5 References
[1] Liu, L., Hood, S., Wang, Y., Bezverkov, R., Dou, C., Datta, A., Yuan, C., Direct enzymatic assay for% HbA1c in human whole blood samples, Clin. Biochem. 2008, 41, 576-583.
[2] Shimasaki, T., Yoshida, H., Kamitori, S., Sode, K., X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction, Sci. Rep. 2017, 7, 1-12.
[3] Ogawa, N., Kimura, T., Umehara, F., Katayama, Y., Nagai, G., Suzuki, K., Aisaka, K., Maruyama, Y., Itoh, T., Hashimoto, W., Creation of haemoglobin A1c direct oxidase from fructosyl peptide oxidase by combined structure-based site specific mutagenesis and random mutagenesis, Sci. Rep. 2019, 9, 1-13.
[4] Hirokawa, K., Shimoji, K., Kajiyama, N., An enzymatic method for the determination of hemoglobin A 1C, Biotechnol. Lett. 2005, 27, 963-968.
[5] Hirokawa, K., Gomi, K., Kajiyama, N., Molecular cloning and expression of novel fructosyl peptide oxidases and their application for the measurement of glycated protein, Biochem. Biophys. Res. Commun. 2003, 311, 104-111.
[6] Yoshida, N., Sakai, Y., Isogai, A., Fukuya, H., Yagi, M., Tani, Y., Kato, N., Primary structures of fungal fructosyl amino acid oxidases and their application to the measurement of glycated proteins, Eur. J. Biochem. 1996, 242, 499-505.
[7] Xing, K., Gan, W., Jia, M., Gao, F., Gong, W., Expression, purification, crystallization and preliminary X-ray diffraction analysis of EtFPOX from Eupenicillium terrenum sp, Acta Cryst. 2013, 69, 666-668.
[8] Gan, W., Gao, F., Xing, K., Jia, M., Liu, H., Gong, W., Structural basis of the substrate specificity of the FPOD/FAOD family revealed by fructosyl peptide oxidase from Eupenicillium terrenum, Acta Cryst. 20015, 71, 381-387.
[9] Soleymani, B., Barzegari, E., Mansouri, K., Karami, K., Mohammadi, P., Kiani, S., Moasefi, N., Tabar, M.S., Mostafaie, A., Heterologous expression, purification, and refolding of SRY protein: role of l-arginine as analyzed by simulation and practical study, Mol. Biol. Rep. 2020, 47, 5943-5951.
[10] Rosano, G. L., Ceccarelli, E. A., Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol. 2014, 5, 172.
[11] Choi, J., Lee, S., Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl. Microbiol. Biotechnol. 2005, 64, 625-635.
[12] Zhang, W., Lu, J., Zhang, S., Liu, L., Pang, X., Lv, J., Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study, Microb. Cell Fact. 2018, 17, 1-12.
[13] Shokri, A., Sandén, A., Larsson, G., Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli, Appl. Microbiol. Biotechnol. 2003, 60, 654-664.
[14] Hoffmann, F., van den Heuvel, J., Zidek, N., Rinas, U., Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale, Enzyme Microb. Technol. 2004, 34, 235-241.
[15] Boock, J. T., Waraho-Zhmayev, D., Mizrachi, D., DeLisa, M. P., Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them, Insoluble Proteins 2015, 79-97.
[16] Mergulhão, F., Summers, D. K., Monteiro, G. A., Recombinant protein secretion in Escherichia coli, Biotechnol. Adv. 2005, 23, 177-202.
[17] Natale, P., Brüser, T., Driessen, A. J., Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms, Biochim. Biophys. Acta Biome. 2008, 1778, 1735-1756.
[18] Chang, A. Y., Chau, V., Landas, J. A., Pang, Y., Preparation of calcium competent Escherichia coli and heat-shock transformation, JEMI methods. 2017, 1, 22-25.
[19] Qi, X., Sun, Y., Xiong, S., A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form, Microb. Cell Fact. 2015, 14, 1-12.
[20] Sockolosky, J. T., Szoka, F. C., Periplasmic production via the pET expression system of soluble, bioactive human growth hormone, Protein Expr. Purif. 2013, 87, 129-135.
[21] Calamai, M., Taddei, N., Stefani, M., Ramponi, G., Chiti, F., Relative influence of hydrophob­icity and net charge in the aggregation of two homologous proteins, Biochemistry. 2003, 42, 15078­-15083.
[22] Fields, G. B., Alonso, D. O., Stigter, D., Dill, K. A., Theory for the aggregation of proteins and copolymers, J. Phys. Chem. 96 (1992) 3974-3981. https://doi.org/10.1021/j100189a013.
[23] Taylor, G., Hoare, M., Gray, D., Marston, F., Size and density of protein inclusion bodies, Biotechnology. 1986, 4, 553-557.
[24] Bowden, G. A., Paredes, A. M., Georgiou, G., Structure and morphology of protein ­inclusion bodies in Escherichia coli, Biotechnology. 1991, 9, 725-730.
[25] Valax, P., Georgiou, G., Molecular characterization of β‐lactamase inclusion bodies produced in Escherichia coli. 1. Composition, Biotechnol. Prog. 1993, 9, 539-547.
[26] West, S., Guise, A., Chaudhuri, J., A comparison of the denaturants urea and guanidine hydrochloride on protein refolding, Food Bioprod. Process. 1997, 75, 50-56.
[27] Prasad, S., Khadatare, P. B., Roy, I., Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli, Appl. Environ. Microbiol. 2011, 77, 4603-4609.
[28] Fathi-Roudsari, M., Akhavian-Tehrani, A., Maghsoudi, N., Comparison of three Escherichia coli strains in recombinant production of reteplase, Avicenna J. Med. Biotechnol. 2016, 8, 16.
[29] Lobstein, J., Emrich, C. A., Jeans, C., Faulkner, M., Riggs, P., Berkmen, M., SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm, Microb. cell fact. 2012, 11, 1-16.
[30] Nasiri, M., Babaie, J., Amiri, S., Azimi, E., Shamshiri, S., Khalaj, V., Golkar, M., Fard-Esfahani, P., SHuffle™ T7 strain is capable of producing high amount of recombinant human fibroblast growth factor-1 (rhFGF-1) with proper physicochemical and biological properties, J. Biotechnol. 2017, 259, 30-38.
[31] Filatova, L. Y., Becker, S. C., Donovan, D. M., Gladilin, A. K., Klyachko, N. L., LysK, the enzyme lysing Staphylococcus aureus cells: specific kinetic features and approaches towards stabilization, Biochimie. 2010, 92, 507-513.
[32] Kumar, V., Sharma, V. K., Kalonia, D. S., Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation, Int. J. Pharm. 2009, 366, 38-43.
[33] Kaushik, J. K., Bhat, R., Why Is Trehalose an Exceptional Protein Stabilizer?: An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose, J. Biol. Chem. 2003, 278, 26458-26465.
[34] Wu, P., Bolen, D., Osmolyte‐induced protein folding free energy changes, Proteins. 2006, 63, 290-296.
[35] Roux, C., Salmon, L., Verchère-Béaur, C., Preliminary studies on the inhibition of D-sorbitol-6-phosphate 2–dehydrogenase from Escherichia coli with substrate analogues, J. Enzyme Inhib. Med. Chem. 2006, 21, 187-192.
[36] Jones-Mortimer, M., Kornberg, H., Uptake of Fructose by the Sorbitol Phosphotransferase of Escherichia coliK12, Microbiology. 1996, 96, 383-391.
[37] Tsumoto, K., Abe, R., Ejima, D., Arakawa, T., Non-denaturing solubilization of inclusion bodies, Curr. Pharm. Biotechnol. 2010, 11, 309-312.
[38] Robbens, J., De Coen, W., Fiers, W., Remaut, E., Improved periplasmic production of biologically active murine interleukin-2 in Escherichia coli through a single amino acid change at the cleavage site, Process Biochem. 2006, 41, 1343-1346.
[39] Chen, S., Li, B., Hong, R., Chen, J., Wu, J., The number of signal peptide cleavage site is critical for extracellular production of recombinant Thermobifida fusca cutinase, Process Biochem. 2011, 46, 1867-1870.
[40] Liang, X., Jia, S., Sun, Y., Chen, M., Chen, X., Zhong, J., Huan, L., Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli, Mol. Biotechnol. 2007, 37, 187-194.
[41] Makrides, S. C., Strategies for achieving high-level expression of genes in Escherichia coli, Microbiol. Rev. 1996, 60, 512-538.
[42] John Goka, A., Farthing, M.J., The use of 3, 3′, 5, 5′-tetramethylbenzidine as a peroxidase substrate in microplate enzyme-linked immunosorbent assay, J. immunoass. 1978, 8, 29-41.
[43] Eed, J., Factors affecting enzyme activity, Essai. 2012, 10, 19.