Acknowledgements: This work was supported in part by National
Natural Science Foundation of China under Grant 62174019, in part by the
Guangdong Basic and Applied Basic Research Foundation, China under Grant
2019A1515011522 and 2021B1515140039, in part by the Zhuhai
Industry-University Research Cooperation Project under Grant
ZH22017001210041PWC.
References
- X. Lyu, et al. , “A Reliable Ultrafast Short-Circuit Protection
Method for E-Mode GaN HEMT,” IEEE Trans. on Power Electronics ,
vol. 35, no. 9, pp. 8926-8933, Sep. 2020, doi:
10.1109/TPEL.2020.2968865.
- E. A. Jones, et al. , ”Review of Commercial GaN Power Devices
and GaN-Based Converter Design Challenges,” IEEE J.Emerg. Sel.
Top. Power Electron. , vol. 4, no. 3, pp. 707-719, Sep. 2016, doi:
10.1109/JESTPE.2016.2582685.
- S. Li et al ., ”Understanding Electrical Parameter Degradations
of P-GaN HEMT Under Repetitive Short-Circuit Stresses,” in IEEE
Transactions on Power Electronics , vol. 36, no. 11, pp. 12173-12176,
Nov. 2021, doi: 10.1109/TPEL.2021.3077128.
- J. Sun, et al. , ”Short Circuit Capability Characterization and
Analysis of p-GaN Gate High-Electron-Mobility Transistors Under Single
and Repetitive Tests,” in IEEE Transactions on Industrial
Electronics , vol. 68, no. 9, pp. 8798-8807, Sept. 2021, doi: 10.1109/
TIE.2020.3009603.
- C. Abbate, et al. , “Failure analysis of 650 V enhancement mode
GaN HEMT after short circuit tests,” Microelectron. Reliab.,vol. 88–90, pp. 677–683, Sep. 2018, doi:
10.1016/j.microrel.2018.07.071.
- M. Fernandez et al., “Short-circuit study in medium-voltage
GaN cascodes, p-GaN HEMTs, and GaN MISHEMTs,” IEEE Trans. Ind.
Electron ., vol. 64, no. 11, pp. 9012-9022, Nov. 2017, doi:
10.1109/TIE.2017.2719599.
- C. Pan, et al. , “Physical Mechanism of Device Degradation
﹠Its Recovery Dynamics of p-GaN Gate HEMTs Under Repetitive Short
Circuit Stress,” 2022 IEEE 34th International Symposium on
Power Semiconductor Devices and ICs (ISPSD) , 2022, pp. 313-316, doi:
10.1109/ISPSD49238.2022.9813685.
- N. Maeda, et al. , “High-temperature electron transport
properties in AlGaN/GaN heterostructures,” Appl. Phys. Lett .,
vol. 79, no. 11, pp. 1634 – 1636, 2001, doi: 10.1063/1.1400779.
- W. D. Callister, et al. , Materials Science and Engineering: An
Introduction, 9th ed., Hoboken, NJ, USA: Wiley, 2014.
- Yang, M et al ., “Electronic structure and optical properties
of Al0.25Ga0.75N with point defects
and Mg-defect complexes,” Opt Quant Electron 50, 60
(2018), doi: 10.1007/s11082-018-1328-0.
- Yuanyuan Shi, et al ., “Carrier Transport Mechanisms Underlying
the Bidirectional V TH Shift in p-GaN Gate HEMTs
Under Forward Gate Stress,” IEEE Trans. on Electron Devices ,
vol. 66, no. 2, pp. 876-882, Feb. 2019, doi: 10.1109/TED.2018.2883573.
- P. Hacke, et al. , “Deep levels in the upper band-gap region of
lightly Mg-doped GaN,” Appl. Phys. Lett ., vol. 68, no. 10, pp.
1362–1364, Mar. 1996.
- A. C. et al ., “AlGaN barrier thickness dependent surface and
interface trapping characteristics of AlGaN/GaN heterostructure,”
Chinese Journal of Physics, vol.56, Issue 5, 2018, pp. 2365-2370, doi:
10.1016/j.cjph.2018.06.024.