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In computational chemistry, numbers programming certain
structural skin appearance of natural molecules and deriva-
tives from the parallel molecular graph are called the graph
invariants or more frequently topological indices. Topolog-
ical indices are numeric quantities that are derived from
a molecular graph by mathematical calculations. In QSAR
and QSPR studies, topological indices are utilized to guess
the bioactivity of chemical compounds. The Symmetric Di-
vision deg (SDD) is a good estimate of the total surface area
for polychlorobiphenlys. In this paper, we explore the Sym-
metric Division deg index for Silicate, Oxide, and Copper(II)
Oxide networks. We compute the degree and neighbor-
hood based Symmetric division deg index for some network
structures. Further, we compare those indices graphically.
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1 | INTRODUCTION
A graphG is an ordered pair of setsV (G ) and E (G ) , with the items uv ∈ E (G ) being a sub-collection ofV s′ unordered
pairs of elements (G ) . The members ofV (G ) are referred to as vertices, while the elements of E (G ) are referred to
as edges. If e = pq is an edge, we say that the vertices p and q are adjacent, and that p, q are the two end points (or
ends) of e . G has an order of n and a dimension of m if it has n vertices and m edges. An n− vertex graph is a graph
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of order n . Chemical Graph theory is a branch of mathematical chemistry. To understand the physical characteristics
of these chemical substances, graph theory is employed mathematically to represent molecules. This theory had
an important effect on development of Chemical science. Quantitative structure property relations and Quantitative
structure activity relations of the chemical structure require objective expressions for the topological property of these
structures. Quantitative structure activity relationsmodels mainly focus[1, 2] in reproduction system in biological field,
chemical sciences, and control system engineering. One of the primary chemistry applications in quantitative structure
activity relations is forecasting melting points. Mathematically, topological indices converts a structure as a graph and
gives a numerical value for that graph. The idea of topological indices and structure based properties are developed
by several authors in [3, 1, 4, 5, 6]. Several years ago, Vukicevic and Gasperov considered a new class of molecular
descriptors, consisting of one hundred and forty eight descriptors, namely discrete Adriatic indices for improving the
various QSPR/QSAR (quantitative structure property/activity relationships) studies and they found that only a few
descriptors from this class are useful.[7, 8, 9, 10, 11, 12]
Besides indices, vertex-based indices are widely used in graph invariants [13]. The Symmetric division deg (SDD )
index is one of the most useful discrete Adriatic indices, which is defined as [14, 15, 16]

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)

The neighborhood of Symmetric division deg index is named as Fifth Neighborhood division index (ND5) is defined
as [17]

ND5 (G ) =
∑
p∼q

(
δN (p2) + δN (q2)
δN (p)δN (q )

)

where δN (p) = ∑
p′∈N (p ) d (p′) , N (p) = {p′ ∋ pp′ ∈ E (G ) }

In this paper, In section 2 we explore the SDD based on degree and neighborhood for the Silicate, Oxide and Copper
(II) Oxide network structures. In section 3, we give the comparison and conclusion. In particular, we identify the
significant difference between the network structures bymeans of the SDD index based on degree and neighborhood.

2 | MAIN RESULT

In mineral chemistry, metal oxides or metal carbonates are combined with sand to form silicates. Silicate is the largest,
most vibrant, and hardest mineral over long distances on the earth. These silicates are used in three-dimensional
metal cathode structures, reticular chemistry, and ultrahigh proton conductivity [18, 19, 20, 21]. Essential semantic
component of Silicate (SiO4) is tetrahedron. In graph theory, the silicate is drawn such that the oxygen nodes (blue
vertices) and themiddle vertex are perpendicular to the silicon node (red vertices) show in Figure1. The various silicate
structures are obtained by arranging these tetrahedra. The structure of the Oxide network [22, 23, 24, 25] can be
addressed by a mathematical graph and random. The Oxide network is obtained by removing all silicon ions from the
Silicate network shown in Figure2.
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F IGURE 1 Graph Representation of Si o4

F IGURE 2 Graph Representation of Oxide

2.1 | Silicate network of SDD index based on degree and neighborhood
We have explored some of the structures of the Silicate network under this heading. They are Cyclic Silicate (CS ),
Double chain Silicate (DC ), Rhombus Silicate (RH SL) and Regular Triangulate silicate (RT SL). Their structures are
shown as Figure3,Figure5,Figure7 and Figure9 respectively. Cyclic Silicate networks are acquired organizing x unit
Silicates in a cyclic combination by mixing oxygen molecules. The cardinality of vertex set(nodes) and edge set of
Cyclic Silicate networks are |V (CSx ) | = 3x and |E (CSx ) | = 6x for x ≥ 3. The graph representation of Cyclic Silicate
based on degree and neighborhood of SDD index is shown in Figure4.

Theorem 1 Let G be a x dimension of Cyclic Silicate (CSx ) , SDD (G ) = 14x for x ≥ 3

Proof Consider the graphG is a Cyclic Silicate of x dimension (CSx ). The partitions of vertex set and edge set of CSx

with respect to degree of end vertices. There are two types of vertex set in CSx . The cardinality of theV1 vertex set is
2x of degree 3 and the cardinality of theV2 vertex set is x of degree 6. So , |V (G ) | = |V1 | + |V2 | = 3x . There are three
partition of edges in G based on degree of end vertices. We have E1 (3, 3) = {pq ∈ E (G ) | dp = 3, dq = 3},E2 (3, 6) =
{pq ∈ E (G ) | dp = 3, dq = 6} and E3 (6, 6) = {pq ∈ E (G ) | dp = 6, dq = 6} where |E1 | = x , |E2 | = 4x and |E3 | = x . As
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F IGURE 3 Cyclic Silicate

a consequence |E (G ) | = |E1 | + |E2 | + |E3 | = 6x .

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
= 2x + 10x + 2x

= 14x

Theorem 2 Let G be a Cyclic Silicate (CSx ) , ND5 (G ) = 129x
10 for x ≥ 3

Proof Let us consider the graph G has Cyclic Silicate of x -dimension (CSx ). There are two types of vertex sets of
CSx . The cardinality of the vertex set is 3x of degree 3 and 6. There are three partitions of edges inG based on degree
sum of the neighborhood of end vertices. We have, E1 (3, 3) = {pq ∈ E (G ) | δp = 15, δq = 15 wher e, dp = 3, dq = 3},
E2 (3, 6) = {pq ∈ E (G ) | δp = 15, δq = 24 wher e, dp = 3, dq = 6} and E3 (6, 6) = {pq ∈ E (G ) | δp = 24, δq =

24 wher e, dp = 6, dq = 6}. Where |E (G ) | = |E1 | + |E2 | + |E3 | = x + 4x + x = 6x

ND5 =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
152 + 152

15 × 15
x + 152 + 242

15 × 24
4x + 242 + 242

24 × 24
x

= 2x + 89

40
4x + 2x

=
20x + 89x + 20x

10

=
129x

10
.
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F IGURE 4 Double chain Silicate

F IGURE 5 SDD and ND5 of Cyclic Silicate

2.2 | Double Chain Silicate
Let DCx be a x dimensional Double Chain silicate. DCx is a combination of two Chain Silicates with dimension 2x + 1.
Number of vertices(nodes) and edges respectively |V (DCx ) | = 11x + 7 and |E (DCx ) | = 12(2x + 1) .

Theorem 3 Let G be a Double Chain Silicate of graph (DCx ) , SDD (G ) = 55x + 29 for x ≥ 3

Proof Let us consider the graphG has a Double Chain Silicate of x -dimension (DCx ). The partitions of vertex set and
edge set of RH SLx with respect to degree of end vertices. There are two types of vertex set in DCx . The cardinality
of theV1 andV2 vertex sets are 6x + 6, 5x + 1 of degree 3 and 6 respectively. So , |V (G ) | = |V1 | + |V2 | = 11x + 7. There
are three types of edges in G based on the degree of end vertices. We have E1 (3, 3) = {pq ∈ E (G ) | dp = 3, dq = 3},
E2 (3, 6) = {pq ∈ E (G ) | dp = 3, dq = 6} and E3 (6, 6) = {pq ∈ E (G ) | dp = 6, dq = 6}, where |E1 | = 2x + 4 |E2 | =
14x + 10 |E3 | = 8x − 2. As a consequence |E (G ) | = |E1 | + |E2 | + |E3 | = 24x + 12.

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
= 2(2x + 4) +

(
15

6

)
(14x + 10) + 2(8x − 2)

= 55x + 29

Theorem 4 Let G be a Double chain silicate (DCx ) , ND5 (G ) = 14064x+6843
270 for x ≥ 3
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F IGURE 6 SDD and ND5 of Double chain Silicate

Proof Let us consider the graphG has a Double chain Silicate of x -dimension (DCx ). There are two types of vertex set
ofDCx . The cardinality of vertex set is 11x+7 of degree 3 and 6. There are nine partition of edges inG based on degree
sum of the neighborhood of end vertices. We have, E1 (3, 3) = {pq ∈ E (G ) | δp = 15, δq = 15 wher e, dp = 3, dq = 3},
E2 (3, 6) = {pq ∈ E (G ) | δp = 15, δq = 24 wher e, dp = 3, dq = 6}, E3 (3, 6) = {pq ∈ E (G ) | δp = 15, δq =

27 wher e, dp = 3, dq = 6}, E4 (3, 6) = {pq ∈ E (G ) | δp = 18, δq = 27 wher e, dp = 3, dq = 6}, E5 (3, 6) = {pq ∈
E (G ) | δp = 18, δq = 30 wher e, dp = 3, dq = 6}, E6 (6, 6) = {pq ∈ E (G ) | δp = 24, δq = 24 wher e, dp = 6, dq = 6},
E7 (6, 6) = {pq ∈ E (G ) | δp = 24, δq = 27 wher e, dp = 6, dq = 6}, E8 (6, 6) = {pq ∈ E (G ) | δp = 27, δq =

27 wher e, dp = 6, dq = 6} and E9 (6, 6) = {pq ∈ E (G ) | δp = 27, δq = 30 wher e, dp = 6, dq = 6}. Where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 | + |E7 | + |E8 | + |E9 |

= (2x + 4) + 24 + (8x − 8) + (4x − 4) + (2x − 2) + 4 + 4(4x − 4) + (4x − 6)

= 24x + 36 − 24

ND5 =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
152 + 152

15 × 15
(2x + 4) + 152 + 242

15 × 24
(24) + 152 + 272

15 × 27
(8x − 8)

+ 182 + 272

18 × 27
(4x − 4) + 182 + 302

18 × 30
(2x − 2) + 242 + 242

24 × 24
(4)

+ 242 + 272

24 × 27
(4) + 272 + 272

27 × 27
(4x − 4) + 272 + 302

27 × 30
(4x − 6)

= 2(2x + 4) + 8 + 1

27
( 7428x − 5253

10
) + 1

45
(566x − 747) + 267

5

= 4n + 8 + 8x + 267

5
+ 7428x

270
− 5253

270
+ 566x

45
− 747

45

=
14064x + 6834

270

Figure6 depicts the graph of Double Chain silicate depending on the degree and neighborhood of the SDD index.
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F IGURE 7 Rhombus Silicate

2.3 | Rhombus Silicate
An x dimensional Rhombus silicate denoted by (RH SLx ) . Number of vertices (nodes) and edges respectively |V (RH SLx ) | =
5x2 + 2x and |E (RH SLx ) | = 12x2.

Theorem 5 Let G be a Rhombus Silicate of graph (RH SLx ) , SDD (G ) = 27x2 + 2x − 2 for x ≥ 2

Proof Let us consider the graph G has Rhombus Silicate of x -dimension (RH SLx ). The partitions of vertex set and
edge set of RH SLx with respect to the degree of end vertices. There are two types of vertex set in RH SLx . The
cardinality of theV1 andV2 vertex sets are 2x (x +2) , x (3x−2) of degree 3 and 6 respectively. So , |V (G ) | = |V1 |+ |V2 | =
5x2 + 2x . There are three types of edges in G based on the degree of end vertices. We have, E1 (3, 3) = {pq ∈ E (G ) |
dp = 3, dq = 3}, E2 (3, 6) = {pq ∈ E (G ) | dp = 3, dq = 6} and E3 (6, 6) = {pq ∈ E (G ) | dp = 6, dq = 6}. Where
|E1 | = 4x + 2, |E2 | = 6x2 + 4x − 4 and |E3 | = 6x2 − 8x + 2. As a consequence |E (G ) | = |E1 | + |E2 | + |E3 | = 12x2 .

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
= (4x + 2) (2) + (6x2 + 4x − 4)

(
15

6

)
+ (6x2 − 8x + 2) (2)

= 8x + 4 + 15x2 + 10x − 10 + 12x2 − 16x + 4

= 27x2 + 2x − 2

Figure8 illustrates the graph representation of Rhombus Silicate depending on the degree and neighborhood of the
SDD index.

Theorem 6 Let G be a Rhombus Silicate (RH SLx ) , ND5 (G ) = 2304x2+160x−123
90 for x ≥ 3.

Proof Let us consider the graph G has Rhombus Silicate of x -dimension (RH SLx ). There are two types of the vertex
set of RH SLx . The cardinality of the vertex set is 5x2 + 2x of degree 3 and 6. There are twelve partitions of edges
in G based on degree sum of the neighborhood of end vertices. We have E1 (3, 3) = {pq ∈ E (G ) | δp = 12, δq =

12 wher e, dp = 3, dq = 3}, E2 (3, 3) = {pq ∈ E (G ) | δp = 15, δq = 15 wher e, dp = 3, dq = 3}, E3 (3, 6) = {pq ∈
E (G ) | δp = 12, δq = 24 wher e, dp = 3, dq = 6}, E4 (3, 6) = {pq ∈ E (G ) | δp = 15, δq = 24 wher e, dp = 3, dq = 6},
E5 (3, 6) = {pq ∈ E (G ) | δp = 15, δq = 27 wher e, dp = 3, dq = 6}, E6 (3, 6) = {pq ∈ E (G ) | δp = 18, δq =
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F IGURE 8 SDD and ND5 of Rhombus Silicate

24 wher e, dp = 3, dq = 6}, E7 (3, 6) = {pq ∈ E (G ) | δp = 18, δq = 27 wher e, dp = 6, dq = 6}, E8 (3, 6) = {pq ∈
E (G ) | δp = 18, δq = 30 wher e, dp = 6, dq = 6}, E9 (6, 6) = {pq ∈ E (G ) | δp = 24, δq = 27 wher e, dp = 6, dq = 6},
E10 (6, 6) = {pq ∈ E (G ) | δp = 27, δq = 30 wher e, dp = 6, dq = 6} E11 (6, 6) = {pq ∈ E (G ) | δp = 27, δq =

27 wher e, dp = 6, dq = 6} and E12 (6, 6) = {pq ∈ E (G ) | δp = 30, δq = 30 wher e, dp = 6, dq = 6}. Where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 | + |E7 | + |E8 | + |E9 | + |E10 | + |E11 | + |E12 |

= 6 + 4(x − 1) + 6 + 8 + 8(2x − 3) + 2 + 4(2x − 3)

+ 2(x − 2) (3x − 4) + 8 + 8(x − 2) + 8(x − 2) + 2 + 6(x − 2)2

= 24x + 36 − 24

ND5 (G ) =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
122 + 122

12 × 12
(6) + 152 + 152

15 × 15
4(x − 1) + 122 + 242

12 × 24
(6) + 152 + 242

15 × 24
(8)

+ 152 + 272

15 × 27
8(2x − 3) + 182 + 242

18 × 24
(2) + 182 + 272

18 × 27
4(2x − 3)

+ 182 + 302

18 × 30
2(x − 2) (3x − 4) + 242 + 272

24 × 27
(8)

+ 272 + 302

27 × 30
8(x − 2) + 272 + 272

27 × 27
8(x − 2) + 2 + 302 + 302

30 × 30
6(x − 2)2

= 2(6) + 2(4(x − 1)) + 720

288
(6) + 801

360
(8) + 954

405
8(2x − 3)

+ 900

432
(2) + 1053

486
4(2x − 3) + 1224

540
2(x − 2) (3x − 4)

+ 1305

648
(8) + 1629

810
8(x − 2) + 2(8(x − 2) + 2) + 2(6(x − 2)2)

=
2304x2 + 160x − 123

90
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F IGURE 9 Regular Triangulate Silicate

2.4 | Regular Triangulate Silicate
The molecular structure of a x dimension Regular Triangulate Silicate network is denoted by RT SLx . The cardinality
of vertex and edge sets are respectively 1

2 (5x
2 + 13x + 2) , 6x2 + 12x . In Figure10 presents the graph representation of

RT SLx depending on the degree and neighborhood of the SDD index.

Theorem 7 Let G be a Regular Triangulate Silicate of graph (RT SLx ) , SDD (G ) = 27x2+57x−2
2 for x ≥ 2.

Proof Let us consider the graph G has Regular Triangulate Silicate of x -dimension (RT SLx ). The partitions of vertex
set and edge set of RT SLx with respect to degree of end vertices. There are two types of vertex set in RT SLx . The
cardinality of theV1 vertex set is 5x2−11x+22

2 of degree 6 and |V2 | = 12x − 10 of degree 3. So , |V (G ) | = |V1 | + |V2 | =
5x2+13x+2

2 . There are three types of edges in G based on degree of end vertices. We have E1 (3, 3) = {pq ∈ E (G ) |
dp = 3, dq = 3}, E2 (3, 6) = {pq ∈ E (G ) | dp = 3, dq = 6} and E3 (6, 6) = {pq ∈ E (G ) | dp = 6, dq = 6}. where
|E1 | = 3x + 4, |E2 | = 3x2 − 2 and |E3 | = (3x2 + 9x − 2) . As a consequence |E (G ) | = 6x2 + 12x .

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
=

(
32 + 32

3 × 3

)
3x + 4 +

(
62 + 62

6 × 6

)
3x2 − 2 +

(
32 + 62

3 × 6

)
(3x2 + 9x − 2)

= 2(3x + 4) + 2(3x2 − 2) + 5

2
(3x2 + 9x − 2)

=
27x2 + 57x − 2

2

Theorem 8 Let G be a Regular Triangulate Silicate network (RT SLx ) , x ≥ 3, ND5 (G ) = 2304x2+3768x+4229
180

Proof Let us consider the graph G has Regular Triangulate Silicate of x -dimension (RH SLx ). There are two types
of vertex set of RT SLx . The cardinality of vertex set is 5x2+13x+2

2 of degree 3 and 6. There are thirteen partitions
of edges in G based on degree sum of the neighborhood of end vertices. We have, E1 (3, 3) = {pq ∈ E (G ) | δp =

12, δq = 12 wher e, dp = 3, dq = 3}, E2 (3, 3) = {pq ∈ E (G ) | δp = 15, δq = 15 wher e, dp = 3, dq = 3}, E3 (3, 6) = {pq ∈
E (G ) | δp = 12, δq = 24 wher e, dp = 3, dq = 6}, E4 (3, 6) = {pq ∈ E (G ) | δp = 15, δq = 24 wher e, dp = 3, dq = 6},
E5 (3, 6) = {pq ∈ E (G ) | δp = 15, δq = 27 wher e, dp = 3, dq = 6}, E6 (3, 6) = {pq ∈ E (G ) | δp = 18, δq =

24 wher e, dp = 3, dq = 6}, E7 (3, 6) = {pq ∈ E (G ) | δp = 18, δq = 27 wher e, dp = 6, dq = 6}, E8 (3, 6) = {pq ∈
E (G ) | δp = 18, δq = 30 wher e, dp = 6, dq = 6}, E9 (6, 6) = {pq ∈ E (G ) | δp = 24, δq = 24 wher e, dp = 6, dq = 6},
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F IGURE 10 SDD and ND5 of Regular Triangulate Silicate

E10 (6, 6) = {pq ∈ E (G ) | δp = 24, δq = 27 wher e, dp = 6, dq = 6}, E11 (6, 6) = {pq ∈ E (G ) | δp = 27, δq =

27 wher e, dp = 6, dq = 6}, E12 (6, 6) = {pq ∈ E (G ) | δp = 27, δq = 30 wher e, dp = 6, dq = 6} and E13 (6, 6) = {pq ∈
E (G ) | δp = 30, δq = 30 wher e, dp = 6, dq = 6}. Where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 | + |E7 | + |E8 | + |E9 | + |E10 | + |E11 | + |E12 |

= 6 + 6 + (3x − 2) + 8 + (12x − 16) + 2 + (6x − 8)

+ (3x2 − 9x + 6) + 1 + 6 + (3x + 3) + (6x − 12) + (3x2 − 9x )

= 6x2 + 12x

ND5 (G ) =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
122 + 122

12 × 12
(6) + 122 + 242

12 × 24
(6) + 152 + 152

15 × 15
(3x − 2) + 152 + 242

15 × 24
(8)

+ 152 + 272

15 × 27
(12x − 16) + 182 + 242

18 × 24
(2) + 182 + 272

18 × 27
(6x − 8)

+ 182 + 302

18 × 30
(3x2 − 9x + 6) + 242 + 242

24 × 24
(1) + 242 + 272

24 × 27
(6)

+ 272 + 272

27 × 27
(3x + 3) + 272 + 302

27 × 30
(6x − 12) + 302 + 302

30 × 30
(3x2 − 9x )

= 2(6) + 15 + 2(3x − 2) + 801

45
+ 954

405
(12x − 16) + 900

216

+ 1053

486
(6x − 8) + 1224

540
(3x2 − 9x + 6) + 2

+ 1305

108
+ 2(3x + 3) + 1629

810
(6x − 12) + 2(3x2 − 9x )

=
2304x2 + 3768x + 4229

180
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2.5 | Oxide Network of SDD index based on degree and neighborhood
In this section, we identify the SDD index based on for some of the structures of the Oxide networks. The OXx

be an x -dimension of the Oxide network. The number of vertices(nodes) and edges 9x2 + 3x and 18x2 respectively.
Figure11 displays a graph of OXx depending on SDD and ND5.

Theorem 9 Let G be a Oxide Network graph (OXx ) , x ≥ 3, SDD (G ) = 6x + 36x2.

Proof Let us consider the graph G has Oxide network of x -dimension (OXx ). The partitions of vertex set and edge
set ofOXx with respect to degree of end vertices. There are two types of vertex set inOXx . The cardinality of theV1

vertex set is 6x of degree 2 and the cardinality of theV2 vertex set is 9x2 − 3x of degree 4. So , |V (G ) | = |V1 | + |V2 | =
9x2 + 3x . There are three types of edges in G based on degree of end vertices. We have E1 (2, 2) = {pq ∈ E (G ) | dp =

2, dq = 2}, E2 (4, 4) = {pq ∈ E (G ) | dp = 4, dq = 4} where

|E (G ) | = |E1 | + |E2 |

= 12x + 18x2 − 12x

= 18x2

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
=

(
10

4

)
(12x ) + (2) (6(3x2 − 2x ))

= 30x + 2(18x2 − 12x )

= 6x + 36x2

Theorem 10 Let G be a Oxide network (OXx ) , x ≥ 3, ND5 (G ) = 1008x2+89x
28 .

Proof Let us consider the graph G has Oxide network x -dimension (OXx ). There are two types of vertex set of OXx .
The cardinality of vertex set is 9x2+3x . There are six types of edges inG based on degree sum of the neighborhood of
end vertices. We have E1 (2, 2) = {pq ∈ E (G ) | δp = 8, δq = 12 wher e, dp = 2, dq = 2}, E2 (2, 4) = {pq ∈ E (G ) | δp =

8, δq = 14 wher e, dp = 2, dq = 4}, E3 (4, 4) = {pq ∈ E (G ) | δp = 12, δq = 14 wher e, dp = 4, dq = 4}, E4 (4, 4) = {pq ∈
E (G ) | δp = 14, δq = 14 wher e, dp = 4, dq = 4}, E5 (4, 4) = {pq ∈ E (G ) | δp = 14, δq = 16 wher e, dp = 4, dq = 4} and
E6 (4, 4) = {pq ∈ E (G ) | δp = 16, δq = 16 wher e, dp = 4, dq = 4}. Where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 |

= 6x + 6x + 6x + 3x + 6x + (18x2 − 27x )

= 18x2 .
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F IGURE 11 SDD and ND5 of Oxide

ND5 (G ) =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
82 + 122

8 × 12
(6x ) + 82 + 142

8 × 14
(6x )

+ 122 + 142

12 × 14
(6x ) + 142 + 142

14 × 14
(3x )

+ 142 + 162

14 × 16
(6x ) + 162 + 162

16 × 16
(18x2 − 27x )

=
208

96
(6x ) + 260

112
(6x ) + 340

168
(6x ) + 2(3x ) + 452

224
(6x ) + 2(18x2 − 27x )

=
1008x2 + 89x

28

2.6 | Rhombus Oxide network
An x dimensional Rhombus Oxide Network denoted by (RHOXx ) . Number of vertices (nodes) and edges respectively
|V (RHOXx ) | = 3x2 + 2x and |E (RHOXx ) | = 6x2. Figure12 shows a graph representation of RHOXx based on the
neighborhood and degree of the SDD index.

Theorem 11 Let G be a Rhombus Oxide of graph (RHOXx ) , x ≥ 2, SDD (G ) = 12x2 + 4x − 2.

Proof Let us consider the graph G has Rhombus Oxide network of x -dimension (RHOXx ). The partitions of vertex
set and edge set of RHOXx with respect to degree of end vertices. There are two types of vertex set in RHOXx . The
cardinality of theV1 vertex set is 4x of degree 2 and the cardinality of theV2 vertex set is 3x2 − 2x of degree 4. So ,
|V (G ) | = |V1 | + |V2 | = 3x2 + 2x . There are three types of edges in G based on the degree of end vertices. We have,
E1 (2, 2) = {pq ∈ E (G ) | dp = 2, dq = 2}, E2 (2, 4) = {pq ∈ E (G ) | dp = 2, dq = 4} and E3 (4, 4) = {pq ∈ E (G ) | dp =

4, dq = 4}. where

|E (G ) | = |E1 | + |E2 | + |E3 |

= 2 + 4(2x − 1) + 6x2 − 8x + 2

= 6x2 .
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SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
= (2) (2) + 4(2x − 1)

(
10

4

)
+ (6x2 − 8x + 2) (2)

= 12x2 + 4x − 2.

Theorem 12 Let G be a Rhombus Oxide of graph (OXx ) , x ≥ 3, ND5 (G ) = 84x2+19x−9
7 .

Proof Let us consider the graph G has Oxide network x -dimension (RHOXx ). There are two types of the vertex set
of RHOXx . The cardinality of vertex set is 3x2 + 2x . There are eight types of edges in G based on degree sum of the
neighborhood of end vertices. We have, E1 (2, 2) = {pq ∈ E (G ) | δp = 6, δq = 6 wher e, dp = 2, dq = 2}, E2 (2, 4) =

{pq ∈ E (G ) | δp = 6, δq = 12 wher e, dp = 2, dq = 4}, E3 (2, 4) = {pq ∈ E (G ) | δp = 8, δq = 12 wher e, dp = 2, dq = 4},
E4 (2, 4) = {pq ∈ E (G ) | δp = 8, δq = 14wher e, dp = 2, dq = 4}, E5 (4, 4) = {pq ∈ E (G ) | δp = 12, δq = 14wher e, dp =

4, dq = 4}, E6 (4, 4) = {pq ∈ E (G ) | δp = 14, δq = 14 wher e, dp = 4, dq = 4}, E7 (4, 4) = {pq ∈ E (G ) | δp = 14, δq =

16 wher e, dp = 4, dq = 4} and E8 (4, 4) = {pq ∈ E (G ) | δp = 16, δq = 16 wher e, dp = 4, dq = 4}. where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 |

= 2 + 4 + 4 + 4(2x − 3) + 8 + 2(4x − 7) + 8(x − 2) + 6(x − 2)2

= 6x2

ND5 (G ) =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
62 + 62

6 × 6
(2) + 62 + 122

6 × 12
(4) + 82 + 122

8 × 12
(4)

+ 82 + 142

8 × 14
4(2x − 3) + 122 + 142

12 × 14
(8) + 142 + 142

14 × 14
2(4x − 7)

+ 142 + 162

14 × 16
8(x − 2) + 162 + 162

16 × 16
6(x − 2)2

= 4 + 10 + 26

3
+ 65

7
(2x − 3) + 340

21
+ 4(4x − 7) + 113

7
(x − 2) + 12(x − 2)2

=
84x2 + 19x − 9

7

2.7 | Regular Triangulate Oxide Network
Let RTOXn be the group of Regular Triangulate Oxide network for x ≥ 3. The number of vertices(nodes) and edges
3x2+9x+2

2 and 3x2 +6x respectively. Figure13 illustrates the graph representation of Regular Triangulate Oxide depend-
ing on the degree and neighborhood of the SDD index.

Theorem 13 Let G be a Regular Triangulate Oxide Network of graph (RTOXx ) , x ≥ 3, SDD (G ) = 6x2 + 15x .

Proof Let us consider the graph G has Rhombus Oxide network of x -dimension (RHOXx ). The partitions of vertex
set and edge set of RHOXx with respect to degree of end vertices. There are two types of vertex set in RHOXx . So
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F IGURE 12 SDD and ND5 of Rhombus Oxide

, |V (G ) | = |V1 | + |V2 | = 3x2 + 6x . There are three types of edges in G based on the degree of end vertices. We have
E1 (2, 2) = {pq ∈ E (G ) | dp = 2, dq = 2}, E2 (2, 4) = {pq ∈ E (G ) | dp = 2, dq = 4} and E3 (4, 4) = {pq ∈ E (G ) | dp =

4, dq = 4}. Where

|E (G ) | = |E1 | + |E2 | + |E3 |

= 2 + 6x + (3x2 − 2)

= 3x2 + 6x

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
= 2(2) +

(
10

4

)
(6x ) + 2(3x2 − 2)

= 4 + 15x + 6x2 − 4

= 6x2 + 15x

Theorem 14 Let G be a Regular Triangulate Oxide Network of graph (OXx ) , x ≥ 3, ND5 (G ) = 504x2+1179x+2
84

Proof Let us consider the graph G has Oxide network x -dimension (RTOXx ). There are two types of vertex set
of RTOXx . The cardinality of vertex set is 3x2 + 6x . There are nine types of edges in G based on degree sum of
the neighborhood of end vertices. We have, E1 (2, 2) = {pq ∈ E (G ) | δp = 6, δq = 6 wher e, dp = 2, dq = 2},
E2 (2, 4) = {pq ∈ E (G ) | δp = 6, δq = 12 wher e, dp = 2, dq = 4}, E3 (2, 4) = {pq ∈ E (G ) | δp = 8, δq = 12 wher e, dp =

4, dq = 4}, E4 (2, 4) = {pq ∈ E (G ) | δp = 8, δq = 14 wher e, dp = 4, dq = 4}, E5 (4, 4) = {pq ∈ E (G ) | δp = 12, δq =

12 wher e, dp = 4, dq = 4}, E6 (4, 4) = {pq ∈ E (G ) | δp = 12, δq = 14 wher e, dp = 4, dq = 4}, E7 (4, 4) = {pq ∈ E (G ) |
δp = 14, δq = 14 wher e, dp = 4, dq = 4}, E8 (4, 4) = {pq ∈ E (G ) | δp = 14, δq = 16 wher e, dp = 4, dq = 4} and
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F IGURE 13 SDD and ND5 of Regular Triangulate Oxide

E9 (4, 4) = {pq ∈ E (G ) | δp = 16, δq = 16 wher e, dp = 4, dq = 4}. Where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 | + |E7 | + |E8 | + |E9 |

= 2 + 4 + 4 + (6x − 8) + 1 + 6 + (6x − 9) + (6x − 12) + (3x2 − 12x + 12)

= 3x2 + 6x

ND5 (G ) =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
62 + 62

6 × 6
(2) + 62 + 122

6 × 12
(4) + 82 + 122

8 × 12
(4)

+ 82 + 142

8 × 14
(6x − 8) + 122 + 122

12 × 12
(1)

+ 122 + 142

12 × 14
(6) + 142 + 142

14 × 14
(6x − 9)

+ 142 + 162

14 × 16
(6x − 12) + 162 + 162

16 × 16
(3x2 − 12x + 12)

=
504x2 + 1179x + 2

84

2.8 | The degree and neighborhood version of Symmetric division deg index of Copper(II) Oxide Network
In this section [26], we acquire the Symmetric division deg index for Copper (II) oxide. The octagons are connected to
one another in columns and rows, in the CuO structure. The association between two octagons is accomplished by
creating one C4 bond between two octagons. It has 4x y + 3y + x vertices (nodes) and 6x y + 2y edges, where x and
y represent the number of octagons in rows and columns, respectively [27].

Theorem 15 Let G be a Copper (II) Oxide network of graph for x , y > 2, then SDD (G ) = 38x y+x+16y−7
3 .

Proof There are four types of edges in G on the bases of different degree of end vertices. We have E1 (2, 2) = {pq ∈
E (G ) | dp = 2, dq = 2}, E2 (2, 4) = {pq ∈ E (G ) | dp = 2, dq = 4}, E3 (3, 4) = {pq ∈ E (G ) | dp = 3, dq = 4}and
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F IGURE 14 SDD and ND5 of Copper(II) Oxide

E4 (2, 3) = {pq ∈ E (G ) | dp = 2, dq = 3} where

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 |

= 4(y + 1) + 4(y − 1)+

4(x y − x − y + 1) + 2(x y + 2x − y − 2)

= 6x y + 2y

SDD (G ) =
∑
p∼q

(
max (dp , dq )
min (dp , dq )

+
min (dp , dq )
max (dp , dq )

)
= 4(y + 1) (2) + 4(y − 1)

(
10

4

)
+ 2(x y + 2x − y − 2)

(
13

6

)
+ 4(x y − x − y + 1)

(
25

12

)
=

38x y + x + 16y − 7

3

Theorem 16 Let G be a Copper (II) Oxide network of graph for x , y > 2, then ND5 (G ) = 380x y−20x+148y−18
30 .

Proof There are nine types of edges inG and then the neighborhood on the bases of different degrees of end vertices.
We have, E1 (2, 2) = {pq ∈ E (G ) | δp = 4, δq = 4 wher e, dp = 2, dq = 2}, E2 (2, 2) = {pq ∈ E (G ) | δp = 4, δq =

5 wher e, dp = 2, dq = 2}, E3 (2, 2) = {pq ∈ E (G ) | δp = 4, δq = 6 wher e, dp = 2, dq = 2}, E4 (2, 3) = {pq ∈ E (G ) |
δp = 5, δq = 6 wher e, dp = 2, dq = 3}, E5 (2, 3) = {pq ∈ E (G ) | δp = 6, δq = 6 wher e, dp = 2, dq = 3}, E6 (2, 3) =

{pq ∈ E (G ) | δp = 6, δq = 10 wher e, dp = 2, dq = 3}, E7 (2, 4) = {pq ∈ E (G ) | δp = 6, δq = 10 wher e, dp = 2, dq = 4},
E8 (3, 4) = {pq ∈ E (G ) | δp = 10, δq = 12 wher e, dp = 3, dq = 4} and E9 (3, 4) = {pq ∈ E (G ) | δp = 10, δq =

10 wher e, dp = 3, dq = 4}.

The following Figure14 shows SDD and ND5 of Copper (II) Oxide. Green and red indicate SDD and ND5 respec-
tively, which shows there is no physical properties significant difference between Copper (II) Oxide. Where
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F IGURE 15 SDD F IGURE 16 ND5

|E (G ) | = |E1 | + |E2 | + |E3 | + |E4 | + |E5 | + |E6 | + |E7 | + |E8 | + |E9 |

= 4 + 4 + (4y − 4) + 4 + (6x − 10) + (2x y − 2x + 2y )+

(2x y − 2x + 2y ) + (4x y − 4x − 8y + 8) + (4x − 4)

= 6x y + 2y

ND5 (G ) =
∑
p∼q

δN (p2) + δN (q2)
δN (p)δN (q )

=
42 + 42

4 × 4
(4) + 42 + 52

4 × 5
(4) + 42 + 62

4 × 6
(4y − 4)

+ 52 + 62

5 × 6
(4) + 62 + 62

6 × 6
(6x − 10) + 62 + 102

6 × 10
(2x y − 2x + 2y − 2)

+ 102 + 102

10 × 10
(4x − 4) + 102 + 122

10 × 12
(4x y − 4x − 8y + 8)

=
380x y − 20x + 148y − 18

30

3 | COMPARISON AND CONCLUSION
In Figure15,16,17 and 18 shows the graphs of degree and neighborhood of SDD index for some structures of Silicate
network and Oxide network, where x− axis represents the dimension of a graph and y− axis represents the values of
the SDD and ND5 index respectively.

In Figure15 and 16 we have compared CSx , DCx , RH SLx and RT SLx based on the degree and neighborhood
SDD index so the frequency curve for the structures RH SLx and RT SLx are increasing, so we conclude that these
two silicate networks (RH SLx , RT SLx ) obey with the physical properties (boiling points, melting points, molar value,
etc.)

In Figure17 and 18 we have made a comparison between OX , RTOXx and RHOXx based on the degree and
neighborhood SDD index. The frequency curve of OX is increasing slowly, which means that OX will obey the
physical property like (boiling point, melting point, molar value, etc.). Prior to RTOXx and RHOXx .
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F IGURE 17 SDD F IGURE 18 ND5

From these, it is observed that when the dimension is maximum Silicate and Oxide will obey the physical proper-
ties. Also if the dimension curve is not increasing (linear) those particular Silicate and Oxide networks won’t obey the
physical properties of those networks.
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GRAPHICAL ABSTRACT
The physical properties of Silicate, Oxide, and Copper (II) Oxide networks are
examined in this research utilizing topological indices.


