreasing discharge/seepage towards zero, even if the hydraulic conductivity of the cover layer is still higher157

than the permeability of the karst matrix (K = 5 · 10-5 m/s). For the range we examined, the permeability of the deposits158

has a significantly more significant effect on the conduit discharge than the thickness of the sediments. We see a linear159

decrease in the conduit discharge with a thick layer. For the configurations with a two-step discharge, decrease towards160

the outlet for the configurations with a thin layer. The most significant reduction occurs in the area where the conduit is161

covered by the sediments (yellow area). The effect of sediment on flow rate is evident for all configurations up to an162

output distance of about 7 km.163
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3.2 Impact on Conduit Matrix Interaction164

Fig. 4 illustrates a combined line plot /cross-section view of the Darcy flux section N-S for the 6 model configurations165

(A-F). The Darcy flux in the conduit is shown as a red dashed line. The solid red line shows the Darcy flux in the top
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model slice. Increased flux in this slice indicates water exchange from the karst into the sediments or surface. The blue166

dashed line represents the potentiometric groundwater surface. Artesian conditions occur if this line is above the model167

surface or if the water reaches the surface. The background colors represent the Darcy flux in the conduit and the matrix168

in a cross-sectional view of the model domain of the 3D model. The comparison of inactive (A) and active conduit (B)169

systems demonstrates the central role of the conduit system in karst drainage. The conduit discharges 90.5% of the170

recharge (see Fig. 3). This is also shown by the significantly lower matrix flux of 9.5 ·10-4 m/d compared to the setting171

with an inactive conduit in A with 7.5 ·10-2 m/d. The flow direction changes from a slope-parallel flow (A) to a radial172

flow towards the conduits (B). At a horizontal distance of 600 m from the conduit outlet, the flow field changes again173

from gravitationally dominated downward flow towards the conduit to pressure-driven upwards flow towards the ground174

surface. With the increasing thickness and decreasing permeability of the deposits (C-F), the Darcy flux in the conduit175

decreases significantly. At the same time, more water (over a larger area) is pushed from the conduit into the matrix due176

to increasing water pressure within the conduits. In both configurations with a low permeable sediment cover (D, F), the177

water pressure led to artesian conditions within the karst layer (blue dashed line above the model surface).178

3.3 Impact on Drainage Patterns179

Fig. 5 shows the model domains’ discharge conditions (conduit outlet, geological contact karst aquifer with sediment180

cover, and contact karst aquifer with the model top) for each of the six model configurations examined. The thin, high181

permeability layer (C) has three different flow paths to the surface result. The dominant path: 56.1% of the dammed
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Figure 5. Influence of a cover layer (with different thicknesses and permeability) covering the drainage zone on the
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182

groundwater rises below the geological contact from the conduit into the matrix and seeps to the surface directly. The183

secondary path: 39.2% infiltrates from the reduced but still active conduit outlet into the sediments and rises vertically184

to the surface. A third path: the water from the conduit enters the matrix and then diffuses into the deposits (4.7%).185

The drainage pattern shift with increasing thickness of the cover layer (D) without change K. As the base level rises186

and the contact area with the sediment increases, diffuse exchange through the sediments becomes more prevalent187

(4.7%→25.0%). The proportion of the conduit discharge (39.2%→34.8%) decreases comparatively less than the direct188

discharge at the interface (56.1%→40.2%). With decreasing hydraulic conductivity of the cover layer, we see an entirely189

confined conduit outlet (<0.1%). There is also practically no diffusive exchange through the sediments (<0.1%). The190

water trapped in the conduit is forced upwards into the matrix resulting in artesian conditions near the geological contact.191

If fractures or fault lines are present in this zone, water will surge upwards and form an artesian spring (vauclusian-type).192

3.4 Impact on Karst Water Table193

The simulated steady-state potentiometric surface of the six model configurations A-F is shown in Fig. 6. In all194

configurations with an active conduit (B-F), the conduit acts as a dominant drainage network with strong conduit matrix195

interaction. The conduit acts as a drain from the surrounding matrix in section I and the upper part of section II. The196

gradient reverses in the further course towards the outlet, causing water to flow from the conduit into the matrix. Even197

for confined conditions (F), the potentiometric surface is below the level that would develop with a lower base level and198

without a conduit (A). In (B), the phreatic zone begins only slightly above the conduit level.199

4 CONCLUSIONS200

In this study, we developed a conceptual model of sediment coverage of karst outflow. We used a numerical model201

to investigate six different configurations to examine the impacts of sediments with varying thickness and hydraulic202

conductivity confining a karst discharge zone on the drainage system and drainage pattern and the conduit-matrix203

interaction of a karst aquifer. The results show that a thin cover of highly permeable sediments (K= 10-2 m/s) leads to204

a reduction of the conduit outlet discharge by half. With less permeable sediment cover, the conduit outlet becomes205

almost inactive. The influence of the permeability of the deposit cover on conduit discharge outweighs the impact of its206

thickness for the range of conditions examined. However, the conduit system still has a significant role in karst drainage,207

even with a thick and impervious cover plugging the drainage zone. The conduit collects water from the matrix in the208

area of the recharge zone and carries it in the direction of the confined outlet. Due to the reduced drainability of the209

outlet, the increased pressure in the conduit forces flow back upwards into the matrix. We see a sizeable hydraulic210

exchange with the karst aquifer for the thin, high permeability layer. For drainage, this results in the development of211

three different flow paths. First and dominant flow path: The deposits impounded the karst water level to the new rising212

valley floor level. Karst water seeps out at several points and forms dammed springs. In the second flow path, the water213

emerges from the diminished but still active buried karst cave into the sediments, rises vertically upwards within a214
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Figure 6. Simulated (steady-state) piezometric karst surface of the 6 model configurations applied in the study.

discrete zone, and appears as a big limnocrene spring. The third flow path is a superposition of the first two: impounded215

water passes from the conduit and interflows into the karst matrix. From there, it diffusely enters the sediments. Without216

changing K, more water emerges along the third flow path as the thickness increases. The results of the simulations with217

highly permeable sediment cover are, in many aspects, consistent with observations on the Presciano Spring System and218

the karst gravel-aquifer interaction in Donauried, both mentioned in the introduction part.219

The highly permeable sediment cover simulation results show a significant rise of karst water from the buried conduit220

through the alluvial cover layer and are consistent with findings from studies on the Presciano spring system system221

(Petitta et al., 2015) and the karst-gravel-aquifer interaction in the Donauried (?), resp. support the hypotheses that222

buried karst conduits (or highly fractured zones) are present there.223

The low permeability sediment covers form an effective hydraulic barrier. Water exchange with the sediments224

is negligible in such an setting and the covered spring outlet is fully confined. In the range we examined, artesian225

conditions occurred in the area of the geological contact. The presence of fractures or faults would then lead to a226

drainage reorganization. Thus, a horizontal shaft could gradually form along this zone to the new main outlet, similar to227

the Vaucluse spring.228
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Ostalb. Erläuterungen. Technical report, Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg;286
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