Acknowledgements

We gratefully thank the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa for computing time. E.G.G.L. acknowledges CONACyT for Doctoral fellowship.
References
1. Poewe, W.; Seppi, K.; Tanner, C. M.; Halliday, G. M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A. E., Parkinson disease.Nature Reviews Disease Primers 2017, 3 , 17013.
2. Kalia, L. V.; Lang, A. E., Parkinson’s disease. Lancet2015, 386 , 896.
3. 2021 alzheimer’s disease facts and figures. Alzheimer’s & Dementia 2021, 17 , 327-406.
4. Querfurth, H. W.; LaFerla, F. M., Alzheimer’s disease. New England Journal of Medicine 2010, 362 , 329-344.
5. Kiernan, M. C.; Vucic, S.; Cheah, B. C.; Turner, M. R.; Eisen, A.; Hardiman, O.; Burrell, J. R.; Zoing, M. C., Amyotrophic lateral sclerosis. The Lancet 2011, 377 , 942-955.
6. Davis, A. A.; Leyns, C. E. G.; Holtzman, D. M., Intercellular spread of protein aggregates in neurodegenerative disease. Annual Review of Cell and Developmental Biology 2018, 34 , 545-568.
7. Walker, L. C.; Jucker, M., Neurodegenerative diseases: Expanding the prion concept. Annual Review of Neuroscience 2015,38 , 87-103.
8. Jucker, M.; Walker, L. C., Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Annals of Neurology 2011, 70 , 532-540.
9. Tang, Z.; Zhao, P.; Wang, H.; Liu, Y.; Bu, W., Biomedicine meets fenton chemistry. Chemical Reviews 2021 , 10.1021/acs.chemrev.0c00977.
10. Cicero, C. E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S. S.; Ferrante, M.; Zappia, M.; Nicoletti, A., Metals and neurodegenerative diseases. A systematic review. 2020 .
11. Leal, M. F. C.; Catarino, R. I. L.; Pimenta, A. M.; Souto, M. R. S., Roles of metal microelements in neurodegenerative diseases.Neurophysiology 2020, 52 , 80-88.
12. Wang, L.; Yin, Y. L.; Liu, X. Z.; Shen, P.; Zheng, Y. G.; Lan, X. R.; Lu, C. B.; Wang, J. Z., Current understanding of metal ions in the pathogenesis of alzheimer’s disease. 2020 .
13. Yan, N.; Zhang, J., Iron metabolism, ferroptosis, and the links with alzheimer’s disease. Frontiers in Neuroscience 2020,13 .
14. Martins, A. C.; Gubert, P.; Villas Boas, G. R.; Meirelles Paes, M.; Santamaría, A.; Lee, E.; Tinkov, A. A.; Bowman, A. B.; Aschner, M., Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Review of Neurotherapeutics 2020,20 , 1109-1121.
15. Ndayisaba, A.; Kaindlstorfer, C.; Wenning, G. K., Iron in neurodegeneration – cause or consequence? Frontiers in Neuroscience 2019, 13 .
16. Sussulini, A.; Hauser-Davis, R. A., Metallomics applied to the study of neurodegenerative and mental diseases. 2018 .
17. Nam, E.; Han, J.; Suh, J. M.; Yi, Y.; Lim, M. H., Link of impaired metal ion homeostasis to mitochondrial dysfunction in neurons.Curr. Opin. Chem. Biol. 2018, 43 , 8.
18. Zucca, F. A.; Segura-Aguilar, J.; Ferrari, E.; Muñoz, P.; Paris, I.; Sulzer, D.; Sarna, T.; Casella, L.; Zecca, L., Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease. Progress in Neurobiology 2017, 155 , 96-119.
19. Lanza, V.; D’Agata, R.; Iacono, G.; Bellia, F.; Spoto, G.; Vecchio, G., Cyclam glycoconjugates as lectin ligands and protective agents of metal-induced amyloid aggregation. J. Inorg. Biochem.2015, 153 , 377.
20. Barnham, K. J.; Bush, A. I., Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev.2014, 43 , 6727.
21. Lee, H. J.; Korshavn, K. J.; Kochi, A.; Derrick, J. S.; Lim, M. H., Cholesterol and metal ions in alzheimer’s disease. Chem. Soc. Rev. 2014, 43 , 6672.
22. Faller, P.; Hureau, C.; La Penna, G., Metal ions and intrinsically disordered proteins and peptides: From cu/zn amyloid-β to general principles. Acc. Chem. Res. 2014, 47 , 2252.
23. Bourassa, M. W.; Brown, H. H.; Borchelt, D. R.; Vogt, S.; Miller, L. M., Metal-deficient aggregates and diminished copper found in cells expressing sod1mutations that cause als. Front. Aging Neurosci.2014, 6 , 110.
24. Savelieff, M. G.; Lee, S.; Liu, Y.; Lim, M. H., Untangling amyloid-β, tau, and metals in alzheimer’s disease. ACS Chem. Biol. 2013, 8 , 856.
25. Greenough, M. A.; Camakaris, J.; Bush, A. I., Metal dyshomeostasis and oxidative stress in alzheimer’s disease. Neurochem. Int.2013, 62 , 540.
26. Faller, P.; Hureau, C.; Berthoumieu, O., Role of metal ions in the self-assembly of the alzheimer’s amyloid-β peptide. Inorg. Chem.2013, 52 , 12193.
27. Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D., Copper, zinc and iron in neurodegenerative diseases (alzheimer’s, parkinson’s and prion diseases). Coordination Chemistry Reviews2012, 256 , 2129-2141.
28. Viles, J. H., Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in alzheimer’s, parkinson’s and prion diseases. Coordination Chemistry Reviews2012, 256 , 2271-2284.
29. Tõugu, V.; Tiiman, A.; Palumaa, P., Interactions of zn(ii) and cu(ii) ions with alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics2011, 3 , 250.
30. Lelie, H. L.; Liba, A.; Bourassa, M. W.; Chattopadhyay, M.; Chan, P. K.; Gralla, E. B.; Miller, L. M.; Borchelt, D. R.; Valentine, J. S.; Whitelegge, J. P., Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice.J. Biol. Chem. 2011, 286 , 2795.
31. Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M., Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem.2010, 345 , 91.
32. Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S., The transition metals copper and iron in neurodegenerative diseases. Chemico-Biological Interactions2010, 186 , 184-199.
33. Balboni, E.; Filippini, T.; Crous-Bou, M.; Guxens, M.; Erickson, L. D.; Vinceti, M., The association between air pollutants and hippocampal volume from magnetic resonance imaging: A systematic review and meta-analysis. Environmental Research 2022, 204 , 111976.
34. Tham, R.; Schikowski, T., The role of traffic-related air pollution on neurodegenerative diseases in older people: An epidemiological perspective. Journal of Alzheimer’s Disease 2021,79 , 949-959.
35. Nunez, Y.; Boehme, A. K.; Li, M.; Goldsmith, J.; Weisskopf, M. G.; Re, D. B.; Navas-Acien, A.; van Donkelaar, A.; Martin, R. V.; Kioumourtzoglou, M.-A., Parkinson’s disease aggravation in association with fine particle components in new york state. Environmental Research 2021, 201 , 111554.
36. Costa, L. G.; Cole, T. B.; Dao, K.; Chang, Y.-C.; Coburn, J.; Garrick, J. M., Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders.Pharmacology & Therapeutics 2020, 210 , 107523.
37. Cory‐slechta, D. A.; Sobolewski, M.; Oberdörster, G., Air pollution‐related brain metal dyshomeostasis as a potential risk factor for neurodevelopmental disorders and neurodegenerative diseases.Atmosphere 2020, 11 .
38. Kasdagli, M.-I.; Katsouyanni, K.; Dimakopoulou, K.; Samoli, E., Air pollution and parkinson’s disease: A systematic review and meta-analysis up to 2018. International Journal of Hygiene and Environmental Health 2019, 222 , 402-409.
39. Bihaqi, S. W., Early life exposure to lead (pb) and changes in DNA methylation: Relevance to alzheimer’s disease. Reviews on Environmental Health 2019, 34 , 187-195.
40. Croze, M. L.; Zimmer, L., Ozone atmospheric pollution and alzheimer’s disease: From epidemiological facts to molecular mechanisms.Journal of Alzheimer’s Disease 2018, 62 , 503-522.
41. Li, X.; Yu, J.; Li, J.; Wu, Y.; Li, B., Dopaminergic dysfunction in mammalian dopamine neurons induced by simazine neurotoxicity.International Journal of Molecular Sciences 2017,18 .
42. Su, F.-C.; Goutman, S. A.; Chernyak, S.; Mukherjee, B.; Callaghan, B. C.; Batterman, S.; Feldman, E. L., Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurology2016, 73 , 803-811.
43. Mushtaq, G.; A. Khan, J.; Joseph, E.; A. Kamal, M., Nanoparticles, neurotoxicity and neurodegenerative diseases. Current Drug Metabolism 2015, 16 , 676-684.
44. Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B., Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and parkinson diseases. Front Cell Neurosci2015, 9 , 124-124.
45. Aung, K. H.; Tsukahara, S.; Maekawa, F.; Nohara, K.; Nakamura, K.; Tanoue, A., Role of environmental chemical insult in neuronal cell death and cytoskeleton damage. Biological and Pharmaceutical Bulletin2015, 38 , 1109-1112.
46. Landrigan, P. J.; Sonawane, B.; Butler, R. N.; Trasande, L.; Callan, R.; Droller, D., Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 2005,113 , 1230-1233.
47. Brown Rebecca, C.; Lockwood Alan, H.; Sonawane Babasaheb, R., Neurodegenerative diseases: An overview of environmental risk factors.Environ Health Perspect 2005, 113 , 1250-1256.
48. Nishimura, Y.; Kanda, Y.; Sone, H.; Aoyama, H., Oxidative stress as a common key event in developmental neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021, 2021 .
49. Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozlowska, J.; Kozubski, W., Oxidative stress factors in parkinson’s disease.NEURAL REGENERATION RESEARCH 2021, 16 , 1383-1391.
50. Saleem, U.; Sabir, S.; Niazi, S. G.; Naeem, M.; Ahmad, B., Role of oxidative stress and antioxidant defense biomarkers in neurodegenerative diseases. CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION2020, 30 , 311-322.
51. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S., Oxidative stress: A key modulator in neurodegenerative diseases. MOLECULES2019, 24 .
52. Butterfield, D. A.; Halliwell, B., Oxidative stress, dysfunctional glucose metabolism and alzheimer disease. Nat. Rev. Neurosci.2019, 20 , 148.
53. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F., Oxidative stress and the amyloid beta peptide in alzheimer’s disease. Redox Biol. 2018, 14 , 450.
54. Butterfield, D. A., Perspectives on oxidative stress in alzheimer’s disease and predictions of future research emphases. JOURNAL OF ALZHEIMERS DISEASE 2018, 64 , S469-S479.
55. Ganguly, G.; Chakrabarti, S.; Chatterjee, U.; Saso, L., Proteinopathy, oxidative stress and mitochondrial dysfunction: Cross talk in alzheimer’s disease and parkinson’s disease. Drug Des., Dev. Ther. 2017, 11 , 797.
56. Jiang, T. F.; Sun, Q.; Chen, S. D., Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in parkinson’s disease and alzheimer’s disease. PROGRESS IN NEUROBIOLOGY 2016, 147 , 1-19.
57. Kim, G. H.; Kim, J. E.; Rhie, S. J.; Yoon, S., The role of oxidative stress in neurodegenerative diseases. EXPERIMENTAL NEUROBIOLOGY2015, 24 , 325-340.
58. Ferreira, M. E. S.; de Vasconcelos, A. S.; Vilhena, T. D.; da Silva, T. L.; Barbosa, A. D.; Gomes, A. R. Q.; Dolabela, M. F.; Percario, S., Oxidative stress in alzheimer’s disease: Should we keep trying antioxidant therapies? CELLULAR AND MOLECULAR NEUROBIOLOGY2015, 35 , 595-614.
59. Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V. R., Oxidative stress and parkinson’s disease. Front. Neuroanat.2015, 9 , 91.
60. Radi, E.; Formichi, P.; Battisti, C.; Federico, A., Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimer’s Dis. 2014, 42 , S125.
61. Chen, Z.; Zhong, C., Oxidative stress in alzheimer’s disease.Neurosci. Bull. 2014, 30 , 271.
62. Zhao, Y.; Zhao, B. L., Oxidative stress and the pathogenesis of alzheimer’s disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY2013, 2013 .
63. Subramaniam, S. R.; Chesselet, M. F., Mitochondrial dysfunction and oxidative stress in parkinson’s disease. Prog. Neurobiol.2013, 106–107 , 17.
64. Guo, C. Y.; Sun, L.; Chen, X. P.; Zhang, D. S., Oxidative stress, mitochondrial damage and neurodegenerative diseases. NEURAL REGENERATION RESEARCH 2013, 8 , 2003-2014.
65. Barnham, K. J.; Masters, C. L.; Bush, A. I., Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discovery2004, 3 , 205.
66. Radi, R., The oxygen paradox in human biology and medicine: Bioenergetics, free radicals and oxidative stress. FEBS OPEN BIO2021, 11 , 7-7.
67. Guo, Q. P.; Li, F. N.; Duan, Y. H.; Wen, C. Y.; Wang, W. L.; Zhang, L. Y.; Huang, R. L.; Yin, Y. L., Oxidative stress, nutritional antioxidants and beyond. SCIENCE CHINA-LIFE SCIENCES2020, 63 , 866-874.
68. Matschke, V.; Theiss, C.; Matschke, J., Oxidative stress: The lowest common denominator of multiple diseases. NEURAL REGENERATION RESEARCH 2019, 14 , 238-241.
69. Bose, A.; Beal, M. F., Mitochondrial dysfunction and oxidative stress in induced pluripotent stem cell models of parkinson’s disease.Eur. J. Neurosci. 2019, 49 , 525.
70. Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Alvarez-Idaboy, J. R.; Galano, A., Comprehensive investigation of the antioxidant and pro-oxidant effects of phenolic compounds: A double-edged sword in the context of oxidative stress? The Journal of Physical Chemistry B 2018, 122 , 6198-6214.
71. Sies, H.; Berndt, C.; Jones, D. P., Oxidative stress. Annual Review of Biochemistry 2017, 86 , 715-748.
72. Ortiz, G. G.; Moises, F. P. P.; Mireles-Ramirez, M.; Flores-Alvarado, L. J.; Gonzalez-Usigli, H.; Sanchez-Gonzalez, V. J.; Sanchez-Lopez, A. L.; Sanchez-Romero, L.; Diaz-Barba, E. I.; Santoscoy-Gutierrez, J. F., et al., Oxidative stress: Love and hate history in central nervous system. In Stress and inflammation in disorders , Donev, R., Ed. 2017; Vol. 108, pp 1-31.
73. Sies, H., Oxidative stress: A concept in redox biology and medicine.Redox Biol 2015, 4 , 180-183.
74. Xu, J. Z.; Leeuwenburgh, C., Free radicals and oxidative stress: Basic concepts and misconceptions. In Free radicals in ent pathology , Miller, J.; LePrell, C. G.; Rybak, L., Eds. 2015, 10.1007/978-3-319-13473-4_2
10.1007/978-3-319-13473-4pp 9-20.
75. Lushchak, V. I., Free radicals, reactive oxygen species, oxidative stress and its classification. CHEMICO-BIOLOGICAL INTERACTIONS2014, 224 , 164-175.
76. Kaur, R.; Kaur, J.; Mahajan, J.; Kumar, R.; Arora, S., Oxidative stress-implications, source and its prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 2014, 21 , 1599-1613.
77. Pradeep, H.; Diya, J. B.; Shashikumar, S.; Rajanikant, G. K., Oxidative stress - assassin behind the ischemic stroke. FOLIA NEUROPATHOLOGICA 2012, 50 , 219-230.
78. Mandelker, L., Oxidative stress, free radicals, and cellular damage. In Studies on veterinary medicine , Mandelker, L.; Vajdovich, P., Eds. 2011, 10.1007/978-1-61779-071-3_1
10.1007/978-1-61779-071-3pp 1-17.
79. Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C. J.; Valko, M., Targeting free radicals in oxidative stress-related human diseases. TRENDS IN PHARMACOLOGICAL SCIENCES 2017,38 , 592-607.
80. Gebicki, J. M., Oxidative stress, free radicals and protein peroxides. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 2016,595 , 33-39.
81. Galano, A., Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry based protocols. JOURNAL OF THE MEXICAN CHEMICAL SOCIETY 2015, 59 , 231-262.
82. Richardson, A., Is the free radical (oxidative stress) theory of aging dead? GERONTOLOGIST 2012, 52 , 405-405.
83. Gul, A.; Rahman, M. A.; Hamid, S., Biochemistry of antioxidants and their role in oxidative stress caused by free radicals. OXIDATION COMMUNICATIONS 2010, 33 , 682-697.
84. Jensen, S. J. K., Oxidative stress and free radicals. Journal of Molecular Structure: THEOCHEM 2003, 666-667 , 387-392.
85. Collin, F., Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. International Journal of Molecular Sciences 2019, 20 .
86. Friedman, J., Why is the nervous system vulnerable to oxidative stress? In Oxidative stress and free radical damage in neurology , Gadoth, N.; Gobel, H. H., Eds. 2011, 10.1007/978-1-60327-514-9_2
10.1007/978-1-60327-514-9pp 19-27.
87. Schöneich, C., Reactive oxygen species and biological aging: A mechanistic approach. Experimental Gerontology 1999,34 , 19-34.
88. Plotnikov, M. B.; Plotnikova, T. M., Tyrosol as a neuroprotector: Strong effects of a ”weak” antioxidant. CURRENT NEUROPHARMACOLOGY2021, 19 , 434-448.
89. Singh, E.; Devasahayam, G., Neurodegeneration by oxidative stress: A review on prospective use of small molecules for neuroprotection.MOLECULAR BIOLOGY REPORTS 2020, 47 , 3133-3140.
90. Lee, K. H.; Cha, M.; Lee, B. H., Neuroprotective effect of antioxidants in the brain. International Journal of Molecular Sciences 2020, 21 .
91. Teleanu, R. I.; Chircov, C.; Grumezescu, A. M.; Volceanov, A.; Teleanu, D. M., Antioxidant therapies for neuroprotection-a review.JOURNAL OF CLINICAL MEDICINE 2019, 8 .
92. Lloret, A.; Esteve, D.; Monllor, P.; Cervera-Ferri, A.; Lloret, A., The effectiveness of vitamin e treatment in alzheimer’s disease.International Journal of Molecular Sciences 2019,20 .
93. Watson, N.; Diamandis, T.; Gonzales-Portillo, C.; Reyes, S.; Borlongan, C. V., Melatonin as an antioxidant for stroke neuroprotection. CELL TRANSPLANTATION 2016, 25 , 883-891.
94. Lalkovicova, M.; Danielisova, V., Neuroprotection and antioxidants.NEURAL REGENERATION RESEARCH 2016, 11 , 865-874.
95. Dohi, K.; Satoh, K.; Nakamachi, T.; Yofu, S.; Hiratsuka, K.; Nakamura, S.; Ohtaki, H.; Yoshikawa, T.; Shioda, S.; Aruga, T., Does edaravone (mci-186) act as an antioxidant and a neuroprotector in experimental traumatic brain injury? ANTIOXIDANTS & REDOX SIGNALING 2007, 9 , 281-287.
96. Mohanakumar, K. P.; Thomas, B.; Sharma, S. M.; Muralikrishnan, D.; Chowdhury, R.; Chiueh, C. C., Nitric oxide - an antioxidant and neuroprotector. In Nitric oxide: Novel actions, deleterious effects and clinical potential , Chiueh, C. C.; Hong, J. S.; Leong, S. K., Eds. 2002; Vol. 962, pp 389-401.
97. Behl, C.; Moosmann, B., Antioxidant neuroprotection in alzheimer’s disease as preventive and therapeutic approach2 2this article is part of a series of reviews on “causes and consequences of oxidative stress in alzheimer’s disease.” the full list of papers may be found on the homepage of the journal. Free Radical Biology and Medicine2002, 33 , 182-191.
98. Finberg, J. P. M., The discovery and development of rasagiline as a new anti-parkinson medication. JOURNAL OF NEURAL TRANSMISSION2020, 127 , 125-130.
99. Stocchi, F.; Fossati, C.; Torti, M., Rasagiline for the treatment of parkinson’s disease: An update. EXPERT OPINION ON PHARMACOTHERAPY2015, 16 , 2231-2241.
100. Muller, T., Pharmacokinetic/pharmacodynamic evaluation of rasagiline mesylate for parkinson’s disease. EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY 2014, 10 , 1423-1432.
101. McCormack, P. L., Rasagiline: A review of its use in the treatment of idiopathic parkinson’s disease. CNS DRUGS 2014,28 , 1083-1097.
102. Minguez-Minguez, S.; del Pozo, J. S. G.; Jordan, J., Rasagiline in parkinson’s disease: A review based on meta-analysis of clinical data.PHARMACOLOGICAL RESEARCH 2013, 74 , 78-86.
103. Hoy, S. M.; Keating, G. M., Rasagiline a review of its use in the treatment of idiopathic parkinson’s disease. DRUGS 2012,72 , 643-669.
104. Chen, J. J.; Wilkinson, J. R., The monoamine oxidase type b inhibitor rasagiline in the treatment of parkinson disease: Is tyramine a challenge? JOURNAL OF CLINICAL PHARMACOLOGY 2012,52 , 620-628.
105. Perez-Lloret, S.; Rascol, O., Safety of rasagiline for the treatment of parkinson’s disease. EXPERT OPINION ON DRUG SAFETY2011, 10 , 633-643.
106. Chahine, L. M.; Stern, M. B., Rasagiline in parkinson’s disease. InMonoamine oxidases and their inhibitors , Youdim, M. B. H.; Riederer, P., Eds. 2011; Vol. 100, pp 151-168.
107. Pagonabarraga, J.; Kulisevsky, J., Rasagiline: Effectiveness and protection in parkinson’s disease. REVISTA DE NEUROLOGIA2010, 51 , 535-541.
108. Leegwater-Kim, J.; Bortan, E., The role of rasagiline in the treatment of parkinson’s disease. CLINICAL INTERVENTIONS IN AGING2010, 5 , 149-156.
109. Linazasoro, G., Rasagiline in parkinson’s disease.NEUROLOGIA 2008, 23 , 238-245.
110. Oldfield, V.; Keating, G. M.; Perry, C. M., Rasagiline - a review of its use in the management of parkinson’s disease. DRUGS2007, 67 , 1725-1747.
111. Chen, J. J.; Swope, D. M.; Dashtipour, K., Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of parkinson’s disease. CLINICAL THERAPEUTICS2007, 29 , 1825-1849.
112. Chen, J. J.; Ly, A. V., Rasagiline: A second-generation monoamine oxidase type-b inhibitor for the treatment of parkinson’s disease.AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY 2006,63 , 915-928.
113. Rascol, O., Rasagiline in the pharmacotherapy of parkinson’s disease - a review. EXPERT OPINION ON PHARMACOTHERAPY2005, 6 , 2061-2075.
114. Blandini, F., Neuroprotection by rasagiline: A new therapeutic approach to parkinson’s disease? CNS DRUG REVIEWS 2005,11 , 183-194.
115. Jiang, D. Q.; Wang, H. K.; Wang, Y.; Li, M. X.; Jiang, L. L.; Wang, Y., Rasagiline combined with levodopa therapy versus levodopa monotherapy for patients with parkinson’s disease: A systematic review.NEUROLOGICAL SCIENCES 2020, 41 , 101-109.
116. Pagonabarraga, J.; Rodriguez-Oroz, M. C., Rasagiline in monotherapy in patients with early stages of parkinson’s disease and in combined and adjunct therapy to levodopa with moderate and advanced stages.REVISTA DE NEUROLOGIA 2013, 56 , 25-34.
117. Rabey, J. M.; Sagi, I.; Huberman, M.; Melamed, E.; Korczyn, A.; Giladi, N.; Inzelberg, R.; Djaldetti, R.; Klein, C.; Berecz, G., et al., Rasagiline mesylate, a new mao-b inhibitor for the treatment of parkinson’s disease: A double-blind study as adjunctive therapy to levodopa. CLINICAL NEUROPHARMACOLOGY 2000, 23 , 324-330.
118. Youdim, M. B. H.; Kupershmidt, L.; Amit, T.; Weinreb, O., Promises of novel multi-target neuroprotective and neurorestorative drugs for parkinson’s disease. Parkinsonism Relat. Disord. 2014,20 , S132.
119. Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M. B. H., Mechanism of neuroprotective action of the anti-parkinson drug rasagiline and its derivatives. Brain Research Reviews 2005, 48 , 379-387.
120. Youdim, M. B. H.; Maruyama, W.; Naoi, M., Neuropharmacolomcal, neuroprotective and amyloid precursor processing properties of selective mao-b inhibitor antiparkinsonian drug, rasagiline. DRUGS OF TODAY2005, 41 , 369-391.
121. Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M. B. H., Rasagiline: A novel anti-parkinsonian monoamine oxidase-b inhibitor with neuroprotective activity. Prog. Neurobiol. 2010,92 , 330.
122. Weinreb, O.; Bar-Am, O.; Prosolovich, K.; Amit, T.; Youdim, M. B. H., Does 1-(r)-aminoindan possess neuroprotective properties against experimental parkinson’s disease? Antioxidants and Redox Signaling 2011, 14 , 767-775.
123. Bar-Am, O.; Weinreb, O.; Amit, T.; Youdim, M. B. H., The neuroprotective mechanism of 1-(r)-aminoindan, the major metabolite of the anti-parkinsonian drug rasagiline. Journal of Neurochemistry2010, 112 , 1131-1137.
124. Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M. B. H., Ladostigil: A novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for alzheimer’s disease treatment. Current Drug Targets 2012, 13 , 483-494.
125. Bar-Am, O.; Amit, T.; Youdim, M. B. H., Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. Journal of Neurochemistry 2007, 103 , 500-508.
126. Molinspiration cheminformatics free web services. https://www.molinspiration.com/ (accessed 2020).
127. Drug likeness tool (drulito 1). http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html (accessed February 8, 2020).
128. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J., A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1 , 55.
129. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D., Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002,45 , 2615.
130. Lipinski, C. A., Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies 2004,1 , 337-341.
131. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 2012, 64 , 4-17.
132. Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F., Scscore: Synthetic complexity learned from a reaction corpus. Journal of Chemical Information and Modeling 2018, 58 , 252-261.
133. Méndez-Lucio, O.; Medina-Franco, J. L., The many roles of molecular complexity in drug discovery. Drug Discovery Today 2017,22 , 120-126.
134. Fukunishi, Y.; Kurosawa, T.; Mikami, Y.; Nakamura, H., Prediction of synthetic accessibility based on commercially available compound databases. Journal of Chemical Information and Modeling2014, 54 , 3259-3267.
135. Boda, K.; Seidel, T.; Gasteiger, J., Structure and reaction based evaluation of synthetic accessibility. J. Comput.-Aided Mol. Des.2007, 21 , 311.
136. Sylvia. https://mn-am.com/products/sylvia/ (accessed February 8, 2020).
137. Bonnet, P., Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists. Eur. J. Med. Chem.2012, 54 , 679.
138. Bakhtyari, N. G.; Raitano, G.; Benfenati, E.; Martin, T.; Young, D., Comparison of in silico models for prediction of mutagenicity.J Environ Sci Health C Environ Carcinog Ecotoxicol Rev2013, 31 , 45-66.
139. Myatt, G. J.; Ahlberg, E.; Akahori, Y.; Allen, D.; Amberg, A.; Anger, L. T.; Aptula, A.; Auerbach, S.; Beilke, L.; Bellion, P., et al., In silico toxicology protocols. Regulatory Toxicology and Pharmacology 2018, 96 , 1-17.
140. Castro-Gonzalez, L. M.; Alvarez-Idaboy, J. R.; Galano, A., Computationally designed sesamol derivatives proposed as potent antioxidants. ACS Omega 2020, 5 , 9566-9575.
141. Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Galano, A., Computer-designed melatonin derivatives: Potent peroxyl radical scavengers with no pro-oxidant behavior. Theoretical Chemistry Accounts 2020, 139 , 133.
142. Reina, M.; Castañeda-Arriaga, R.; Perez-Gonzalez, A.; Guzman-Lopez, E. G.; Tan, D.-X.; Reiter, R. J.; Galano, A., A computer-assisted systematic search for melatonin derivatives with high potential as antioxidants. Melatonin Research 2018, 1 , 27-58.
143. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. Gaussian 16 rev. C.01 , Wallingford, CT, 2016.
144. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113 , 6378.
145. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006,2 , 364.
146. Wu, W. h.; Lei, P.; Liu, Q.; Hu, J.; Gunn, A. P.; Chen, M. s.; Rui, Y. f.; Su, X. y.; Xie, Z. p.; Zhao, Y. F., Sequestration of copper from β-amyloid promotes selective lysis by cyclen-hybrid cleavage agents.J. Biol. Chem. 2008, 283 , 31657.
147. Milenković, D.; Dorović, J.; Jeremić, S.; Dimitrić Marković, J. M.; Avdović, E. H.; Marković, Z., Free radical scavenging potency of dihydroxybenzoic acids. Journal of Chemistry 2017,2017 .
148. Amić, A.; Marković, Z.; Dimitrić Marković, J. M.; Lučić, B.; Stepanić, V.; Amić, D., The 2h+/2e- free radical scavenging mechanisms of uric acid: Thermodynamics of n-h bond cleavage. Computational and Theoretical Chemistry 2016, 1077 , 2-10.
149. Dorović, J.; Marković, J. M. D.; Stepanić, V.; Begović, N.; Amić, D.; Marković, Z., Influence of different free radicals on scavenging potency of gallic acid. Journal of Molecular Modeling2014, 20 .
150. Marković, Z.; Crossed D Signorović, J.; Dekić, M.; Radulović, M.; Marković, S.; Ilić, M., Dft study of free radical scavenging activity of erodiol. Chemical Papers 2013, 67 , 1453-1461.
151. Galano, A.; Alvarez-Idaboy, J. R.; Francisco-Márquez, M., Physicochemical insights on the free radical scavenging activity of sesamol: Importance of the acid/base equilibrium. J. Phys. Chem. B 2011, 115 , 13101.
152. Ortiz, J. V., Toward an exact one-electron picture of chemical bonding. In Advances in Quantum Chemistry , Academic Press Inc.: 1999; Vol. 35, pp 33-52.
153. Ortiz, J. V., Electron propagator theory: An approach to prediction and interpretation in quantum chemistry. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3 , 123.
154. Ortiz, J. V., Partial third‐order quasiparticle theory: Comparisons for closed‐shell ionization energies and an application to the borazine photoelectron spectrum. The Journal of Chemical Physics1996, 104 , 7599-7605.
155. Pérez-González, A.; Galano, A.; Ortiz, J. V., Vertical ionization energies of free radicals and electron detachment energies of their anions: A comparison of direct and indirect methods versus experiment.J. Phys. Chem. A 2014, 118 , 6125.
156. Ortiz, J. V., The electron propagator picture of molecular electronic structure. In Computational chemistry: Reviews of current trends , WORLD SCIENTIFIC: 1997; Vol. Volume 2, pp 1-61.
157. Chattaraj, P. K.; Roy, D. R., Update 1 of: Electrophilicity index.Chemical Reviews 2007, 107 , PR46-PR74.
158. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity index.Chemical Reviews 2006, 106 , 2065-2091.
159. Parr, R. G.; Szentpály, L. V.; Liu, S., Electrophilicity index.Journal of the American Chemical Society 1999,121 , 1922-1924.
160. Pérez-González, A.; Castañeda-Arriaga, R.; Verastegui, B.; Carreón-González, M.; Alvarez-Idaboy, J. R.; Galano, A., Estimation of empirically fitted parameters for calculating pk a values of thiols in a fast and reliable way. Theor. Chem. Acc. 2018,137 , 5.
161. Galano, A.; Pérez-González, A.; Castañeda-Arriaga, R.; Muñoz-Rugeles, L.; Mendoza-Sarmiento, G.; Romero-Silva, A.; Ibarra-Escutia, A.; Rebollar-Zepeda, A. M.; León-Carmona, J. R.; Hernández-Olivares, M. A., et al., Empirically fitted parameters for calculating pkavalues with small deviations from experiments using a simple computational strategy. J. Chem. Inf. Model.2016, 56 , 1714.
162. Zhong, H.; Mashinson, V.; Woolman, T.; Zha, M., Understanding the molecular properties and metabolism of top prescribed drugs. Curr. Top. Med. Chem. 2013, 13 , 1290.