5 References
[1] Liu, L., Hood, S., Wang, Y., Bezverkov, R., Dou, C., Datta, A.,
Yuan, C., Direct enzymatic assay for% HbA1c in human whole blood
samples, Clin. Biochem. 2008, 41, 576-583.
[2] Shimasaki, T., Yoshida, H., Kamitori, S., Sode, K., X-ray
structures of fructosyl peptide oxidases revealing residues responsible
for gating oxygen access in the oxidative half reaction, Sci. Rep. 2017,
7, 1-12.
[3] Ogawa, N., Kimura, T., Umehara, F., Katayama, Y., Nagai, G.,
Suzuki, K., Aisaka, K., Maruyama, Y., Itoh, T., Hashimoto, W., Creation
of haemoglobin A1c direct oxidase from fructosyl peptide oxidase by
combined structure-based site specific mutagenesis and random
mutagenesis, Sci. Rep. 2019, 9, 1-13.
[4] Hirokawa, K., Shimoji, K., Kajiyama, N., An enzymatic method for
the determination of hemoglobin A 1C, Biotechnol. Lett. 2005, 27,
963-968.
[5] Hirokawa, K., Gomi, K., Kajiyama, N., Molecular cloning and
expression of novel fructosyl peptide oxidases and their application for
the measurement of glycated protein, Biochem. Biophys. Res. Commun.
2003, 311, 104-111.
[6] Yoshida, N., Sakai, Y., Isogai, A., Fukuya, H., Yagi, M., Tani,
Y., Kato, N., Primary structures of fungal fructosyl amino acid oxidases
and their application to the measurement of glycated proteins, Eur. J.
Biochem. 1996, 242, 499-505.
[7] Xing, K., Gan, W., Jia, M., Gao, F., Gong, W., Expression,
purification, crystallization and preliminary X-ray diffraction analysis
of EtFPOX from Eupenicillium terrenum sp, Acta Cryst. 2013, 69, 666-668.
[8] Gan, W., Gao, F., Xing, K., Jia, M., Liu, H., Gong, W.,
Structural basis of the substrate specificity of the FPOD/FAOD family
revealed by fructosyl peptide oxidase from Eupenicillium terrenum, Acta
Cryst. 20015, 71, 381-387.
[9] Soleymani, B., Barzegari, E., Mansouri, K., Karami, K.,
Mohammadi, P., Kiani, S., Moasefi, N., Tabar, M.S., Mostafaie, A.,
Heterologous expression, purification, and refolding of SRY protein:
role of l-arginine as analyzed by simulation and practical study, Mol.
Biol. Rep. 2020, 47, 5943-5951.
[10] Rosano, G. L., Ceccarelli, E. A., Recombinant protein
expression in Escherichia coli: advances and challenges, Front.
Microbiol. 2014, 5, 172.
[11] Choi, J., Lee, S., Secretory and extracellular production of
recombinant proteins using Escherichia coli, Appl. Microbiol.
Biotechnol. 2005, 64, 625-635.
[12] Zhang, W., Lu, J., Zhang, S., Liu, L., Pang, X., Lv, J.,
Development an effective system to expression recombinant protein in E.
coli via comparison and optimization of signal peptides: expression of
Pseudomonas fluorescens BJ-10 thermostable lipase as case study, Microb.
Cell Fact. 2018, 17, 1-12.
[13] Shokri, A., Sandén, A., Larsson, G., Cell and process design
for targeting of recombinant protein into the culture medium of
Escherichia coli, Appl. Microbiol. Biotechnol. 2003, 60, 654-664.
[14] Hoffmann, F., van den Heuvel, J., Zidek, N., Rinas, U.,
Minimizing inclusion body formation during recombinant protein
production in Escherichia coli at bench and pilot plant scale, Enzyme
Microb. Technol. 2004, 34, 235-241.
[15] Boock, J. T., Waraho-Zhmayev, D., Mizrachi, D., DeLisa, M. P.,
Beyond the cytoplasm of Escherichia coli: localizing recombinant
proteins where you want them, Insoluble Proteins 2015, 79-97.
[16] Mergulhão, F., Summers, D. K., Monteiro, G. A., Recombinant
protein secretion in Escherichia coli, Biotechnol. Adv. 2005, 23,
177-202.
[17] Natale, P., Brüser, T., Driessen, A. J., Sec-and Tat-mediated
protein secretion across the bacterial cytoplasmic membrane—distinct
translocases and mechanisms, Biochim. Biophys. Acta Biome. 2008, 1778,
1735-1756.
[18] Chang, A. Y., Chau, V., Landas, J. A., Pang, Y., Preparation of
calcium competent Escherichia coli and heat-shock transformation, JEMI
methods. 2017, 1, 22-25.
[19] Qi, X., Sun, Y., Xiong, S., A single freeze-thawing cycle for
highly efficient solubilization of inclusion body proteins and its
refolding into bioactive form, Microb. Cell Fact. 2015, 14, 1-12.
[20] Sockolosky, J. T., Szoka, F. C., Periplasmic production via the
pET expression system of soluble, bioactive human growth hormone,
Protein Expr. Purif. 2013, 87, 129-135.
[21] Calamai, M., Taddei, N., Stefani, M., Ramponi, G., Chiti, F.,
Relative influence of hydrophobicity and net charge in the aggregation
of two homologous proteins, Biochemistry. 2003, 42, 15078-15083.
[22] Fields, G. B., Alonso, D. O., Stigter, D., Dill, K. A., Theory
for the aggregation of proteins and copolymers, J. Phys. Chem. 96 (1992)
3974-3981. https://doi.org/10.1021/j100189a013.
[23] Taylor, G., Hoare, M., Gray, D., Marston, F., Size and density
of protein inclusion bodies, Biotechnology. 1986, 4, 553-557.
[24] Bowden, G. A., Paredes, A. M., Georgiou, G., Structure and
morphology of protein inclusion bodies in Escherichia coli,
Biotechnology. 1991, 9, 725-730.
[25] Valax, P., Georgiou, G., Molecular characterization of
β‐lactamase inclusion bodies produced in Escherichia coli. 1.
Composition, Biotechnol. Prog. 1993, 9, 539-547.
[26] West, S., Guise, A., Chaudhuri, J., A comparison of the
denaturants urea and guanidine hydrochloride on protein refolding, Food
Bioprod. Process. 1997, 75, 50-56.
[27] Prasad, S., Khadatare, P. B., Roy, I., Effect of chemical
chaperones in improving the solubility of recombinant proteins in
Escherichia coli, Appl. Environ. Microbiol. 2011, 77, 4603-4609.
[28] Fathi-Roudsari, M., Akhavian-Tehrani, A., Maghsoudi, N.,
Comparison of three Escherichia coli strains in recombinant production
of reteplase, Avicenna J. Med. Biotechnol. 2016, 8, 16.
[29] Lobstein, J., Emrich, C. A., Jeans, C., Faulkner, M., Riggs,
P., Berkmen, M., SHuffle, a novel Escherichia coli protein expression
strain capable of correctly folding disulfide bonded proteins in its
cytoplasm, Microb. cell fact. 2012, 11, 1-16.
[30] Nasiri, M., Babaie, J., Amiri, S., Azimi, E., Shamshiri, S.,
Khalaj, V., Golkar, M., Fard-Esfahani, P., SHuffle™ T7 strain is capable
of producing high amount of recombinant human fibroblast growth factor-1
(rhFGF-1) with proper physicochemical and biological properties, J.
Biotechnol. 2017, 259, 30-38.
[31] Filatova, L. Y., Becker, S. C., Donovan, D. M., Gladilin, A.
K., Klyachko, N. L., LysK, the enzyme lysing Staphylococcus aureus
cells: specific kinetic features and approaches towards stabilization,
Biochimie. 2010, 92, 507-513.
[32] Kumar, V., Sharma, V. K., Kalonia, D. S., Effect of polyols on
polyethylene glycol (PEG)-induced precipitation of proteins: Impact on
solubility, stability and conformation, Int. J. Pharm. 2009, 366, 38-43.
[33] Kaushik, J. K., Bhat, R., Why Is Trehalose an Exceptional
Protein Stabilizer?: An analysis of the thermal stability of proteins in
the presence of the compatible osmolyte trehalose, J. Biol. Chem. 2003,
278, 26458-26465.
[34] Wu, P., Bolen, D., Osmolyte‐induced protein folding free energy
changes, Proteins. 2006, 63, 290-296.
[35] Roux, C., Salmon, L., Verchère-Béaur, C., Preliminary studies
on the inhibition of D-sorbitol-6-phosphate 2–dehydrogenase from
Escherichia coli with substrate analogues, J. Enzyme Inhib. Med. Chem.
2006, 21, 187-192.
[36] Jones-Mortimer, M., Kornberg, H., Uptake of Fructose by the
Sorbitol Phosphotransferase of Escherichia coliK12, Microbiology. 1996,
96, 383-391.
[37] Tsumoto, K., Abe, R., Ejima, D., Arakawa, T., Non-denaturing
solubilization of inclusion bodies, Curr. Pharm. Biotechnol. 2010, 11,
309-312.
[38] Robbens, J., De Coen, W., Fiers, W., Remaut, E., Improved
periplasmic production of biologically active murine interleukin-2 in
Escherichia coli through a single amino acid change at the cleavage
site, Process Biochem. 2006, 41, 1343-1346.
[39] Chen, S., Li, B., Hong, R., Chen, J., Wu, J., The number of
signal peptide cleavage site is critical for extracellular production of
recombinant Thermobifida fusca cutinase, Process Biochem. 2011, 46,
1867-1870.
[40] Liang, X., Jia, S., Sun, Y., Chen, M., Chen, X., Zhong, J.,
Huan, L., Secretory expression of nattokinase from Bacillus subtilis
YF38 in Escherichia coli, Mol. Biotechnol. 2007, 37, 187-194.
[41] Makrides, S. C., Strategies for achieving high-level expression
of genes in Escherichia coli, Microbiol. Rev. 1996, 60, 512-538.
[42] John Goka, A., Farthing, M.J., The use of 3, 3′, 5,
5′-tetramethylbenzidine as a peroxidase substrate in microplate
enzyme-linked immunosorbent assay, J. immunoass. 1978, 8, 29-41.
[43] Eed, J., Factors affecting enzyme activity, Essai. 2012, 10,
19.