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Abstract. We can describe the norm for an operator given as T : X → Y
as follows: It is the most appropriate value of U that satisfies the following

inequality

∥Tx∥Y ≤ U∥x∥X
and also for the lower bound of T we can say that the value of L agrees with
the following inequality

∥Tx∥Y ≥ L∥x∥X ,

where ∥.∥X and ∥.∥Y stand for the norms corresponding to the spaces X and

Y . The main feature of this article is that it converts the norms and lower
bounds of those matrix operators used as weighted sequence space ℓp(w) into

a new space. This new sequence space is the generalized weighted sequence

space. For this purpose, the double sequential band matrix B̃(r̃, s̃) and also the

space consisting of those sequences whose B̃(r̃, s̃) transforms lie inside ℓp(w̃),

where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real numbers.
When comparing with the corresponding results in the literature, it can be

seen that the results of the present study are more general and comprehensive.

1. Introduction

Let us outline some fundamental definitions and results, which we will largely be
used in the following sections. Primarily, we will offer the concept of the sequence,
the details of which are well known in elementary analysis. Although there are
many different ways to describe the sequence, all of which mean the same thing,
we we have chosen to give the following definition here. The sentence ” x is a
sequence ” means x := {xn} := {x0, x1, . . . , xn, . . .}, where each xn is a complex
number. In other words, a sequence is easily introduced as an ordered list of
complex numbers. Thus if x is a sequence, then it can be viewed as a mapping
of x : N := {1, 2, . . .} → C. More generally terms, every x in sequence X is a
transformation x : N → X, where X is a non-empty set. The collection of all real
or complex number sequences forms a vector space which we denote by w, under the
operations of coordinate-wise addition and the familiar scalar multiplication. The
subspaces of ω are significant in such applications because each of them is called a
sequence space.

Given an infinite matrix A = (ank) having complex numbers ank as entries in
which n, k ∈ N, it can be written for a sequence x, as follows

(Ax)n :=
∑

ankxk; (n ∈ N, x ∈ D00(A)),
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in which D00(A) describes the defined subspace of ω consisting of x ∈ ω for which
the summation exists as a finite sum. For a simple notation, the summation ranges
without limits from 0 to ∞.

The XA is known to be the matrix domain of an infinite matrix A for any
subspace X of the all real-valued sequence space w is described as

XA := {x = (xk) ∈ ω : Ax ∈ X}

which is a sequence space. There are several techniques to create new sequence
spaces from old ones like X. One of them is to use an arbitrary matrix domain
generated by an infinite matrix A such as XA. To briefly explain the topic, these
sequence spaces, namely X and XA, may overlap but in any case either of them
may contain the other one. The reader can find detailed information in the book
”Summability Theory and Its Applications” by Başar [1] and therein.

Recently we have seen a significant increase in the construction of new sequence
spaces using matrix domain in summability areas such as sequence spaces.

Many of the works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] we have studied so far have
something in common, they use the matrix domain.

Attempts have been made to find the best upper bound for some well-known
matrix operators denoted by T from ℓp(w) to Fw,p. In the context of this statement,
note that an upper bound for a matrix operator denoted by T defined from one
sequence space X into another denoted by Y can be given by the following value
of U

∥Tx∥Y ≤ U∥x∥X ,

in which ∥.∥X and ∥.∥Y denote the commonly known norms prescribed for spaces
X and Y , respectively. Here, U does not dependent on x. Among them, the best
value of U can be called the operator norm for T .

In addition, several researchers have tried to figure out the lower bounds for
these matrix operators. This concept was first discussed in Ref [12] on the Cesàro
matrix. But after that, others such as in Refs [13, 14] and [15, 16] have studied the
lower bounds for some matrix operators defined on the sequence space denoted by
ℓp and simultaneously on the weighted sequence space denoted by ℓp(w) with the
Lorentz sequence space. Similarly, a lower bound of a matrix operator defined as
T : X → Y is defined as the value of L satisfying the following inequality

∥Tx∥Y ≥ L∥x∥X .

This inequality can also be used for some applications of functional analysis. For
example, for finding the necessary and sufficient conditions under which an operator
has its inverse, and for simultaneously finding the operator kernel containing only
the zero vector for this case. For these reasons, knowing the lower bound for
an operator is significant. In recent years, Dehghan and Talebi [17] have worked
on the largest possible lower bound for some matrices on the Fibonacci sequence
spaces. Furthermore, Foroutannia and Roopaei [18] have considered the problem of
computing both the norm and lower and upper bounds for some operators defined
on weighted difference sequence spaces. One can refer to these works [19, 20, 21,
22, 23, 24, 25] and those contained therein for related problems over some classical
sequence spaces.

In this article, it is assumed that w = (wn) and also w̃ = (w̃n) are sequences con-
sisting of positive real terms. In this paper, a new space the generalized weighted
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difference sequence space, is introduced via the generalized difference matrix. More-
over, some properties of this sequence space are investigated. Among other things,
it was found that although this space is semi-normed, it is not necessarily a normed
space. Recall that a semi-normed satisfies every axiom of a norm, but the semi-
norm of a vector must be zero without including the zero vector. Again, this is
a semi-inner product space for the value of p = 2. Moreover, one obtains an iso-
morphism when using this space. Next, the norm for some matrix operators on
the generalized weighted difference sequence space is defined. In the next step,
we address the lower bound problem for the described operators of ℓp(w) in the
generalized weighted difference sequence space.

2. The Sequence Space ℓp(w̃, B̃(r̃, s̃))

We examined in the former chapter that many topic lead to building new se-
quence spaces. Moreover, the concepts we offered were inherently large. Let us
start by presenting the following matrix B̃ = (b̃nk(r̃, s̃));

b̃nk(r̃, s̃) =

 sn, k = n+ 1
rn, k = n
0, 0 ≤ k < n or k > n+ 1

where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real numbers. It
should be noted at this point that many authors have described various sequence
spaces and studied many different aspects of these spaces, using a different ma-
trix similar to this matrix but actually different. Some of them are available in
References [2, 3, 4, 5].

We will see later that this matrix allows us to construct an efficient structure
for solving algebraic and topological properties. Applying the definition of matrix
domain to this matrix, we define the new sequence space whose result lies in the
ℓp(w̃) space, as follows:

ℓp(w̃, B̃(r̃, s̃)) =

{
x = (xn) ∈ ω :

∞∑
n=1

w̃n |rnxn + snxn+1|p < ∞

}
,

in which 1 ≤ p < ∞. We note here that, the space is a semi-normed space with the
semi-norm defined by

∥x∥p,w̃,B̃ =

( ∞∑
n=1

w̃n |rnxn + snxn+1|p
)1/p

.

To calculate the truth of this assertion, we now give an example. If we consider

the sequence xn = 1
rn

∏n−1
i=1

(
−ri+1

si

)
, so due to rnxn + snxn+1 = 0 we obtain

∥x∥p,w̃,B̃ = 0, then it follows, from the definition of the norm, that ∥.∥p,w̃,B̃ defined

on ℓp(w̃, B̃(r̃, s̃)) is not a norm.
Before we begin with the general theory, we will first state the following basic

theorem, which indicate that the set just described plays a significant role in its
algebraic structure.

Theorem 2.1. The set ℓp(w̃, B̃(r̃, s̃)) is linear space, that is, sequence space.

Proof. We omit the proof which can be found in standard procedure. □
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Let us proceed with the following theorem about an algebraic property of this
newly defined sequence space.

Theorem 2.2. It is true that the inclusion relation ℓp(w̃) ⊂ ℓp(w̃, B̃(r̃, s̃)) is strictly
valid.

Proof. If we take any x ∈ ℓp(w̃), then the following calculation shows that the
inclusion is valid

w̃n |rnxn + snxn+1|p ≤ w̃n2
p−1 (|rnxn|p + |snxn+1|p)

≤ 2p−1max [|supn∈Nrn|p, |supn∈Nsn|p] w̃n (|xn|p + |xn+1|p)
by summing of n from 1 to ∞, in which 1 ≤ p < ∞.

To show that the inclusion relation is strictly valid. If the sequence w̃ with

(1, 1, 1, ...), we consider again the sequence (xn) =
(

1
rn

∏n−1
i=1

(
−ri+1

si

))
∈ ℓp(w̃, B̃(r̃, s̃)).

From this it is easy to deduce that (xn) /∈ ℓp(w̃). □

Theorem 2.3. If H =
{
x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)) : rnxn + snxn+1 = 0 for all n ∈ N

}
,

the quotient space ℓp(w̃, B̃(r̃, s̃))/H is linearly isomorphic to the space ℓp(w̃).

Proof. The basic approach to proving this theorem is to define a new T trans-
formation from the space ℓp(w̃, B̃(r̃, s̃)) to ℓp(w̃) that exploits the definition of

the fundamental matrix transformation, for all x ∈ ℓp(w̃, B̃(r̃, s̃)) uniquely Tx =
((Tx)n) = (rnxn + snxn+1). Since it is fairly obvious that T is linear, the first
issue here is to show that T is surjective. One of the ways to accomlish this for

any y = (yk) ∈ ℓp(w̃) is to say xn = 1
rn

∑∞
k=n

∏k−1
i=n

(
−si
ri+1

)
yk for all n ∈ N in the

norm of ℓp(w̃, B̃(r̃, s̃)). In this case, by simple calculations, we obtain the following
equations

∥x∥p
p,w̃,B̃

=

∞∑
n=1

w̃n

∣∣∣∣∣rnrn
∞∑

k=n

k−1∏
i=n

(
−si
ri+1

)
yk +

sn
rn+1

∞∑
k=n+1

k−1∏
i=n+1

(
−si
ri+1

)
yk

∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣∣∣yn +

[ ∞∑
k=n+1

k−1∏
i=n

(
−si
ri+1

)
yk −

∞∑
k=n+1

k−1∏
i=n

(
−si
ri+1

)
yk

]∣∣∣∣∣
p

=

∞∑
n=1

w̃n |yn|p

= ∥y∥pp,w̃
< ∞

which implies that x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)). Returning back to the T transforma-
tion described above, it is very simple to say that Tx = y. Due to the fact that
the image of the space ℓp(w̃, B̃(r̃, s̃)) under the transformation T is ℓp(w̃) and also

kerT = H, we have that ℓp(w̃, B̃(r̃, s̃))/H is linearly isomorphic to the space ℓp(w̃)
under the first isomorphism theorem. □

We will use an example to show that the transformation T defined above is not

injective. Namely, for x = (xn) =
(

1
rn

∏n−1
i=1

(
−ri+1

si

))
we get Tx = 0; in other

words, kerT ̸= {0}.
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Theorem 2.4. If p is not equal to 2 and at the same time the space ℓp(w̃, B̃(r̃, s̃))
is not given as a semi-inner product space, then it is concluded that the space
ℓ2(w̃, B̃(r̃, s̃)) is defined as a semi-inner product space.

Proof. First, we will answer the question whether the semi-norm ∥.∥2,w̃,B̃ can be
induced with a semi-inner product. It is convenient at this point to use the notation

zk = w̃
1/2
k (rkxk + skxk+1) for all k ∈ N and ⟨z, z⟩2 =

∑∞
k=1 |zk|2. Indeed taken

arbitrary, x ∈ ℓ2(w̃, B̃(r̃, s̃)), we get

∥x∥2,w̃,B̃ =
√
⟨z, z⟩2.

Moreover, it is easy to verify from the following equations that the semi-norm
∥.∥p,w̃,B̃ cannot be obtained when considering a semi-inner product just defined as

∥x+ y∥2
p,w̃,B̃

+ ∥x− y∥2
p,w̃,B̃

= 4(w̃
2/p
1 + w̃

2/p
2 )

(
r2
r1

)2

̸= 4

(
w̃1 +

w̃2

2p

∣∣∣∣r2r1
∣∣∣∣p)2/p

= 2(∥x∥2
p,w̃,B̃

+ ∥y∥2
p,w̃,B̃

),

in which x =
(

2r1+s1
2r21

,− 1
2r1

, 0, 0, ...
)
, y =

(
2r1−s1
2r21

, 1
2r1

, 0, 0, ...
)
and p ̸= 2. □

3. The Norm of Matrix Operators from ℓ1(w) to ℓ1(w̃, B̃(r̃, s̃))

Having defined a function from the space ℓ1(w) to the space ℓ1(w̃, B̃(r̃, s̃)), we will
compute in this chapter that it is a norm. Before proceeding with the development
of the general theory, let us start by presenting a very simple definition.

The matrix A = (ank) is said to be quasi-summable if A is an upper triangular
matrix, namely, ank = 0 for n > k. As it can be clearly seen, the matrix satisfies∑k

n=1 ank = 1 for all k ∈ N.

Theorem 3.1. The matrix T = (tnk) is a bounded matrix operator from the

space ℓ1(w) to the space ℓ1(w̃, B̃(r̃, s̃)) if M = supk∈N
λk

wk
< ∞, in which λk =∑∞

n=1 w̃n |rntnk + sntn+1,k|. In that case, the norm of operator is obtained as
∥T∥1,w,w̃,B̃ = M .

For all n ∈ N, taking both wn = 1 and w̃n = 1 specially, the transformation T
is a bounded operator from the space ℓ1 to the space ℓ1(B̃(r̃, s̃)) and also ∥T∥1,B̃ =
supk∈N λk.
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Proof. We take into consideration a sequence x = (xn) in ℓ1(w), thus

∥Tx∥1,w̃,B̃ =

∞∑
n=1

w̃n

∣∣∣∣∣
∞∑
k=1

(rntnk + sntn+1,k)xk

∣∣∣∣∣
≤

∞∑
n=1

∞∑
k=1

w̃n |rntnk + sntn+1,k| |xk|

=

∞∑
k=1

∞∑
n=1

w̃n |rntnk + sntn+1,k| |xk|

=

∞∑
k=1

λk|xk|

≤ M

∞∑
k=1

wk|xk|

= M∥x∥1,w.

From these equations it follows that ∥T∥1,w,w̃,B̃ ≤ M since
∥Tx∥1,w̃,B̃

∥x∥1,w
≤ M. We

introduce the sequence ei = (0, 0, ..., 0,
i.
1, 0, ...) for each i ∈ N to compute the inverse

inequality, and then obtain ∥ei∥1,w = wi and also ∥Tei∥1,w̃,B̃ = λi. Therefore, it is

easy to see that ∥T∥1,w,w̃,B̃ ≥ M , and then ∥T∥1,w,w̃,B̃ = M .
Since special choices are made in the proof of the remaining part, no proof will

be given here. □

Theorem 3.2. Let us assume that T = (tnk) is the upper triangular matrix having
the non-negative entries and also assume that (wn) is an increasing given sequence.
When the inequality tnk ≥ tn+1,k is valid for each values of n ∈ N, constant k ∈ N
and M ′ = supk∈N

∑n
k=1 tnk < ∞, then T is defined as a bounded operator described

from ℓ1(w) to ℓ1(w, B̃(r̃, s̃)). At the same time, the norm of this given operator
satisfies the inequality given in the form ∥T∥1,w,B̃ ≤ (supk∈N |rk|+ supk∈N |sk|)M ′.
When the specific condition of T is being quasi summable matrix, also rk ≥ −sk > 0
and sk−1 + rk = 1 is taken into consideration, thus the condition ∥T∥1,w,B̃ = 1 is
satisfied.

Proof. Given the hypothesis, we must say that the matrix T = (tnk) satisfying the
condition tnk ≥ tn+1,k (for all n, k = 1, 2, ...) is an upper triangular and also the
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sequence (wn) is increasing. With simple calculations, we can derive the following

λk =

∞∑
n=1

wn |rntnk + sntn+1,k|

=

k−1∑
n=1

wn |rntnk + sntn+1,k|+ wk|rk|tkk

≤ wk

[
k−1∑
n=1

(|rn|tnk + |sn|tn+1,k) + |rk|tkk

]
= wk [(|r1|t1k + |s1|t2k) + ...+ (|rk−1|tk−1,k + |sk−1|tkk) + |rk|tkk]
= wk [|r1|t1k + (|s1|+ |r2|) t2k + ...+ (|sk−1|+ |rk|) tkk]

≤ (sup
k∈N

|rk|+ sup
k∈N

|sk|)wk

k∑
n=1

tnk.

Obviously, ∥T∥1,w,B̃ = supk∈N
sk
wk

≤ (supk∈N |rk|+ supk∈N |sk|) supk∈N
∑k

n=1 tnk =

(supk∈N |rk|+ supk∈N |sk|)M ′ from Theorem 3.1.
Let us suppose that T is a quasi summable matrix, so M ′ = 1. If rk ≥ −sk > 0

holds, then of course rntnk + sntn+1,k > 0 holds for every k, n ∈ N and also if

the equality sk−1 + rk = 1 is satisfied, then we can easily write λk ≤ wk

∑k
n=1 tnk

thus ∥T∥1,w,B̃ ≤ 1. To obtain the inverse inequality, let us consider the sequence

e1 = (1, 0, 0, ...). It follows that ∥e1∥1,w = w1 and ∥Te1∥1,w,B̃ = w1, namely

∥T∥1,w,B̃ ≥ 1. As a result, we obtain ∥T∥1,w,B̃ = 1. □

In the light of the above theorems, we are concerned here with the computation
of the norm of some specific quasi summable matrices. First, we consider the
transpose of the well-known Riesz matrix R̃ = (r̃nk) which is described as follows:

(1) r̃nk =

{ qn
Qk

, n ≤ k

0, n > k,

where (qn) is a non-negative sequence with q1 > 0 and Qk = q1 + ... + qk for all
k ∈ N.

Taking qn = 1 for all n ∈ N, we derive the transpose of the Cesáro matrix of
order one, also known as the Copson matrix (see [16]). We denote this particular

matrix by C̃ = (c̃nk), where

c̃nk =

{
1
k , n ≤ k
0, n > k.

Corollary 3.3. When (qn) is a decreasing sequence and (wn) is an increasing

sequence, in that case R̃ is a bounded operator from the space ℓ1(w) into the space

ℓ1(w, B̃(r̃, s̃)) and, also ∥R̃∥1,w,B̃ = 1 for rn ≥ −sn > 0 and sn−1 + rn = 1 for
every n ∈ N.

Proof. First of all, since (qn) is a decreasing sequence from the hypothesis the
following inequality r̃nk = qn

Qk
≥ qn+1

Qk
= r̃n+1,k holds for all n ∈ N, each fixed

k ∈ N. For R̃ is a non-negative upper triangular matrix and (wn) is an increasing

sequence, it follows from Theorem 3.2 that R̃ is a bounded operator from ℓ1(w)

into ℓ1(w, B̃(r̃, s̃)). Also due to the fact that
∑k

n=1 r̃nk = 1 for every k ∈ N, R̃ is a
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quasi summable matrix. If rn ≥ −sn > 0 and sn−1 + rn = 1 for every n ∈ N, then
it is clear that ∥R̃∥1,w,B̃ = 1 from Theorem 3.2. □

Corollary 3.4. If supk∈N

∑k
n=1 w̃n

kwk
< ∞, then the matrix C̃ defined just above

is a bounded operator from the space ℓ1(w) into ℓ1(w̃, B̃(r̃, s̃)) and ∥C̃∥1,w,w̃,B̃ ≤

(supk∈N |rk|+ supk∈N |sk|) supk∈N

∑k
n=1 w̃n

kwk
.

Proof. We get the following inequality

λk =

∞∑
n=1

w̃n |rnc̃nk + snc̃n+1,k|

≤ 1

k

[
k−1∑
n=1

w̃n (|rn|+ |sn|) + w̃k|rn|

]

=
supk∈N |rk|

k

k∑
n=1

w̃n +
supk∈N |sk|

k

k−1∑
n=1

w̃n

≤
supk∈N |rk|+ supk∈N |sk|

k

k∑
n=1

w̃n.

Therefore, we obtain that ∥C̃∥1,w,w̃,B ≤ (supk∈N |rk|+ supk∈N |sk|) supk∈N

∑k
n=1 w̃n

kwk

from Theorem 3.1. □

Theorem 3.5. Let us suppose that T = (tnk) is a matrix having the non-negative
entries and the inequalities tnk ≥ tn+1,k hold for all n ∈ N and each fixed k ∈ N.
If
∑∞

n=1 tnk < ∞ for each k ∈ N and also M ′′ = supk∈N
∑∞

n=1 tnk < ∞, then

the matrix T is a bounded operator from the space ℓ1 to ℓ1(B̃(r̃, s̃)) and the norm
of operator is ∥T∥1,B̃ ≤ (supk∈N |rk| + supk∈N |sk|)M ′′. When the fact that the
specific condition of T is being quasi summable matrix is taken into consideration
for rk ≥ −sk > 0 and sk−1 + rk = 1 (for all k ∈ N), then the condition ∥T∥1,B̃ = 1
is derived.

Proof. For any k ∈ N, we get

λk =

∞∑
n=1

|rntnk + sntn+1,k| = (sup
k∈N

|rk|+ sup
k∈N

|sk|)
∞∑

n=1

tnk.

Using Theorem 3.1 here, we find that the norm ∥T∥1,B̃ ≤ (supk∈N |rk|+supk∈N |sk|)M ′′.
The rest of the proof can be done similarly to the proof of Theorem 3.2. □

The matrix H = (hnk) defined as hnk = 1
n+k for all n, k ∈ N is known to be

the Hilbert matrix operator. Here, we will discover the norm of the operator just
mentioned.

Now, let us give the following integral to be used in the proofs:∫ ∞

0

1

tα(t+ c)
dt =

π

cα sinαπ
,

in which 0 < α < 1.
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Theorem 3.6. Let wn = 1
nα for all n ∈ N, in which 0 < α < 1. In this case,

the Hilbert matrix operator H just described is bounded from the space ℓ1(w) to the

space ℓ1(w, B̃(r̃, s̃)) and also the norm ∥H∥1,w,B̃ ≤ π
sinαπ (supi∈N |ri|+ supi∈N |si|).

Proof. For all n ∈ N, we have

λn =

∞∑
i=1

wi |rihin + sihi+1,n|

≤
∞∑
i=1

1

iα

(
|ri|
i+ n

+
|si|

i+ n+ 1

)
≤
∫ ∞

0

1

tα

(
supi∈N |ri|

t+ n
+

supi∈N |si|
t+ n+ 1

)
dt

=
π

sinαπ

(
supi∈N |ri|

nα
+

supi∈N |si|
(n+ 1)α

)
.

It follows that

nαλn ≤ π

sinαπ

[
sup
i∈N

|ri|+ sup
i∈N

|si|
(

n

n+ 1

)α]
≤ π

sinαπ

(
sup
i∈N

|ri|+ sup
i∈N

|si|
)
.

Considering Theorem 3.1, this means that ∥H∥1,w,B̃ ≤ π
sinαπ (supi∈N |ri|+ supi∈N |si|).

□

4. The Norm of Matrix Operators from ℓp(w) to ℓp(w, B̃(r̃, s̃))

In this section, we are going to discuss calculating the norm of some matrix oper-
ators from the space ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)). We now present an essential
lemma which is obtained by Jameson and Lashkaripour, since this important result
is used in the proofs.

Lemma 4.1. [16] Let us suppose that A = (ank) is a matrix operator having the
nonnegative entries ank ≥ 0, also suppose that (un) and (vk) are positive sequences
given such that

u1/p
n

∞∑
k=1

ank

v
1/p
k

≤ K1 (for n ∈ N, K1 ∈ R)

and

1

v
(1−p)/p
k

∞∑
n=1

u(1−p)/p
n ank ≤ K2 (for k ∈ N, K2 ∈ R)

in that case, that inequality ∥A∥p ≤ K
1/p
2

K
(1−p)/p
1

is valid, in which p > 1.

Now, let us state and prove another necessary lemma.

Lemma 4.2. Let us assume that the equality ank =
(

w̃n

wk

)1/p
(rntnk + sntn+1,k) is

valid for the matrix operators T = (tnk) and A = (ank). At the same time, we
have ∥T∥p,w,w̃,B̃ = ∥A∥p, for p ≥ 1. Under the conditions of this hypothesis, T is

bounded operator from the space ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)) iff A is bounded
operator onto the space ℓp.



10 MURAT CANDAN

Proof. If the x lying in the space ℓp(w) is taken as arbitrarily, and the sequence

y = (yk) is defined as yk = w
1/p
k xk for all k ∈ N by making use of it, then we

derive that equality ∥x∥p,w = ∥y∥p. Therefore, the proof should be clear with the
following basic calculations

∥T∥p
p,w,w̃,B̃

= sup
x∈ℓp(w),x ̸=0

∥Tx∥p
p,w̃,B̃

∥x∥pp,w

= sup
x∈ℓp(w),x ̸=0

∑∞
n=1 w̃n |

∑∞
k=1 (rntnk + sntn+1,k)xk|

p∑∞
k=1 wk|xk|p

= sup
y∈ℓp

∑∞
n=1

∣∣∣∣∑∞
k=1

(
w̃n

wk

)1/p
(rntnk + sntn+1,k) yk

∣∣∣∣p∑∞
k=1 |yk|p

= sup
y∈ℓp

∑∞
n=1 |

∑∞
k=1 ankyk|

p∑∞
k=1 |yk|p

= sup
y∈ℓp

∥Ay∥pp
∥y∥pp

= ∥A∥pp.

□

Theorem 4.3. Let us assume that the matrix operator R̃ is as defined in (1), and
also assume that (qn) is a decreasing sequence having q1 = q2 = 2 and limn→∞ Qn =

∞. For all n ∈ N, if the sequence (wn) is taken as
(

2Qn−1

qn

)p
with Q0 = 1, in

that case, R̃ is bounded operator from the space ℓp(w) to the space ℓp(B̃(r̃, s̃)) and

∥R̃∥p,w,B̃ ≤ supn∈N |rn|+supn∈N |sn|
2 for p > 1.

Proof. In Lemma 4.2, utilize the matrix R̃ in place of T . So, the matrix A = (ank)
is described by

ank =


qk

2Qk−1Qk
(rnqn + snqn+1) , n < k

1
2rk

q2k
Qk−1Qk

, n = k

0, n > k

and besides that, ∥R̃∥p,w,B̃ = ∥A∥p is obtained.
We derive

∞∑
k=1

ank =
rn
2
qn

qn
Qn−1Qn

+
1

2
(rnqn + snqn+1)

∞∑
k=n+1

qk
Qk−1Qk

=
rn
2
qn

(
1

Qn−1
− 1

Qn

)
+

1

2
(rnqn + snqn+1)

1

Qn

=
rn
2

qn
Qn−1

+
sn
2

qn+1

Qn

≤
supn∈N |rn|+ supn∈N |sn|

2
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for all n ∈ N. Also, we derive

∞∑
n=1

ank =
1

2

qk
Qk−1Qk

[
k−1∑
n=1

(rnqn + snqn+1)

]
+

rk
2

qk
Qk−1Qk

qk

=
1

2

qk
Qk−1Qk

[
r1q1 +

k−1∑
n=1

(rn+1 + sn) qn+1

]

≤
supk∈N |rk|+ supk∈N |sk|

2

qk
Qk−1Qk

k∑
n=1

qn

≤
supk∈N |rk|+ supk∈N |sk|

2

for all k ∈ N. Now, In Lemma 4.1, if we take un = vn = 1 for all n ∈ N, we
get K1 ≤ supn∈N |rn|+supn∈N |sn|

2 and K2 ≤ supk∈N |rk|+supk∈N |sk|
2 which require that

∥R̃∥p,w,B̃ ≤ supn∈N |rn|+supn∈N |sn|
2 for p > 1. □

Theorem 4.4. Let wn = 1
nα for all n ∈ N, in which 1− p < α < 1 and p > 1. In

that case, the Hilbert matrix operator H is a bounded operator from the space ℓp(w)

to the space ℓp(w, B̃(r̃, s̃)) also following inequality

∥H∥p,w,B̃ ≤
(
sup
n∈N

|rn|+ sup
n∈N

|sn|
)
max

{
π

sinβπ
,

π

sin γπ

}
,

is valid, in which β = 1−α
p and γ = p−1+α

p .

Proof. Let us define the matrix A = (ank) as follows

ank =

(
k

n

)α/p(
rn

n+ k
+

sn
n+ k + 1

)
for all n, k ∈ N. In this case, ∥H∥p,w,B̃ = ∥A∥p which obtained by using Lemma
4.2. Specifically, when we choose un = vn = n in Lemma 4.1 for all n ∈ N, we find
that

un
1
p

∞∑
k=1

ank

vk
1
p

= n1/p
∞∑
k=1

1

k1/p

(
k

n

)α/p(
rn

n+ k
+

sn
n+ k + 1

)

≤ nβ
∞∑
k=1

1

kβ

(
|rn|
n+ k

+
|sn|

n+ k + 1

)
≤ nβ

∫ ∞

t=0

1

tβ

(
supn∈N |rn|

t+ n
+

supn∈N |sn|
t+ (n+ 1)

)
dt

= nβ

(
supn∈N |rn|π
nβ sinβπ

+
supn∈N |sn|π
(n+ 1)β sinβπ

)
≤ π

sinβπ

(
sup
n∈N

|rn|+ sup
n∈N

|sn|
)
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for all n ∈ N also

1

v
1−p
p

k

∞∑
n=1

un

1−p
p ank =

1

k(1−p)/p

∞∑
n=1

n(1−p)/p

(
k

n

)α/p(
rn

n+ k
+

sn
n+ k + 1

)

≤ kγ
∞∑

n=1

1

nγ

(
|rn|
n+ k

+
|sn|

n+ k + 1

)
≤ kγ

∫ ∞

t=0

1

tγ

(
supn∈N |rn|

t+ k
+

supn∈N |sn|
t+ (k + 1)

)
dt

= kγ
(
supn∈N |rn|π
kγ sin γπ

+
supn∈N |sn|π
(k + 1)γ sin γπ

)
≤ π

sin γπ

(
sup
n∈N

|rn|+ sup
n∈N

|sn|
)

for all k ∈ N, where β = 1−α
p and γ = p−1+α

p . We therefore obtain that

∥H∥p,w,B̃ ≤
(
sup
n∈N

|rn|+ sup
n∈N

|sn|
)
max

{
π

sinβπ
,

π

sin γπ

}
from Lemma 4.1. □

5. Lower Bounds of Matrix Operators from ℓp(w) to ℓp(w̃, B̃(r̃, s̃))

An important problem posed in this paper is to calculate the lower bound of an
operator T from the space ℓp(w) to space ℓp(w̃, B̃(r̃, s̃)). Thus, the goal is to obtain
the lower bound of the operator T for the largest value L satisfying the following
inequality

∥Tx∥p,w̃,B̃ ≥ L∥x∥p,w
for every decreasing sequence x = (xk) with xk ≥ 0.

We need the following lemma to perform the calculations in the proofs in this
section.

Lemma 5.1. [16] Let us assume that both (qn) and (xn) are non-negative sequences,
and that (xn) is also a decreasing sequence satisfying condition limn→∞ xn = 0. For
Qn =

∑n
i=1 qi with Q0 = 1 also Rn =

∑n
i=1 qixi, the following statements holds, in

which p ≥ 1 and n ∈ N.
(1) Rp

n −Rp
n−1 ≥ (Qp

n −Qp
n−1)x

p
n.

(2) When the series
∑∞

i=1 qixi converges, the following inequality is satisfied.( ∞∑
i=1

qixi

)p

≥
∞∑

n=1

Qp
n(x

p
n − xp

n+1).

Theorem 5.2. When T = (tnk) is a matrix operator with tnk ≥ 0 from the space

ℓp(w) into the space ℓp(w̃, B̃(r̃, s̃)), in which p ≥ 1, the following inequality tnk ≥
tn+1,k is valid for all n ∈ N, each fixed k ∈ N also the series

∑∞
n=1 wn diverges

to infinity, in that case, for every decreasing sequence x = (xk) having xk ≥ 0, we
have

∥Tx∥p,w̃,B̃ ≥ L∥x∥p,w
in which Lp = infn∈N

Sn

Wn
, Wn =

∑n
k=1 wk and Sn =

∑∞
i=1 w̃i (

∑n
k=1 (ritik + siti+1,k))

p

where rn ≥ −sn > 0 for all n ∈ N.
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Proof. Under the conditions of the hypothesis formulated in the theorem, we can
give the proof as follows. Since

∑∞
n=1 wn = ∞, we obtain limk→∞ xk = 0, and also,

we can be establish that the series
∑∞

k=1 (rntnk + sntn+1,k)xk is convergent for all
n ∈ N. On the other hands, using Lemma 5.1 and Abel summation, we have

∥Tx∥pp,w̃,B =

∞∑
n=1

w̃n

( ∞∑
k=1

(rntnk + sntn+1,k)xk

)p

≥
∞∑

n=1

w̃n

∞∑
i=1

(
i∑

k=1

(rntnk + sntn+1,k)

)p

(xp
i − xp

i+1)

=

∞∑
i=1

[ ∞∑
n=1

w̃n

(
i∑

k=1

(rntnk + sntn+1,k)

)p]
(xp

i − xp
i+1)

=

∞∑
i=1

Si(x
p
i − xp

i+1) ≥ Lp
∞∑
i=1

Wi(x
p
i − xp

i+1) = Lp∥x∥pp,w

which completes the proof. □

The following lemma can be verified using a technique similar to the proof of
Proposition 1 in [16].

Lemma 5.3. Let us assume that T = (tnk) be a non-negative matrix operator

defined from the space ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)), in which p ≥ 1. If the
following inequality

rntnk + sntn+1,k ≥ rntn,k+1 + sntn+1,k+1

is valid also tnk ≥ tn+1,k for all k ∈ N, each fixed n ∈ N and rn ≥ −sn > 0, if the
series

∑∞
n=1 wn is divergent the infinity, then we have

Lp ≥ inf
n∈N

[np − (n− 1)p]
tn
wn

,

in which tn =
∑∞

i=1 w̃i (ritin + siti+1,n)
p
.

Theorem 5.4. Let H = (hnk) is the Hilbert matrix operator, wn = 1
np+α and

w̃n = 1
nα for every n ∈ N, in which p ≥ 1, 0 ≤ p + α ≤ 1 and rn ≥ −sn > 0. For

every decreasing sequences x = (xk) that are not negative terms, we have

∥Hx∥p,w̃,B̃ ≥ L∥x∥p,w
in which Lp ≥

∑∞
i=1

1
iα(i+1)p(i+2)p .

Proof. It is clear that both the Hilbert matrix H = (hnk) and the sequence (wn)
satisfy the conditions listed in Lemma 5.3, therefore, we obtain

Lp ≥ inf
n∈N

[np − (n− 1)p]
tn
wn

≥ inf
n∈N

np−1np+α
∞∑
i=1

1

iα

(
ri

i+ n
+

si
i+ n+ 1

)p

≥ inf
n∈N

n2p+α−1
∞∑
i=1

1

iα

(
ri

i+ n
+

si
i+ n+ 1

)p

.

The rest of the proof can be obtained in the same way as in the proof of Theorem
4.3 in [18]. □
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Conclusion. In this manuscript, we have presented the norms for matrix operators
which are defined between the weighted sequence space denoted by ℓp(w) and the

weighted difference sequence space ℓp(w̃, B̃(r̃, s̃)) which is valid for 1 ≤ p < ∞. To
make the presentation more understandable, we have used some specific matrices
like quasi summable ones (that is the transposes of Riesz and Cesàro matrices of

the first order) and Hilbert matrix. Firstly, ℓp(w̃, B̃(r̃, s̃)) space has been presented
and its properties have been scrutinized. Next, we have tried to compute the lower
bound for the matrix given from ℓp(w) into ℓp(w̃, B̃(r̃, s̃)).
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[1] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul
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