Acknowledgements: This work was supported in part by National Natural Science Foundation of China under Grant 62174019, in part by the Guangdong Basic and Applied Basic Research Foundation, China under Grant 2019A1515011522 and 2021B1515140039, in part by the Zhuhai Industry-University Research Cooperation Project under Grant ZH22017001210041PWC.
References
  1. X. Lyu, et al. , “A Reliable Ultrafast Short-Circuit Protection Method for E-Mode GaN HEMT,” IEEE Trans. on Power Electronics , vol. 35, no. 9, pp. 8926-8933, Sep. 2020, doi: 10.1109/TPEL.2020.2968865.
  2. E. A. Jones, et al. , ”Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges,” IEEE J.Emerg. Sel. Top. Power Electron. , vol. 4, no. 3, pp. 707-719, Sep. 2016, doi: 10.1109/JESTPE.2016.2582685.
  3. S. Li et al ., ”Understanding Electrical Parameter Degradations of P-GaN HEMT Under Repetitive Short-Circuit Stresses,” in IEEE Transactions on Power Electronics , vol. 36, no. 11, pp. 12173-12176, Nov. 2021, doi: 10.1109/TPEL.2021.3077128.
  4. J. Sun, et al. , ”Short Circuit Capability Characterization and Analysis of p-GaN Gate High-Electron-Mobility Transistors Under Single and Repetitive Tests,” in IEEE Transactions on Industrial Electronics , vol. 68, no. 9, pp. 8798-8807, Sept. 2021, doi: 10.1109/ TIE.2020.3009603.
  5. C. Abbate, et al. , “Failure analysis of 650 V enhancement mode GaN HEMT after short circuit tests,” Microelectron. Reliab.,vol. 88–90, pp. 677–683, Sep. 2018, doi: 10.1016/j.microrel.2018.07.071.
  6. M. Fernandez et al., “Short-circuit study in medium-voltage GaN cascodes, p-GaN HEMTs, and GaN MISHEMTs,” IEEE Trans. Ind. Electron ., vol. 64, no. 11, pp. 9012-9022, Nov. 2017, doi: 10.1109/TIE.2017.2719599.
  7. C. Pan, et al. , “Physical Mechanism of Device Degradation ﹠Its Recovery Dynamics of p-GaN Gate HEMTs Under Repetitive Short Circuit Stress,” 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD) , 2022, pp. 313-316, doi: 10.1109/ISPSD49238.2022.9813685.
  8. N. Maeda, et al. , “High-temperature electron transport properties in AlGaN/GaN heterostructures,” Appl. Phys. Lett ., vol. 79, no. 11, pp. 1634 – 1636, 2001, doi: 10.1063/1.1400779.
  9. W. D. Callister, et al. , Materials Science and Engineering: An Introduction, 9th ed., Hoboken, NJ, USA: Wiley, 2014.
  10. Yang, M et al ., “Electronic structure and optical properties of Al0.25Ga0.75N with point defects and Mg-defect complexes,” Opt Quant Electron  50,  60 (2018), doi: 10.1007/s11082-018-1328-0.
  11. Yuanyuan Shi, et al ., “Carrier Transport Mechanisms Underlying the Bidirectional V TH Shift in p-GaN Gate HEMTs Under Forward Gate Stress,” IEEE Trans. on Electron Devices , vol. 66, no. 2, pp. 876-882, Feb. 2019, doi: 10.1109/TED.2018.2883573.
  12. P. Hacke, et al. , “Deep levels in the upper band-gap region of lightly Mg-doped GaN,” Appl. Phys. Lett ., vol. 68, no. 10, pp. 1362–1364, Mar. 1996.
  13. A. C. et al ., “AlGaN barrier thickness dependent surface and interface trapping characteristics of AlGaN/GaN heterostructure,” Chinese Journal of Physics, vol.56, Issue 5, 2018, pp. 2365-2370, doi: 10.1016/j.cjph.2018.06.024.