Acknowledgements
We gratefully thank the Laboratorio de Visualización y Cómputo Paralelo
at Universidad Autónoma Metropolitana-Iztapalapa for computing time.
E.G.G.L. acknowledges CONACyT for Doctoral fellowship.
References
1. Poewe, W.; Seppi, K.; Tanner, C. M.; Halliday, G. M.; Brundin, P.;
Volkmann, J.; Schrag, A.-E.; Lang, A. E., Parkinson disease.Nature Reviews Disease Primers 2017, 3 , 17013.
2. Kalia, L. V.; Lang, A. E., Parkinson’s disease. Lancet2015, 386 , 896.
3. 2021 alzheimer’s disease facts and figures. Alzheimer’s &
Dementia 2021, 17 , 327-406.
4. Querfurth, H. W.; LaFerla, F. M., Alzheimer’s disease. New
England Journal of Medicine 2010, 362 , 329-344.
5. Kiernan, M. C.; Vucic, S.; Cheah, B. C.; Turner, M. R.; Eisen, A.;
Hardiman, O.; Burrell, J. R.; Zoing, M. C., Amyotrophic lateral
sclerosis. The Lancet 2011, 377 , 942-955.
6. Davis, A. A.; Leyns, C. E. G.; Holtzman, D. M., Intercellular spread
of protein aggregates in neurodegenerative disease. Annual Review
of Cell and Developmental Biology 2018, 34 , 545-568.
7. Walker, L. C.; Jucker, M., Neurodegenerative diseases: Expanding the
prion concept. Annual Review of Neuroscience 2015,38 , 87-103.
8. Jucker, M.; Walker, L. C., Pathogenic protein seeding in alzheimer
disease and other neurodegenerative disorders. Annals of
Neurology 2011, 70 , 532-540.
9. Tang, Z.; Zhao, P.; Wang, H.; Liu, Y.; Bu, W., Biomedicine meets
fenton chemistry. Chemical Reviews 2021 ,
10.1021/acs.chemrev.0c00977.
10. Cicero, C. E.; Mostile, G.; Vasta, R.; Rapisarda, V.; Signorelli, S.
S.; Ferrante, M.; Zappia, M.; Nicoletti, A., Metals and
neurodegenerative diseases. A systematic review. 2020 .
11. Leal, M. F. C.; Catarino, R. I. L.; Pimenta, A. M.; Souto, M. R. S.,
Roles of metal microelements in neurodegenerative diseases.Neurophysiology 2020, 52 , 80-88.
12. Wang, L.; Yin, Y. L.; Liu, X. Z.; Shen, P.; Zheng, Y. G.; Lan, X.
R.; Lu, C. B.; Wang, J. Z., Current understanding of metal ions in the
pathogenesis of alzheimer’s disease. 2020 .
13. Yan, N.; Zhang, J., Iron metabolism, ferroptosis, and the links with
alzheimer’s disease. Frontiers in Neuroscience 2020,13 .
14. Martins, A. C.; Gubert, P.; Villas Boas, G. R.; Meirelles Paes, M.;
Santamaría, A.; Lee, E.; Tinkov, A. A.; Bowman, A. B.; Aschner, M.,
Manganese-induced neurodegenerative diseases and possible therapeutic
approaches. Expert Review of Neurotherapeutics 2020,20 , 1109-1121.
15. Ndayisaba, A.; Kaindlstorfer, C.; Wenning, G. K., Iron in
neurodegeneration – cause or consequence? Frontiers in
Neuroscience 2019, 13 .
16. Sussulini, A.; Hauser-Davis, R. A., Metallomics applied to the study
of neurodegenerative and mental diseases. 2018 .
17. Nam, E.; Han, J.; Suh, J. M.; Yi, Y.; Lim, M. H., Link of impaired
metal ion homeostasis to mitochondrial dysfunction in neurons.Curr. Opin. Chem. Biol. 2018, 43 , 8.
18. Zucca, F. A.; Segura-Aguilar, J.; Ferrari, E.; Muñoz, P.; Paris, I.;
Sulzer, D.; Sarna, T.; Casella, L.; Zecca, L., Interactions of iron,
dopamine and neuromelanin pathways in brain aging and parkinson’s
disease. Progress in Neurobiology 2017, 155 ,
96-119.
19. Lanza, V.; D’Agata, R.; Iacono, G.; Bellia, F.; Spoto, G.; Vecchio,
G., Cyclam glycoconjugates as lectin ligands and protective agents of
metal-induced amyloid aggregation. J. Inorg. Biochem.2015, 153 , 377.
20. Barnham, K. J.; Bush, A. I., Biological metals and metal-targeting
compounds in major neurodegenerative diseases. Chem. Soc. Rev.2014, 43 , 6727.
21. Lee, H. J.; Korshavn, K. J.; Kochi, A.; Derrick, J. S.; Lim, M. H.,
Cholesterol and metal ions in alzheimer’s disease. Chem. Soc.
Rev. 2014, 43 , 6672.
22. Faller, P.; Hureau, C.; La Penna, G., Metal ions and intrinsically
disordered proteins and peptides: From cu/zn amyloid-β to general
principles. Acc. Chem. Res. 2014, 47 , 2252.
23. Bourassa, M. W.; Brown, H. H.; Borchelt, D. R.; Vogt, S.; Miller, L.
M., Metal-deficient aggregates and diminished copper found in cells
expressing sod1mutations that cause als. Front. Aging Neurosci.2014, 6 , 110.
24. Savelieff, M. G.; Lee, S.; Liu, Y.; Lim, M. H., Untangling
amyloid-β, tau, and metals in alzheimer’s disease. ACS Chem.
Biol. 2013, 8 , 856.
25. Greenough, M. A.; Camakaris, J.; Bush, A. I., Metal dyshomeostasis
and oxidative stress in alzheimer’s disease. Neurochem. Int.2013, 62 , 540.
26. Faller, P.; Hureau, C.; Berthoumieu, O., Role of metal ions in the
self-assembly of the alzheimer’s amyloid-β peptide. Inorg. Chem.2013, 52 , 12193.
27. Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D., Copper,
zinc and iron in neurodegenerative diseases (alzheimer’s, parkinson’s
and prion diseases). Coordination Chemistry Reviews2012, 256 , 2129-2141.
28. Viles, J. H., Metal ions and amyloid fiber formation in
neurodegenerative diseases. Copper, zinc and iron in alzheimer’s,
parkinson’s and prion diseases. Coordination Chemistry Reviews2012, 256 , 2271-2284.
29. Tõugu, V.; Tiiman, A.; Palumaa, P., Interactions of zn(ii) and
cu(ii) ions with alzheimer’s amyloid-beta peptide. Metal ion binding,
contribution to fibrillization and toxicity. Metallomics2011, 3 , 250.
30. Lelie, H. L.; Liba, A.; Bourassa, M. W.; Chattopadhyay, M.; Chan, P.
K.; Gralla, E. B.; Miller, L. M.; Borchelt, D. R.; Valentine, J. S.;
Whitelegge, J. P., Copper and zinc metallation status of copper-zinc
superoxide dismutase from amyotrophic lateral sclerosis transgenic mice.J. Biol. Chem. 2011, 286 , 2795.
31. Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M., Metals, oxidative
stress and neurodegenerative disorders. Mol. Cell. Biochem.2010, 345 , 91.
32. Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.;
Rivera-Espinosa, L.; Montes, S., The transition metals copper and iron
in neurodegenerative diseases. Chemico-Biological Interactions2010, 186 , 184-199.
33. Balboni, E.; Filippini, T.; Crous-Bou, M.; Guxens, M.; Erickson, L.
D.; Vinceti, M., The association between air pollutants and hippocampal
volume from magnetic resonance imaging: A systematic review and
meta-analysis. Environmental Research 2022, 204 ,
111976.
34. Tham, R.; Schikowski, T., The role of traffic-related air pollution
on neurodegenerative diseases in older people: An epidemiological
perspective. Journal of Alzheimer’s Disease 2021,79 , 949-959.
35. Nunez, Y.; Boehme, A. K.; Li, M.; Goldsmith, J.; Weisskopf, M. G.;
Re, D. B.; Navas-Acien, A.; van Donkelaar, A.; Martin, R. V.;
Kioumourtzoglou, M.-A., Parkinson’s disease aggravation in association
with fine particle components in new york state. Environmental
Research 2021, 201 , 111554.
36. Costa, L. G.; Cole, T. B.; Dao, K.; Chang, Y.-C.; Coburn, J.;
Garrick, J. M., Effects of air pollution on the nervous system and its
possible role in neurodevelopmental and neurodegenerative disorders.Pharmacology & Therapeutics 2020, 210 , 107523.
37. Cory‐slechta, D. A.; Sobolewski, M.; Oberdörster, G., Air
pollution‐related brain metal dyshomeostasis as a potential risk factor
for neurodevelopmental disorders and neurodegenerative diseases.Atmosphere 2020, 11 .
38. Kasdagli, M.-I.; Katsouyanni, K.; Dimakopoulou, K.; Samoli, E., Air
pollution and parkinson’s disease: A systematic review and meta-analysis
up to 2018. International Journal of Hygiene and Environmental
Health 2019, 222 , 402-409.
39. Bihaqi, S. W., Early life exposure to lead (pb) and changes in DNA
methylation: Relevance to alzheimer’s disease. Reviews on
Environmental Health 2019, 34 , 187-195.
40. Croze, M. L.; Zimmer, L., Ozone atmospheric pollution and
alzheimer’s disease: From epidemiological facts to molecular mechanisms.Journal of Alzheimer’s Disease 2018, 62 , 503-522.
41. Li, X.; Yu, J.; Li, J.; Wu, Y.; Li, B., Dopaminergic dysfunction in
mammalian dopamine neurons induced by simazine neurotoxicity.International Journal of Molecular Sciences 2017,18 .
42. Su, F.-C.; Goutman, S. A.; Chernyak, S.; Mukherjee, B.; Callaghan,
B. C.; Batterman, S.; Feldman, E. L., Association of environmental
toxins with amyotrophic lateral sclerosis. JAMA Neurology2016, 73 , 803-811.
43. Mushtaq, G.; A. Khan, J.; Joseph, E.; A. Kamal, M., Nanoparticles,
neurotoxicity and neurodegenerative diseases. Current Drug
Metabolism 2015, 16 , 676-684.
44. Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B.,
Environmental pollutants as risk factors for neurodegenerative
disorders: Alzheimer and parkinson diseases. Front Cell Neurosci2015, 9 , 124-124.
45. Aung, K. H.; Tsukahara, S.; Maekawa, F.; Nohara, K.; Nakamura, K.;
Tanoue, A., Role of environmental chemical insult in neuronal cell death
and cytoskeleton damage. Biological and Pharmaceutical Bulletin2015, 38 , 1109-1112.
46. Landrigan, P. J.; Sonawane, B.; Butler, R. N.; Trasande, L.; Callan,
R.; Droller, D., Early environmental origins of neurodegenerative
disease in later life. Environ Health Perspect 2005,113 , 1230-1233.
47. Brown Rebecca, C.; Lockwood Alan, H.; Sonawane Babasaheb, R.,
Neurodegenerative diseases: An overview of environmental risk factors.Environ Health Perspect 2005, 113 , 1250-1256.
48. Nishimura, Y.; Kanda, Y.; Sone, H.; Aoyama, H., Oxidative stress as
a common key event in developmental neurotoxicity. OXIDATIVE
MEDICINE AND CELLULAR LONGEVITY 2021, 2021 .
49. Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozlowska,
J.; Kozubski, W., Oxidative stress factors in parkinson’s disease.NEURAL REGENERATION RESEARCH 2021, 16 , 1383-1391.
50. Saleem, U.; Sabir, S.; Niazi, S. G.; Naeem, M.; Ahmad, B., Role of
oxidative stress and antioxidant defense biomarkers in neurodegenerative
diseases. CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION2020, 30 , 311-322.
51. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S., Oxidative stress: A
key modulator in neurodegenerative diseases. MOLECULES2019, 24 .
52. Butterfield, D. A.; Halliwell, B., Oxidative stress, dysfunctional
glucose metabolism and alzheimer disease. Nat. Rev. Neurosci.2019, 20 , 148.
53. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.;
Hureau, C.; Collin, F., Oxidative stress and the amyloid beta peptide in
alzheimer’s disease. Redox Biol. 2018, 14 , 450.
54. Butterfield, D. A., Perspectives on oxidative stress in alzheimer’s
disease and predictions of future research emphases. JOURNAL OF
ALZHEIMERS DISEASE 2018, 64 , S469-S479.
55. Ganguly, G.; Chakrabarti, S.; Chatterjee, U.; Saso, L.,
Proteinopathy, oxidative stress and mitochondrial dysfunction: Cross
talk in alzheimer’s disease and parkinson’s disease. Drug Des.,
Dev. Ther. 2017, 11 , 797.
56. Jiang, T. F.; Sun, Q.; Chen, S. D., Oxidative stress: A major
pathogenesis and potential therapeutic target of antioxidative agents in
parkinson’s disease and alzheimer’s disease. PROGRESS IN
NEUROBIOLOGY 2016, 147 , 1-19.
57. Kim, G. H.; Kim, J. E.; Rhie, S. J.; Yoon, S., The role of oxidative
stress in neurodegenerative diseases. EXPERIMENTAL NEUROBIOLOGY2015, 24 , 325-340.
58. Ferreira, M. E. S.; de Vasconcelos, A. S.; Vilhena, T. D.; da Silva,
T. L.; Barbosa, A. D.; Gomes, A. R. Q.; Dolabela, M. F.; Percario, S.,
Oxidative stress in alzheimer’s disease: Should we keep trying
antioxidant therapies? CELLULAR AND MOLECULAR NEUROBIOLOGY2015, 35 , 595-614.
59. Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.
R., Oxidative stress and parkinson’s disease. Front. Neuroanat.2015, 9 , 91.
60. Radi, E.; Formichi, P.; Battisti, C.; Federico, A., Apoptosis and
oxidative stress in neurodegenerative diseases. J. Alzheimer’s
Dis. 2014, 42 , S125.
61. Chen, Z.; Zhong, C., Oxidative stress in alzheimer’s disease.Neurosci. Bull. 2014, 30 , 271.
62. Zhao, Y.; Zhao, B. L., Oxidative stress and the pathogenesis of
alzheimer’s disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY2013, 2013 .
63. Subramaniam, S. R.; Chesselet, M. F., Mitochondrial dysfunction and
oxidative stress in parkinson’s disease. Prog. Neurobiol.2013, 106–107 , 17.
64. Guo, C. Y.; Sun, L.; Chen, X. P.; Zhang, D. S., Oxidative stress,
mitochondrial damage and neurodegenerative diseases. NEURAL
REGENERATION RESEARCH 2013, 8 , 2003-2014.
65. Barnham, K. J.; Masters, C. L.; Bush, A. I., Neurodegenerative
diseases and oxidative stress. Nat. Rev. Drug Discovery2004, 3 , 205.
66. Radi, R., The oxygen paradox in human biology and medicine:
Bioenergetics, free radicals and oxidative stress. FEBS OPEN BIO2021, 11 , 7-7.
67. Guo, Q. P.; Li, F. N.; Duan, Y. H.; Wen, C. Y.; Wang, W. L.; Zhang,
L. Y.; Huang, R. L.; Yin, Y. L., Oxidative stress, nutritional
antioxidants and beyond. SCIENCE CHINA-LIFE SCIENCES2020, 63 , 866-874.
68. Matschke, V.; Theiss, C.; Matschke, J., Oxidative stress: The lowest
common denominator of multiple diseases. NEURAL REGENERATION
RESEARCH 2019, 14 , 238-241.
69. Bose, A.; Beal, M. F., Mitochondrial dysfunction and oxidative
stress in induced pluripotent stem cell models of parkinson’s disease.Eur. J. Neurosci. 2019, 49 , 525.
70. Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.;
Alvarez-Idaboy, J. R.; Galano, A., Comprehensive investigation of the
antioxidant and pro-oxidant effects of phenolic compounds: A
double-edged sword in the context of oxidative stress? The Journal
of Physical Chemistry B 2018, 122 , 6198-6214.
71. Sies, H.; Berndt, C.; Jones, D. P., Oxidative stress. Annual
Review of Biochemistry 2017, 86 , 715-748.
72. Ortiz, G. G.; Moises, F. P. P.; Mireles-Ramirez, M.;
Flores-Alvarado, L. J.; Gonzalez-Usigli, H.; Sanchez-Gonzalez, V. J.;
Sanchez-Lopez, A. L.; Sanchez-Romero, L.; Diaz-Barba, E. I.;
Santoscoy-Gutierrez, J. F., et al., Oxidative stress: Love and hate
history in central nervous system. In Stress and inflammation in
disorders , Donev, R., Ed. 2017; Vol. 108, pp 1-31.
73. Sies, H., Oxidative stress: A concept in redox biology and medicine.Redox Biol 2015, 4 , 180-183.
74. Xu, J. Z.; Leeuwenburgh, C., Free radicals and oxidative stress:
Basic concepts and misconceptions. In Free radicals in ent
pathology , Miller, J.; LePrell, C. G.; Rybak, L., Eds. 2015,
10.1007/978-3-319-13473-4_2
10.1007/978-3-319-13473-4pp 9-20.
75. Lushchak, V. I., Free radicals, reactive oxygen species, oxidative
stress and its classification. CHEMICO-BIOLOGICAL INTERACTIONS2014, 224 , 164-175.
76. Kaur, R.; Kaur, J.; Mahajan, J.; Kumar, R.; Arora, S., Oxidative
stress-implications, source and its prevention. ENVIRONMENTAL
SCIENCE AND POLLUTION RESEARCH 2014, 21 , 1599-1613.
77. Pradeep, H.; Diya, J. B.; Shashikumar, S.; Rajanikant, G. K.,
Oxidative stress - assassin behind the ischemic stroke. FOLIA
NEUROPATHOLOGICA 2012, 50 , 219-230.
78. Mandelker, L., Oxidative stress, free radicals, and cellular damage.
In Studies on veterinary medicine , Mandelker, L.; Vajdovich, P.,
Eds. 2011, 10.1007/978-1-61779-071-3_1
10.1007/978-1-61779-071-3pp 1-17.
79. Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C. J.;
Valko, M., Targeting free radicals in oxidative stress-related human
diseases. TRENDS IN PHARMACOLOGICAL SCIENCES 2017,38 , 592-607.
80. Gebicki, J. M., Oxidative stress, free radicals and protein
peroxides. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 2016,595 , 33-39.
81. Galano, A., Free radicals induced oxidative stress at a molecular
level: The current status, challenges and perspectives of computational
chemistry based protocols. JOURNAL OF THE MEXICAN CHEMICAL
SOCIETY 2015, 59 , 231-262.
82. Richardson, A., Is the free radical (oxidative stress) theory of
aging dead? GERONTOLOGIST 2012, 52 , 405-405.
83. Gul, A.; Rahman, M. A.; Hamid, S., Biochemistry of antioxidants and
their role in oxidative stress caused by free radicals. OXIDATION
COMMUNICATIONS 2010, 33 , 682-697.
84. Jensen, S. J. K., Oxidative stress and free radicals. Journal
of Molecular Structure: THEOCHEM 2003, 666-667 ,
387-392.
85. Collin, F., Chemical basis of reactive oxygen species reactivity and
involvement in neurodegenerative diseases. International Journal
of Molecular Sciences 2019, 20 .
86. Friedman, J., Why is the nervous system vulnerable to oxidative
stress? In Oxidative stress and free radical damage in neurology ,
Gadoth, N.; Gobel, H. H., Eds. 2011, 10.1007/978-1-60327-514-9_2
10.1007/978-1-60327-514-9pp 19-27.
87. Schöneich, C., Reactive oxygen species and biological aging: A
mechanistic approach. Experimental Gerontology 1999,34 , 19-34.
88. Plotnikov, M. B.; Plotnikova, T. M., Tyrosol as a neuroprotector:
Strong effects of a ”weak” antioxidant. CURRENT NEUROPHARMACOLOGY2021, 19 , 434-448.
89. Singh, E.; Devasahayam, G., Neurodegeneration by oxidative stress: A
review on prospective use of small molecules for neuroprotection.MOLECULAR BIOLOGY REPORTS 2020, 47 , 3133-3140.
90. Lee, K. H.; Cha, M.; Lee, B. H., Neuroprotective effect of
antioxidants in the brain. International Journal of Molecular
Sciences 2020, 21 .
91. Teleanu, R. I.; Chircov, C.; Grumezescu, A. M.; Volceanov, A.;
Teleanu, D. M., Antioxidant therapies for neuroprotection-a review.JOURNAL OF CLINICAL MEDICINE 2019, 8 .
92. Lloret, A.; Esteve, D.; Monllor, P.; Cervera-Ferri, A.; Lloret, A.,
The effectiveness of vitamin e treatment in alzheimer’s disease.International Journal of Molecular Sciences 2019,20 .
93. Watson, N.; Diamandis, T.; Gonzales-Portillo, C.; Reyes, S.;
Borlongan, C. V., Melatonin as an antioxidant for stroke
neuroprotection. CELL TRANSPLANTATION 2016, 25 ,
883-891.
94. Lalkovicova, M.; Danielisova, V., Neuroprotection and antioxidants.NEURAL REGENERATION RESEARCH 2016, 11 , 865-874.
95. Dohi, K.; Satoh, K.; Nakamachi, T.; Yofu, S.; Hiratsuka, K.;
Nakamura, S.; Ohtaki, H.; Yoshikawa, T.; Shioda, S.; Aruga, T., Does
edaravone (mci-186) act as an antioxidant and a neuroprotector in
experimental traumatic brain injury? ANTIOXIDANTS & REDOX
SIGNALING 2007, 9 , 281-287.
96. Mohanakumar, K. P.; Thomas, B.; Sharma, S. M.; Muralikrishnan, D.;
Chowdhury, R.; Chiueh, C. C., Nitric oxide - an antioxidant and
neuroprotector. In Nitric oxide: Novel actions, deleterious
effects and clinical potential , Chiueh, C. C.; Hong, J. S.; Leong, S.
K., Eds. 2002; Vol. 962, pp 389-401.
97. Behl, C.; Moosmann, B., Antioxidant neuroprotection in alzheimer’s
disease as preventive and therapeutic approach2 2this article is part of
a series of reviews on “causes and consequences of oxidative stress in
alzheimer’s disease.” the full list of papers may be found on the
homepage of the journal. Free Radical Biology and Medicine2002, 33 , 182-191.
98. Finberg, J. P. M., The discovery and development of rasagiline as a
new anti-parkinson medication. JOURNAL OF NEURAL TRANSMISSION2020, 127 , 125-130.
99. Stocchi, F.; Fossati, C.; Torti, M., Rasagiline for the treatment of
parkinson’s disease: An update. EXPERT OPINION ON PHARMACOTHERAPY2015, 16 , 2231-2241.
100. Muller, T., Pharmacokinetic/pharmacodynamic evaluation of
rasagiline mesylate for parkinson’s disease. EXPERT OPINION ON
DRUG METABOLISM & TOXICOLOGY 2014, 10 , 1423-1432.
101. McCormack, P. L., Rasagiline: A review of its use in the treatment
of idiopathic parkinson’s disease. CNS DRUGS 2014,28 , 1083-1097.
102. Minguez-Minguez, S.; del Pozo, J. S. G.; Jordan, J., Rasagiline in
parkinson’s disease: A review based on meta-analysis of clinical data.PHARMACOLOGICAL RESEARCH 2013, 74 , 78-86.
103. Hoy, S. M.; Keating, G. M., Rasagiline a review of its use in the
treatment of idiopathic parkinson’s disease. DRUGS 2012,72 , 643-669.
104. Chen, J. J.; Wilkinson, J. R., The monoamine oxidase type b
inhibitor rasagiline in the treatment of parkinson disease: Is tyramine
a challenge? JOURNAL OF CLINICAL PHARMACOLOGY 2012,52 , 620-628.
105. Perez-Lloret, S.; Rascol, O., Safety of rasagiline for the
treatment of parkinson’s disease. EXPERT OPINION ON DRUG SAFETY2011, 10 , 633-643.
106. Chahine, L. M.; Stern, M. B., Rasagiline in parkinson’s disease. InMonoamine oxidases and their inhibitors , Youdim, M. B. H.;
Riederer, P., Eds. 2011; Vol. 100, pp 151-168.
107. Pagonabarraga, J.; Kulisevsky, J., Rasagiline: Effectiveness and
protection in parkinson’s disease. REVISTA DE NEUROLOGIA2010, 51 , 535-541.
108. Leegwater-Kim, J.; Bortan, E., The role of rasagiline in the
treatment of parkinson’s disease. CLINICAL INTERVENTIONS IN AGING2010, 5 , 149-156.
109. Linazasoro, G., Rasagiline in parkinson’s disease.NEUROLOGIA 2008, 23 , 238-245.
110. Oldfield, V.; Keating, G. M.; Perry, C. M., Rasagiline - a review
of its use in the management of parkinson’s disease. DRUGS2007, 67 , 1725-1747.
111. Chen, J. J.; Swope, D. M.; Dashtipour, K., Comprehensive review of
rasagiline, a second-generation monoamine oxidase inhibitor, for the
treatment of parkinson’s disease. CLINICAL THERAPEUTICS2007, 29 , 1825-1849.
112. Chen, J. J.; Ly, A. V., Rasagiline: A second-generation monoamine
oxidase type-b inhibitor for the treatment of parkinson’s disease.AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY 2006,63 , 915-928.
113. Rascol, O., Rasagiline in the pharmacotherapy of parkinson’s
disease - a review. EXPERT OPINION ON PHARMACOTHERAPY2005, 6 , 2061-2075.
114. Blandini, F., Neuroprotection by rasagiline: A new therapeutic
approach to parkinson’s disease? CNS DRUG REVIEWS 2005,11 , 183-194.
115. Jiang, D. Q.; Wang, H. K.; Wang, Y.; Li, M. X.; Jiang, L. L.; Wang,
Y., Rasagiline combined with levodopa therapy versus levodopa
monotherapy for patients with parkinson’s disease: A systematic review.NEUROLOGICAL SCIENCES 2020, 41 , 101-109.
116. Pagonabarraga, J.; Rodriguez-Oroz, M. C., Rasagiline in monotherapy
in patients with early stages of parkinson’s disease and in combined and
adjunct therapy to levodopa with moderate and advanced stages.REVISTA DE NEUROLOGIA 2013, 56 , 25-34.
117. Rabey, J. M.; Sagi, I.; Huberman, M.; Melamed, E.; Korczyn, A.;
Giladi, N.; Inzelberg, R.; Djaldetti, R.; Klein, C.; Berecz, G., et al.,
Rasagiline mesylate, a new mao-b inhibitor for the treatment of
parkinson’s disease: A double-blind study as adjunctive therapy to
levodopa. CLINICAL NEUROPHARMACOLOGY 2000, 23 ,
324-330.
118. Youdim, M. B. H.; Kupershmidt, L.; Amit, T.; Weinreb, O., Promises
of novel multi-target neuroprotective and neurorestorative drugs for
parkinson’s disease. Parkinsonism Relat. Disord. 2014,20 , S132.
119. Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M. B. H., Mechanism of
neuroprotective action of the anti-parkinson drug rasagiline and its
derivatives. Brain Research Reviews 2005, 48 ,
379-387.
120. Youdim, M. B. H.; Maruyama, W.; Naoi, M., Neuropharmacolomcal,
neuroprotective and amyloid precursor processing properties of selective
mao-b inhibitor antiparkinsonian drug, rasagiline. DRUGS OF TODAY2005, 41 , 369-391.
121. Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M. B. H., Rasagiline: A
novel anti-parkinsonian monoamine oxidase-b inhibitor with
neuroprotective activity. Prog. Neurobiol. 2010,92 , 330.
122. Weinreb, O.; Bar-Am, O.; Prosolovich, K.; Amit, T.; Youdim, M. B.
H., Does 1-(r)-aminoindan possess neuroprotective properties against
experimental parkinson’s disease? Antioxidants and Redox
Signaling 2011, 14 , 767-775.
123. Bar-Am, O.; Weinreb, O.; Amit, T.; Youdim, M. B. H., The
neuroprotective mechanism of 1-(r)-aminoindan, the major metabolite of
the anti-parkinsonian drug rasagiline. Journal of Neurochemistry2010, 112 , 1131-1137.
124. Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M. B. H., Ladostigil: A
novel multimodal neuroprotective drug with cholinesterase and
brain-selective monoamine oxidase inhibitory activities for alzheimer’s
disease treatment. Current Drug Targets 2012, 13 ,
483-494.
125. Bar-Am, O.; Amit, T.; Youdim, M. B. H., Aminoindan and
hydroxyaminoindan, metabolites of rasagiline and ladostigil,
respectively, exert neuroprotective properties in vitro. Journal
of Neurochemistry 2007, 103 , 500-508.
126. Molinspiration cheminformatics free web services.
https://www.molinspiration.com/ (accessed 2020).
127. Drug likeness tool (drulito 1).
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
(accessed February 8, 2020).
128. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J., A
knowledge-based approach in designing combinatorial or medicinal
chemistry libraries for drug discovery. 1. A qualitative and
quantitative characterization of known drug databases. J. Comb.
Chem. 1999, 1 , 55.
129. Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K.
W.; Kopple, K. D., Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002,45 , 2615.
130. Lipinski, C. A., Lead- and drug-like compounds: The rule-of-five
revolution. Drug Discovery Today: Technologies 2004,1 , 337-341.
131. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.,
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Advanced
Drug Delivery Reviews 2012, 64 , 4-17.
132. Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F., Scscore:
Synthetic complexity learned from a reaction corpus. Journal of
Chemical Information and Modeling 2018, 58 , 252-261.
133. Méndez-Lucio, O.; Medina-Franco, J. L., The many roles of molecular
complexity in drug discovery. Drug Discovery Today 2017,22 , 120-126.
134. Fukunishi, Y.; Kurosawa, T.; Mikami, Y.; Nakamura, H., Prediction
of synthetic accessibility based on commercially available compound
databases. Journal of Chemical Information and Modeling2014, 54 , 3259-3267.
135. Boda, K.; Seidel, T.; Gasteiger, J., Structure and reaction based
evaluation of synthetic accessibility. J. Comput.-Aided Mol. Des.2007, 21 , 311.
136. Sylvia. https://mn-am.com/products/sylvia/ (accessed February
8, 2020).
137. Bonnet, P., Is chemical synthetic accessibility computationally
predictable for drug and lead-like molecules? A comparative assessment
between medicinal and computational chemists. Eur. J. Med. Chem.2012, 54 , 679.
138. Bakhtyari, N. G.; Raitano, G.; Benfenati, E.; Martin, T.; Young,
D., Comparison of in silico models for prediction of mutagenicity.J Environ Sci Health C Environ Carcinog Ecotoxicol Rev2013, 31 , 45-66.
139. Myatt, G. J.; Ahlberg, E.; Akahori, Y.; Allen, D.; Amberg, A.;
Anger, L. T.; Aptula, A.; Auerbach, S.; Beilke, L.; Bellion, P., et al.,
In silico toxicology protocols. Regulatory Toxicology and
Pharmacology 2018, 96 , 1-17.
140. Castro-Gonzalez, L. M.; Alvarez-Idaboy, J. R.; Galano, A.,
Computationally designed sesamol derivatives proposed as potent
antioxidants. ACS Omega 2020, 5 , 9566-9575.
141. Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Galano, A.,
Computer-designed melatonin derivatives: Potent peroxyl radical
scavengers with no pro-oxidant behavior. Theoretical Chemistry
Accounts 2020, 139 , 133.
142. Reina, M.; Castañeda-Arriaga, R.; Perez-Gonzalez, A.; Guzman-Lopez,
E. G.; Tan, D.-X.; Reiter, R. J.; Galano, A., A computer-assisted
systematic search for melatonin derivatives with high potential as
antioxidants. Melatonin Research 2018, 1 , 27-58.
143. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G.
A.; Nakatsuji, H., et al. Gaussian 16 rev. C.01 , Wallingford, CT,
2016.
144. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal solvation
model based on solute electron density and on a continuum model of the
solvent defined by the bulk dielectric constant and atomic surface
tensions. J. Phys. Chem. B 2009, 113 , 6378.
145. Zhao, Y.; Schultz, N. E.; Truhlar, D. G., Design of density
functionals by combining the method of constraint satisfaction with
parametrization for thermochemistry, thermochemical kinetics, and
noncovalent interactions. J. Chem. Theory Comput. 2006,2 , 364.
146. Wu, W. h.; Lei, P.; Liu, Q.; Hu, J.; Gunn, A. P.; Chen, M. s.; Rui,
Y. f.; Su, X. y.; Xie, Z. p.; Zhao, Y. F., Sequestration of copper from
β-amyloid promotes selective lysis by cyclen-hybrid cleavage agents.J. Biol. Chem. 2008, 283 , 31657.
147. Milenković, D.; Dorović, J.; Jeremić, S.; Dimitrić Marković, J. M.;
Avdović, E. H.; Marković, Z., Free radical scavenging potency of
dihydroxybenzoic acids. Journal of Chemistry 2017,2017 .
148. Amić, A.; Marković, Z.; Dimitrić Marković, J. M.; Lučić, B.;
Stepanić, V.; Amić, D., The 2h+/2e- free radical scavenging mechanisms
of uric acid: Thermodynamics of n-h bond cleavage. Computational
and Theoretical Chemistry 2016, 1077 , 2-10.
149. Dorović, J.; Marković, J. M. D.; Stepanić, V.; Begović, N.; Amić,
D.; Marković, Z., Influence of different free radicals on scavenging
potency of gallic acid. Journal of Molecular Modeling2014, 20 .
150. Marković, Z.; Crossed D Signorović, J.; Dekić, M.; Radulović, M.;
Marković, S.; Ilić, M., Dft study of free radical scavenging activity of
erodiol. Chemical Papers 2013, 67 , 1453-1461.
151. Galano, A.; Alvarez-Idaboy, J. R.; Francisco-Márquez, M.,
Physicochemical insights on the free radical scavenging activity of
sesamol: Importance of the acid/base equilibrium. J. Phys. Chem.
B 2011, 115 , 13101.
152. Ortiz, J. V., Toward an exact one-electron picture of chemical
bonding. In Advances in Quantum Chemistry , Academic Press Inc.:
1999; Vol. 35, pp 33-52.
153. Ortiz, J. V., Electron propagator theory: An approach to prediction
and interpretation in quantum chemistry. Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 2013, 3 , 123.
154. Ortiz, J. V., Partial third‐order quasiparticle theory: Comparisons
for closed‐shell ionization energies and an application to the borazine
photoelectron spectrum. The Journal of Chemical Physics1996, 104 , 7599-7605.
155. Pérez-González, A.; Galano, A.; Ortiz, J. V., Vertical ionization
energies of free radicals and electron detachment energies of their
anions: A comparison of direct and indirect methods versus experiment.J. Phys. Chem. A 2014, 118 , 6125.
156. Ortiz, J. V., The electron propagator picture of molecular
electronic structure. In Computational chemistry: Reviews of
current trends , WORLD SCIENTIFIC: 1997; Vol. Volume 2, pp 1-61.
157. Chattaraj, P. K.; Roy, D. R., Update 1 of: Electrophilicity index.Chemical Reviews 2007, 107 , PR46-PR74.
158. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity index.Chemical Reviews 2006, 106 , 2065-2091.
159. Parr, R. G.; Szentpály, L. V.; Liu, S., Electrophilicity index.Journal of the American Chemical Society 1999,121 , 1922-1924.
160. Pérez-González, A.; Castañeda-Arriaga, R.; Verastegui, B.;
Carreón-González, M.; Alvarez-Idaboy, J. R.; Galano, A., Estimation of
empirically fitted parameters for calculating pk a values of thiols in a
fast and reliable way. Theor. Chem. Acc. 2018,137 , 5.
161. Galano, A.; Pérez-González, A.; Castañeda-Arriaga, R.;
Muñoz-Rugeles, L.; Mendoza-Sarmiento, G.; Romero-Silva, A.;
Ibarra-Escutia, A.; Rebollar-Zepeda, A. M.; León-Carmona, J. R.;
Hernández-Olivares, M. A., et al., Empirically fitted parameters for
calculating pkavalues with small deviations from experiments using a
simple computational strategy. J. Chem. Inf. Model.2016, 56 , 1714.
162. Zhong, H.; Mashinson, V.; Woolman, T.; Zha, M., Understanding the
molecular properties and metabolism of top prescribed drugs. Curr.
Top. Med. Chem. 2013, 13 , 1290.