References
Allan, C. W., and Matzkin, L. M. (2019). Genomic analysis of the four ecologically distinct cactus host populations of Drosophila mojavensis.BMC Genomics 20, 1–13. doi: 10.1186/s12864-019-6097-z
Anders, S., Reyes, A., and Huber, W. (2012). Detecting differential usage of exons from RNA-seq data. Genome Res 22, 2008–2017.
Anderson, J. T., Panetta, A. M., and Mitchell-Olds, T. (2012). Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate Change. Plant Physiol 160, 1728–1740. doi: 10.1104/pp.112.206219
Anduaga, A. M., Evantal, N., Patop, I. L., Bartok, O., Weiss, R., and Kadener, S. (2019). Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. Elife 8, 1–31.
Badyaev, A. V, and Uller, T. (2009). Parental effects in ecology and evolution: mechanisms, processes and implications. Philosophical Transactions of the Royal Society B 364, 1169–1177. doi: 10.1098/rstb.2008.0302
Bahrndorff, S., Mariën, J., Loeschcke, V., and Ellers, J. (2010). Genetic variation in heat resistance and HSP70 expression in inbred isofemale lines of the springtail Orchesella cincta . Clim Res 43, 41–47. doi: 10.3354/cr00896
Bell, A. M., and Stein, L. R. (2017). Transgenerational and developmental plasticity at the molecular level: Lessons from Daphnia.Mol Ecol 26, 4859–4861. doi: 10.1111/mec.14327
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing.Journal of the Royal Statistical Society 57, 298–300. doi: 10.1017/CBO9781107415324.004
Bernal, M. A., Ravasi, T., Rodgers, G. G., Munday, P. L., and Donelson, J. M. (2022). Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evol Appl 15, 249–261.
Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170
Bonamour, S., Chevin, L. M., Charmantier, A., and Teplitsky, C. (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B: Biological Sciences 374, 1–12. doi: 10.1098/rstb.2018.0178
Bonduriansky, R., Crean, A. J., and Day, T. (2011). The implications of nongenetic inheritance for evolution in changing environments.Evol Appl 5, 192–201. doi: 10.1111/j.1752-4571.2011.00213.x
Bowler, K., and Terblanche, J. S. (2008). Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Reviews 83, 339–355. doi: 10.1111/j.1469-185X.2008.00046.x
Cai, Z., Chen, J., Cheng, J., and Lin, T. (2017). Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress. J Insect Physiol 17, 1–11. doi: 10.1093/jisesa/iex082
Carone, B. R., Fauquier, L., Habib, N., Shea, J. M., Hart, C. E., Li, R., et al. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in Mammals. Cell 143, 1084–1096.
Chevin, L. M., Lande, R., and Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8, e1000357.
Clark, M. S., Suckling, C. C., Cavallo, A., Mackenzie, C. L., Thorne, M. A. S., Davies, A. J., et al. (2019). Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci Rep 9.
Coleman, J. M., Benowitz, K. M., Jost, A. G., and Matzkin, L. M. (2018). Behavioral evolution accompanying host shifts in cactophilicDrosophila larvae. Ecol Evol 8, 6921–6931. doi: 10.1002/ece3.4209
Dahlgaard, J., Loeschcke, V., Michalak, P., and Justesen, J. (1998). Induced thermotolerance and associated expression of the heat-shock protein Hsp7O in adult Drosophila melanogaster . Funct Ecol 12, 786–793.
Diaz, F., Kuijper, B., Hoyle, R. B., Talamantes, N., Coleman, J. M., and Matzkin, L. M. (2020). Environmental predictability drives adaptive within- and transgenerational plasticity of heat tolerance across life stages and climatic regions. Funct Ecol 35, 153–166. doi: 10.1111/1365-2435.13704
Diaz, F., Orobio, R. F., Chavarriaga, P., and Toro-Perea, N. (2015). Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).J Therm Biol 52, 199–207. doi: 10.1016/j.jtherbio.2015.07.004
Dikaya, V., El Arbi, N., Rojas-Murcia, N., Muniz Nardeli, S., Goretti, D., and Schmid, M. (2021). Insights into the role of alternative splicing in plant temperature response. J Exp Bot 72, 7384–7403. doi: 10.1093/jxb/erab234
Dillon, M. E., Cahn, L. R. Y., and Huey, R. B. (2007). Life history consequences of temperature transients in Drosophila melanogaster.J Exp Biol 210, 2897–2904. doi: 10.1242/jeb.007591
Ding, D., Parkhurst, S. M., Halsell, S. R., and Lipshitz, H. D. (1993). Dynamic Hsp83 RNA Localization during Drosophila Oogenesis and Embryogenesis. Mol Cell Biol 15, 35–37.
Donelson, J. M., Salinas, S., Munday, P. L., and Shama, L. N. S. (2018). Transgenerational plasticity and climate change experiments: where do we go from here? Glob Chang Biol 24, 13–34. doi: 10.1111/gcb.13903
Farlow, A., Meduri, E., Dolezal, M., Hua, L., and Schlötterer, C. (2010). Nonsense-mediated decay enables intron gain in Drosophila.PLoS Genet 6, 1–7. doi: 10.1371/journal.pgen.1000819
Feder, M. E., Blair, N., and Figueras, H. (1997). Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae.Funct Ecol 11, 90–100.
Fusco, G., and Minelli, A. (2010). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 547–556.
Galloway, L. F., and Etterson, J. R. (2007). Transgenerational plasticity is adaptive in the wild. Science (1979) 318, 1134–1136. doi: 10.1126/science.1148766
Gillis, M., and Walsh, M. R. (2018). Individual variation in plasticity dulls transgenerational responses to stress. Funct Ecol 87, 1685–1697. doi: 10.1111/1365-2435.13409
Gorres, K. L., and Raines, R. T. (2010). Prolyl 4-hydroxylase.Crit Rev Biochem Mol Biol 45, 106–124. doi: 10.3109/10409231003627991
Hadar, S., Meller, A., Saida, N., and Shalgi, R. (2022). Stress-induced transcriptional readthrough into neighboring genes is linked to intron retention. iScience 25. doi: 10.1016/j.isci.2022.105543
Hales, N. R., Schield, D. R., Andrew, A. L., Card, D. C., Walsh, M. R., and Castoe, T. A. (2017). Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia. Mol Ecol 26, 5003–5015. doi: 10.1111/mec.14213
Hartley, S. W., and Mullikin, J. C. (2015). QoRTs: A comprehensive toolset for quality control and data processing of RNA-Seq experiments.BMC Bioinformatics 16, 224. Available at: http://dx.doi.org/10.1186/s12859-015-0670-5
Hartley, S. W., and Mullikin, J. C. (2016). Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq. Nucleic Acids Res 44, e127.
Heard, E., and Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109.
Heckwolf, M. J., Meyer, B. S., Döring, T., Eizaguirre, C., and Reusch, T. B. H. (2018). Transgenerational plasticity and selection shape the adaptive potential of sticklebacks to salinity change. Evol Appl 11, 1873–1885.
Herman, J. J., Spencer, H. G., Donohue, K., and Sultan, S. E. (2013). How stable ‘should’ epigenetic modifications be? insights from adaptive plasticity and bet hedging. Evolution (N Y) 68, 632–643.
Herman, J. J., and Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front Plant Sci 2, 1–10. doi: 10.3389/fpls.2011.00102
Hoffmann, A. A., and Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 470, 479–485. doi: 10.1038/nature09670
Hoffmann, A. A., Shirriffs, J., and Scott, M. (2005). Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct Ecol 19, 222–227. doi: 10.1111/j.1365-2435.2005.00959.x
Hoffmann, A. a., Sørensen, J. G., and Loeschcke, V. (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28, 175–216. doi: 10.1016/S0306-4565(02)00057-8
Hoyle, R. B., and Ezard, T. H. G. (2012). The benefits of maternal effects in novel and in stable environments. J R Soc Interface 9, 2403–2413. doi: 10.1098/rsif.2012.0183
Jablonka, E., Oborny, B., Molnar, I., Kisdi, E., Hofbauer, J., and Czaran, T. (1995). The adaptive advantage of phenotypic memory in changing environments. Philosophical Transactions of the Royal Society B: Biological Sciences 350, 133–141. doi: 10.1098/rstb.1995.0147
Jacob, A. G., and Smith, C. W. J. (2017). Intron retention as a component of regulated gene expression programs. Hum Genet 136, 1043–1057. doi: 10.1007/s00439-017-1791-x
John, S., Olas, J. J., and Mueller-Roeber, B. (2021). Regulation of alternative splicing in response to temperature variation in plants.J Exp Bot 72, 6150–6163. doi: 10.1093/jxb/erab232
Joschinski, J., and Bonte, D. (2020). Transgenerational Plasticity and Bet-Hedging: A Framework for Reaction Norm Evolution. Front Ecol Evol 8. doi: 10.3389/fevo.2020.517183
Kellermann, V., and Sgrò, C. M. (2018). Evidence for lower plasticity in CTMAX at warmer developmental temperatures. J Evol Biol 31, 1300–1312. doi: 10.1111/jeb.13303
Krebs, R. A. (1999). A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species.Cell Stress Chaperones 4, 243–249.
Krebs, R. A., and Bettencourt, B. R. (1999). Evolution of thermotolerance and variation in the heat shock protein, Hsp70. Am Zool 39, 910–919.
Krebs, R. A., and Loeschcke, V. (1995). Resistance to thermal stress in preadult Drosophila buzzatii : variation among populations and changes in relative resistance across life stages. Biological Journal of the Linnean Society 56, 517–531.
Kuijper, B., and Hoyle, R. B. (2015). When to rely on maternal effects and when on phenotypic plasticity? Evolution (N Y) 69, 950–968. doi: 10.1111/evo.12635
Lande, R. (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22, 1435–1446. doi: 10.1111/j.1420-9101.2009.01754.x
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence Alignment/Map format and SAMtools.Bioinformatics 25, 2078–2079. doi: 10.1093/bioinformatics/btp352
Liao, Y., Smyth, G. K., and Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.
Mahat, D. B., Salamanca, H. H., Duarte, F. M., Danko, C. G., and Lis, J. T. (2016). Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation. Mol Cell 62, 63–78. doi: 10.1016/j.molcel.2016.02.025
Middleton, R., Gao, D., Thomas, A., Singh, B., Au, A., Wong, J. J. L., et al. (2017). IRFinder: Assessing the impact of intron retention on mammalian gene expression. Genome Biol 18, 51.
Molinier, J., Ries, G., Zipfel, C., and Hohn, B. (2006). Transgeneration memory of stress in plants. Nature 442, 1046–1049.
Monteuuis, G., Wong, J. J. L., Bailey, C. G., Schmitz, U., and Rasko, J. E. J. (2019). The changing paradigm of intron retention: Regulation, ramifications and recipes. Nucleic Acids Res 47, 11497–11513. doi: 10.1093/nar/gkz1068
Mousseau, T. A., and Fox, C. W. (1998). The adaptive significance of maternal effects. TREE 13, 403–407.
Myllyharju, J. (2008). Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 40, 402–417. doi: 10.1080/07853890801986594
Myllyharju, J., and Kivirikko, K. I. (2004). Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends in Genetics 20, 33–43. doi: 10.1016/j.tig.2003.11.004
Nelson, V. R., and Nadeau, J. H. (2010). Transgenerational genetic effects. Epigenomics 2, 797–806.
Overgaard, J., Kristensen, T. N., Mitchell, K. A., and Hoffmann, A. A. (2011). Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am Nat 178, S80–S96. doi: 10.1086/661780
Proulx, S. R., and Teotónio, H. (2017). What kind of maternal effects can be selected for in fluctuating environments? Am Nat 189, E118–E137. doi: 10.1086/691423
Rappu, P., Salo, A. M., Myllyharju, J., and Heino, J. (2019). Role of prolyl hydroxylation in the molecular interactions of collagens.Essays Biochem 63, 325–335. doi: 10.1042/EBC20180053
Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616
Rösvik, A., Lhomme, P., Khallaf, M. A., and Anderson, P. (2020). Plant-Induced Transgenerational Plasticity Affecting Performance but Not Preference in a Polyphagous Moth. Front Ecol Evol 8, 1–9. doi: 10.3389/fevo.2020.00254
Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L., and Ravasi, T. (2018). The epigenetic landscape of transgenerational acclimation to ocean warming. Nat Clim Chang 8, 504–509. doi: 10.1038/s41558-018-0159-0
Sgrò, C. M., Overgaard, J., Kristensen, T. N., Mitchell, K. A., Cockerell, F. E., and Hoffmann, A. A. (2010). A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.J Evol Biol 23, 2484–2493. doi: 10.1111/j.1420-9101.2010.02110.x
Sgrò, C. M., Terblanche, J. S., and Hoffmann, A. A. (2016). What can plasticity contribute to insect responses to climate change? Annu Rev Entomol 61, 433–451. doi: 10.1146/annurev-ento-010715-023859
Shama, L. N. S., Mark, F. C., Strobel, A., Lokmer, A., John, U., and Mathias Wegner, K. (2016). Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol Appl 9, 1096–1111. doi: 10.1111/eva.12370
Sørensen, J. G., and Loeschcke, V. (2002). Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adult Drosophila melanogaster . Funct Ecol 16, 379–384.
Sørensen, J. G., Nielsen, M. M., Kruhøffer, M., Justesen, J., and Loeschcke, V. (2005). Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chaperones 10, 312–328. Available at: http://mit.biology.au.dk/aces
Steward, R. A., Jong, M. A. de, Oostra, V., and Wheat, C. W. (2022). Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat Commun 13, 1–12.
Telonis-Scott, M., Kopp, A., Wayne, M. L., Nuzhdin, S. V., and McIntyre, L. M. (2009). Sex-specific splicing in Drosophila: Widespread occurrence, tissue specificity and evolutionary conservation.Genetics 181, 421–434. doi: 10.1534/genetics.108.096743
Uller, T. (2008). Developmental plasticity and the evolution of parental effects. Trends Ecol Evol 23, 432–438. doi: 10.1016/j.tree.2008.04.005
Uller, T., Nakagawa, S., and English, S. (2013). Weak evidence for anticipatory parental effects in plants and animals. J Evol Biol 26, 2161–2170. doi: 10.1111/jeb.12212
Venables, J. P., Tazi, J., and Juge, F. (2012). Regulated functional alternative splicing in Drosophila. Nucleic Acids Res 40, 1–10. doi: 10.1093/nar/gkr648
Vermeulen, C. J., Sørensen, P., Gagalova, K. K., and Loeschcke, V. (2014). Flies who cannot take the heat: Genome-wide gene expression analysis of temperature-sensitive lethality in an inbred line of Drosophila melanogaster. J Evol Biol 27, 2152–2162. doi: 10.1111/jeb.12472
Waite, H. R., and Sorte, C. J. B. (2022). Negative carry-over effects on larval thermal tolerances across a natural thermal gradient.Ecology 103. doi: 10.1002/ecy.3565
Walsh, M. R., Castoe, T., Holmes, J., Packer, M., Biles, K., Walsh, M., et al. (2016). Local adaptation in transgenerational responses to predators. Proceedings of the Royal Society / Biological Sciences 283, 1–8.
Walsh, M. R., Christian, A., Feder, M., Korte, M., and Tran, K. (2024). Are parental condition transfer effects more widespread than is currently appreciated? Journal of Experimental Biology 227. doi: 10.1242/jeb.246094
Walsh, M. R., Cooley, I. F., Biles, K., and Munch, S. B. (2015). Predator-induced phenotypic plasticity within- and accross-generations: a chalenge for theory? Proceedings of the Royal Society / Biological Sciences 282, 1–8.
Webster, A. K., Jordan, J. M., Hibshman, J. D., Chitrakar, R., and Baugh, L. R. (2018). Transgenerational effects of extended dauer diapause on starvation survival and gene expression plasticity in Caenorhabditis elegans. Genetics 210, 263–274.
Wu, T. D., and Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881. doi: 10.1093/bioinformatics/btq057
Yablonovitch, A. L., Fu, J., Li, K., Mahato, S., Kang, L., Rashkovetsky, E., et al. (2017). Regulation of gene expression and RNA editing in Drosophila adapting to divergent microclimates. Nat Commun 8, 1–14.
Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias.Genome Biol 11, R14.
Zizzari, Z. V., and Ellers, J. (2014). Rapid shift in thermal resistance between generations through maternal heat exposure. Oikos 123, 1365–1370. doi: 10.1111/oik.01496