Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism
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ABSTRACT
[bookmark: OLE_LINK2]Nowadays, the clinical application of antitumor drugs tends towards precision and individualization. Numerous efforts have been put in exploiting technologies to precisely discern the features of tumors and discover the possible response of every cancer patient to antitumor drugs at multiple dimensions from genes, proteins, tissues to whole organism, including Genomic data, histological information, functional drug profiling and drug metabolism of cancer patients can be obtained through polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models and therapeutic drug monitoring. The application of various detection technologies in clinical practice has enabled ‘individualized treatment’ to be realized, but the ideal accuracy effect has not yet been achieved. More novel technologies or technology combinations are needed to predict the correlation between detection information and therapeutic effect, and to put forward more accurate and effective therapeutic strategies for every patient. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to the clinical individualized medication and their application in clinical practice, attempting to seek therapy options that may ultimately improve clinical outcomes.
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1 INTRODUCTION
Cancer is a heterogeneous disease and the clinical outcomes varied among cancer patients treated with antitumor drugs1,2. The different sensitivity of individual patient to different antitumor drugs, the difference in drug sensitivity of cancer patients with the same histopathological classification to the same drug, the different sensitivity of different cell types in tumors and the different drug sensitivity along with tumor progression have brought challenges to cancer therapy in clinical practice. Scientists and clinicians have made a lot of efforts to achieve the purpose to identify effective therapeutic strategies for every cancer patient, and several technologies have been developed and applied in clinical individualized medication in oncology (Figure 1). With these technologies, our understanding of therapeutic vulnerabilities of cancer at multiple levels is increasing and clinicians may be informed clinical decisions with the information. Here, we discussed the technologies contributing to personalized medicine and the potential implications for cancer therapy.


[bookmark: _Hlk104800359]2 DETECTING GENETIC ALTERATIONS OF CANCER PATIENTS ASSISTED THE PRECISE MEDICATION IN THE CLINIC
In recent years, along with the rapid development of sequencing technologies and the implementation of many whole genome sequencing projects, abundant cancer genomics data generated, leading to the growing understanding in genetic vulnerabilities of cancer and genetic alterations that may affect the absorption, distribution, metabolism and excretion of antitumor drugs. These genetic variations impacted the sensitivity and concentration of antitumor drugs in cancer patients, resulting in individual differences in effectiveness and toxicity of antitumor drugs in clinical practice (Figure 2). Nowadays, lots of antitumor drugs have been labelled with pharmacogenomic information by FDA (https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling), and these genomic biomarkers play a vital role in maximizing the efficacy, avoiding the adverse drug reaction and optimizing drug dose of certain antitumor drugs. Moreover, detecting genetic alteration in tumor tissues and germline has become clinical routine methods that may help to design the therapeutic regimens for each cancer patient. In the following section, we will discuss the technologies of gene detection and highlight its clinical application. 

2.1 Technology of genetic testing involved in pharmacogenomics 
Pharmacogenomics is the science concerned with the identification of the genetic attributes that lead to variable responses to drugs of an individual, which developed rapidly with the development of human genomics and gene sequencing in recent years3. It is reported that different kinds of mutations in the genome of tumor cells and germline, including chromosomal structural variation, gene fusion, insertion-deletion, DNA copy number aberration and single nucleotide polymorphism, can affect the therapy response and are needed to stratify patients4. In clinical practice, oncogene-targeted therapy can be administered based on molecular characteristics of tumors including the copy number of genes detected by fluorescence in situ hybridization or chromogenic in situ hybridization and gene mutation by PCR. 
[bookmark: _Hlk109042650]Various molecular oncology testing methods have developed continuously and rapidly to discover diagnostic, prognostic and predictive biomarkers or novel drug targets since Human Genome Project launched in 1988, contributing to the implementation and clinical applications of new treatment options5-7. Among these, RT-PCR, sanger sequencing and next generation sequencing techniques are most commonly used in clinical practice. RT-PCR is a useful tool for understanding the drug resistance of tumor cells and guiding clinical treatment strategies. It is observed that the mRNA expression of drug resistance genes in tumor cells changes after treatment and/or recurrence, and we can adjust the treatment plan and evaluate the prognosis of the disease timely according to the expression of certain gene, which can be measured by RT-PCR. After decades of development, DNA sequencing technology has been rapidly evolved to the third generation from the dideoxy chain termination method was invented in 1977. At present, next-generation sequencing (NGS) and sanger sequencing have been routinely used on a wide range in rational medication in clinical. The NGS technology can comprehensively detect DNA information such as gene mutation, insertion, deletion, copy-number variations, recombination and loss of heterozygosity in tumor samples, which is of great significance to develop targeted drugs, excavate biomarkers of drug response and drug resistance, and guide clinical medication decisions. Meanwhile, the amount of genomic sequencing data has also exponentially increased. Such revolutionary new developments in NGS are creating a new wave of discoveries in pan-cancer biology and related sciences8-10. More recently, whole-genome and whole-exome sequencing have illustrated the complexity of added information, such as tumor mutation burden, and various molecular signatures can be advantageous for therapy decisions11-13. 

2.2 The clinical application of gene testing for drugs targeting cancer vulnerabilities
It is demonstrated that certain somatic genetic mutations could drive the development/progression of cancer, which were the scientific basis of the development of targeted drugs14. Since the 1990s, gefitinib, erlotinib and an increasing number of targeted drugs were constantly discovered and approved by FDA. Different from nonselective cytotoxicity of chemotherapeutic drugs, oncogene-targeted therapy reveals high selectivity in anti-tumor effect and seldom side effect on normal cells. The high selectivity of targeted therapy in clinic depends on gene identification to choose patients with certain genotypes and achieve better therapeutic effect. At present, the proportion of targeted anti-tumor drugs approved by FDA is increasing and the main genes and signaling pathways involved including EGFR, VEGFR family, PDGFR family, FGFR family, PI3K/Akt signaling pathway related to mTOR inhibitor and four non-receptor tyrosine kinase families closely related to the occurrence of malignant tumors: ABL family, JAK family, SRC family and FAK family.
Although cancer patients can benefit from targeted drugs with genetic testing, the long-term usage of targeted drugs is likely to produce acquired resistance or adaptive response, which is difficult to achieve long-term clinical effective response. It is reported that the main cause of tumor resistance was associated with the expression level of tumor drug resistance genes. For instance, ATP-binding cassette gene superfamily membrane transporters including P-glycoprotein, multidrug resistance-related protein were shown to mediate drug resistance in patients bearing lung cancer and breast cancer15,16. In addition, factors such as topozyme, glutathione and glutathione. S. transferase, protein kinase C, deoxycytidine kinase, bcl-2 family, p53 and c-myc were proven to mediate drug resistance16. Diverse therapeutic approaches including combination therapies, nanomedicine therapies, endocrine therapy and modification of NK cells are being developed to overcome resistance to cancer therapy17-20.

Clinical detection of genetic polymorphisms in drug-metabolizing enzymes and drug transporters
[bookmark: _Hlk109042698]Apart from the genetic state of tumor driver genes, the sensitivity of the individual cancer patient to drugs is also associated with the genetic polymorphisms of drug-metabolizing enzymes and drug transporters, which can be detected using peripheral blood. Cytochrome P450 enzyme system (CYP450) is the main enzyme involved in drug metabolism in the human body, and the detection of genetic polymorphisms of CYP450 including CYP2C9*3, CYP2C19*2*3, CYP2D6*10 and CYP3A5*3 is extensively applicated in clinical practice21,22. Genetic polymorphisms of Phase II drug-metabolizing enzymes (GST, NAT, UGT and etc.) have also been increasingly concerned in the application of clinical antitumor drugs22,23. Because the substrates of phase I and II drug-metabolizing enzymes are nonspecific, the genetic polymorphisms of these enzymes were generally related to the metabolism of a variety of drugs. For instance, such as the polymorphism of CYP2D6 enzyme activity can affect the in vivo metabolism of tamoxifen, antipsychotic drug, TKIs and several other drugs24-26. Besides phase I and II drug-metabolizing enzymes, drug transporters, including efflux transporters (ATP-binding cassette transporters, such as ABCB1 and ABCG2), uptake transporters (solute carriers such as organic cation transporter 1 and organic anion transporting polypeptide 1A2), are also correlated with the drug metabolism27. It is reported that ABCB1, formerly known as P-glycoprotein or MDR1, is one of the most representative transporters encoded by MDR1 gene and the 3435C＞T polymorphism significantly increase the efflux of partial antitumor drugs such as etoposide and cisplatin, which induce multidrug resistant28.

2.3 The role of liquid biopsy in cancer personalized medicine
[bookmark: _Hlk109042745][bookmark: _Hlk109042773]Besides the detection of genetic variations mentioned above, liquid biopsy can help the employment of precision medicine, and the advantages of liquid biopsy and its clinical significance have been summarized in many reviews29-32. More and more studies have confirmed the high consistency between the peripheral blood cfDNA and the genetic variation of tumor tissues33,34. Cherng et al. recently reported that lpWGS of cfDNA prior to CART19 as a new approach for risk stratification35. The detection of cfDNA in peripheral blood is a non-invasive, low-cost and efficient liquid biopsy method, which gradually become an indispensable part of individual medicine.

Although genomic analyses of cancer always reveal a complex mutational landscape, single gene cannot explain completely the reaction that patients got from certain treatment36,37. For example, immune checkpoint inhibitors had a great effect in triple-negative breast cancer; however, they benefited only a subset of patients, underscoring the need to co-target alternative pathways and select optimal patients. Combination of CD8, PD-L1 and somatic mutations to guide clinical decision-making and treatments is more potential38. Furthermore, Farhad Kosari et al. reported that antigen processing and presentation gene and tumor junction burdens were also closely associated with survival time of patients39. Ideally, for accurate and robust result of an individual’s cancer diagnose and prognosis, all pieces need to fit into the puzzle to generate the full picture of the patient40. 


3 DETECTING ANTIGEN EXPRESSION OF CANCER PATIENTS CONTRIBUTED TO THE PRECISE MEDICATION IN THE CLINIC
[bookmark: OLE_LINK1]Screening and identification of tumor antigen is the premise and key of clinical cancer personalized medicine, which is universally applicated in diagnosis, treatment selection and prognosis of cancer. For example, identification of tumor antigenic profiles is essential and necessary in diagnosis and classification of malignant lymphoma. Intrafollicular lymphocytes in follicular lymphomas were positive for CD10 and bcl-2. Small lymphocytic lymphomas expressed CD43 and CD23 and were negative for CD10 and cyclin Dl. Mantle cell lymphomas characteristically expressed CD43 and cyclin Dl and were negative for CD23 and CD10. Marginal zone lymphomas were negative for CD23, CD10, and cyclin Dl34.  The detecting technology of antigen generally conducted in clinical practice is IHC staining, contributing to the precise diagnosis of tumor and ultimately achieve the precise medication. 

3.1 Technology of antigen detection applied in the clinical personalized medicine
Since the 1980s, IHC technology has become indispensable auxiliary means in pathological diagnosis of cancer. At present, the diagnosis of cancer typically based on histopathological assessment of tissue sections, and supplemented by genetic and other molecular testing36. In recent years, investigators focus more on artificial intelligence technique, for example machine learning41. Modern computer vision algorithms have high diagnostic accuracy and the potential to enhance histopathology workflows42. Yu Fu et al. used deep transfer learning to quantify histopathological patterns across 17,355 hematoxylin and eosin-stained histopathology slide images from 28 cancer types, and correlated these results with matched genomic, transcriptomic and survival data. This approach accurately classifies cancer types and provides spatially resolved tumor and normal tissue distinction. Ming Y. Lu et al. reported that AI-based origin prediction using conventional histology can be used as an assistive tool to assign a differential diagnosis to complicated cases of metastatic tumors and cancers of unknown primary origin and could be used in conjunction with or in lieu of ancillary tests and extensive diagnostic work-ups to reduce the occurrence of cancer of unknown primary origin43. 

3.2 The clinical application of IHC in guiding the medication of antitumor drugs
Antibody drug, constructed by targeting antigen, is one of the fastest developing, most widely used and most promising drugs in modern biological pharmaceutical industry. Traditional targets occupy the majority of the antibody drug market, including CD20, EGFR, VEGF and HER244. Immune checkpoint antibody drugs represented by PD-1/L1 and CTLA-4 are gaining momentum. Research on immune co-stimulators such as OX40, 4-ibb, TIGR and GITR, as well as co-suppressors such as LAG3, tim-3, TIGIT and GAL9 continue to increase. Meanwhile, the following emerging targets should not be ignored: Factor D, gpc-3, HER3, DR5, c-met, ang-2, FcRH5, TAU, csf-1r, IGF, FGF, NGF and TGF, etc45-47. New antibody structures, such as bispecific antibody drugs and conjugates of antibody drugs (ADCs), are increasingly used to treat various human diseases, including cancer48,49. With the discovery of more biomarkers in various diseases, personalized treatment will work for all by subdividing patients and risk stratification. 
[bookmark: _Hlk109042919][bookmark: _Hlk109043079][bookmark: _Hlk109043064]Since 2011, the first immune checkpoint inhibitor, ipilimumab, was approved, opening a new era of cancer immunotherapy50. Tumor immunotherapy destroy tumor immune escape to exert an anti-neoplastic effect. At present, the most studied immunotherapy topics are anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed death receptor 1 (PD-1), chimeric antigen receptor T cell therapy (CAR-T) and tumor vaccine51-56. Although an unprecedented sustained response rate has been observed in immunotherapy, clinical studies have found that diverse reactions are found between different tumors of the same patient or the same kind of tumors in different patients57. Immunotherapy resistance mechanisms include primary resistance, adaptive immune resistance, acquired resistance58. Mechanisms of primary and adaptive resistance to immunotherapy include Tumor cell-intrinsic factors (such as absence of antigenic proteins, absence of antigen presentation, genetic T cell exclusion or insensibility to T cells) and tumor cell-extrinsic factors (such as absence of T cells, inhibitory immune checkpoints or immunosuppressive cells)58. 

4 MODELS APPLIED IN FUNCTIONAL PRECISION MEDICINE IN ONCOLOGY
[bookmark: _Hlk109043101]Although the genomics information can predict therapy outcome and have succeed in identifying effective therapeutic options in clinical cancer treatment, not all individuals who received genetic analysis experienced clinical benefit59. Besides the molecular alterations, the epigenetic change, the altered signaling pathway and the tumor microenvironment can affect the clinical curative effect of the antitumor drugs. Cancer models representing individual patients can generate functional data on a tissue scale that contains molecular and cellular information and are confirmed to facilitate the development of personalized medicine for cancer60,61. For example, patient-derived tumor xenografts (PDXs) and organoids (PDOs) using patient-derived materials were proved to retain the features of their counterparts and accumulating evidences suggested that PDX and PDO susceptibility to cancer drugs was closely correlated with clinical data in patients62-65. In recent years, the co-clinical trials, in which the drugs were assessed in patients and ex vivo models parallelly or sequentially, have verified the promising application of these cancer models in drug evaluation for clinical use66. Here we highlight the current state of PDXs and PDOs and the potential applications of these cancer models in the individualized medication (Figure 3).

4.1 PDXs as tools for the implementation of precision medicine
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]PDXs are developed by implanting fresh human tumor fragments in immunosuppressed mice and then passed in vivo directly from mouse to mouse 67. PDX models can faithfully conserve principal histologic and genetic characteristics of their donor tumor and remain stable across passages 68. Comprehensive analysis of the genomic landscape of 536 PDX models derived from 236 human tumors across 25 cancer types exhibited that the key genetic alterations, such as somatic mutations, copy-number alterations and fusion events, in the xenografts were broadly in line with the parental human tumors 69. In addition, PDX models of numerous types of cancers including glioma 70, breast cancer71, epithelial ovarian cancer 72 and small cell lung cancer 73enable long-term propagation of patient tumor and represent clinically relevant patient avatars that retain histopathological, epigenetic, and transcriptomic profiles of original tumors. Moreover, PDX models are capable of preserving the heterogeneity of their originating sample, making it possible to conduct patient-specific drug screens for predicting therapeutic responses74,75 . 
PDX models have been used to inform therapeutic decision-making for cancer patients in clinical practice. For instance, a patient with advanced, gemcitabine-resistant, pancreatic cancer who was treated with DNA damaging agents based on the observation of significant activity of this class of drugs against a personalized PDX model exhibited a long-lasting (36+ months) tumor response76. In fact, numerous studies have demonstrated that the most drug response in PDXs accurately replicate patients’ clinical outcomes. A 2015 study using almost 1000 PDX models with diverse driver mutations to assess the population responses to 62 treatments across 6 indications have shown high consistencies in drug response between preclinical PDXs and clinical data 63. Another study reported a significant association between the drug responses in patient and PDX models established for 92 cancer patients against 129 therapeutic tests with a sensitivity of 87% and a specificity of 70% 77. In addition, the growth and propagation of PDXs allows correlating therapeutic response in vivo with extensive, multi-dimensional molecular annotation, leading to identification of predictive biomarker 74. These evidences enabled PDX serve as a platform for co-clinical trials by integrating the clinical data, genomic profiles and drug responsiveness data to determine precisely therapies. In spite that PDX is widely recognized for use in personalized medicine, this model has its drawback 78. The success rates of PDX ranged from 23% to 75% with different tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers 79. Besides, the absence of immune pressure, replaced tumor stroma, long latency period and the expensive cost limited the widespread use of PDX model 65. In brief, PDX is a relatively mature model and valuable in personalized medication guidance for cancer patients. 

4.2 PDOs offer a route toward personalized treatment 
The rapid advances in the three-dimensional in vitro models make it possible to mimic the structure properties of in vivo tumors and facilitate the establishment of alternative models for cancer patients 80. PDOs are three-dimensional cell cultures that can be grown with high efficiency from patient-derived healthy and tumor tissues, and can recapitulate many structural and functional aspects of their in vivo counterpart organs on multiple levels 81,82. For instance, pancreatic progenitor organoids and tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption and epigenetic marks 83. PDOs can recapitulate the vast inter- and intra-tumoral heterogeneity and many key features of glioblastomas84. Not only the histological and phenotypic profiling of PDOs showed a high degree of similarity to the original patient tumors, the characteristic genotypic features of the original cancer were maintained in PDOs during long-term expansion in vitro85,86. RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor 84. For example, long-term expandable organoids from a broad spectrum of endometrial pathologies accurately capture cancer subtypes, replicate the mutational landscape of the tumors and display show disease-associated traits and cancer-linked mutations87. Furthermore, molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses 88. The successful recapitulation of the structure and function of PDOs suggested that this model can predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. 
Recent studies confirmed the translational relevance of PDO in various types of cancers, and high-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities 89. Hua’s group reported that chemoradiation responses in patients with locally advanced rectal cancer were highly matched to the rectal cancer organoids responses, with 84.43% accuracy, 78.01% sensitivity, and 91.97% specificity90 . Organoids derived from metastatic tumors of patients with gastrointestinal cancers have been reported to have a similar response to treatment as the original tumors84. PDOs derived from non-small cell lung cancer patients were able to recapitulate progression-free survival and objective responses of patients receiving clinically approved tyrosine kinase inhibitors 91. PDOs derived from ovarian cancer patients display inter- and intra-patient drug response heterogeneity to chemotherapy and targeted drugs, and PDO drug screening identifies high responsiveness to at least one drug for 88% of patients92. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles, as well as changes associated with treatment resistance93. PDOs were used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy 94. The high consistency of drug response between PDOs and cancer patients have verified that PDO is a valuable model in predicting the clinical outcome of therapy regimens.
Unlike PDXs, PDOs could be cocultured with human immune cells to mimicked the dynamic interactions between the tumor and the immune system that influence therapy and to model mechanisms of immunotherapy efficiency and resistance95. The use of co-culture systems will allow the role of the tumor microenvironment and tissue-tissue interactions to be taken into account and should lead to more accurate predictions of tumor development and responses to drugs 80. Eventually, organoids could become a useful tool for identifying the most effective therapy for each patient. 

4.3 The clinical application of PDX and PDO models in personalized medicine
Actually, PDX and PDO models have been applied in clinic practice to guide the selection of medication regimen in particular patients. For instance, a patient with advanced pancreatic was resistant to gemcitabine, a conventional therapy in clinic, later showed a remarkable clinical outcome with the treatment with mitomycin C and cisplatin, and the formulation of the medication regimen was based on the observation that mitomycin C and cisplatin treatment remarkably suppressed the tumor growth of pancreatic carcinoma in PDX models generated from patient’s surgically resected tumor76. A metastatic breast cancer patient was multiple-drug resistant, and then PDOs were generated to seek possible therapy regimens. Drug screening showed that doxorubicin, everolimus, and epirubicin were effective against PDOs, indicating that these drugs may be potential candidates for this patient. Integrating these results with clinical practice guidelines, the patient was treated with combination of above mentioned drugs and the therapy regimen led to effective tumor regression96. These results demonstrated that PDX and PDO models have the ability to predicate special sensitive drugs for each individual patient.


[bookmark: _Hlk109043367]5 CLINICAL INDIVIDUALIZED MEDICATION GUIDED BY THERAPEUTIC DRUG MONITORING (TDM)
[bookmark: _Hlk109043199]The anti-tumor effect can be exerted only when the drug concentration is within a certain therapeutic window. A low drug dose may lead to ineffective drug treatment, and a high dose may result in toxic side effects. Because patients have different drug absorption and metabolism, based on the theoretical mechanism of pharmacokinetics/pharmacodynamics (PK/PD), TDM is used to guide personalized medication in clinic97. Immunoassays (enzyme-labeled amplification immunoassay, fluorescence polarization immunoassay, etc.) and chromatography (high performance liquid chromatography, liquid chromatography-mass spectrometry, etc.) are generally used clinically 98-101. In the process of clinical drug treatment, the patient's body fluids (mainly blood) are collected regularly while observing the drug efficacy. The safe range of drug concentration is discussed according to the biotransformation of drugs in the body. Based on the PK/PD theory, computer analysis methods are used to design the optimal dosing schedule (including route of administration, dosing interval, drug dosage, etc.). Due to poor drug efficacy, obvious side effects and drug resistance, anti-tumor drugs have a high clinical risk. Therefore, in modern cancer treatment, anti-tumor drugs often use the method of layered medication to ensure that patients get the most appropriate treatment plan. And the PK/PD modeling method provides a more quantitative way to guide clinical medication. The above means make TDM play an increasingly important role in cancer 102.
[bookmark: _Hlk109043227][bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK8]	The PK/PD relationship of antitumor drugs such as methotrexate, paclitaxel, fluorouracil and imatinib kinase inhibitors has been relatively clear and is widely used in clinical103-106. For example, Targeted therapy represents the significant development of cancer therapy. However, their once-daily oral administration introduces new complexities in ensuring appropriate drug exposure, including treatment compliance, food effects, and first metabolism. Although pharmacokinetics can vary widely among individuals, especially during illness, tyrosine kinase inhibitors (TKIs) are currently prescribed at a fixed dose107. Most cancer patients receive continuous treatment in an outpatient setting, and we can adjust the dosage of drugs by analyzing blood drug concentrations and using clinical expertise during outpatient follow-up, which can achieve individualized treatment for patients. Investigator described a clinical case of an 84-year-old man diagnosed with non-small cell lung cancer and epidermal growth factor receptor mutation, who was treated with erlotinib, with doses adjusted by TDM108. The erlotinib dose required to reduce toxicity (rash grade III) and maintain effective plasma concentration, as well as clinical and radiological response, was 50% of the initial dose (the dosage is adjusted from 150 mg daily for 21 days follow-up to 150 mg daily for 2 days, no treatment on the third day, and for 14 days follow-up). Dose adjustment may be considered for patients who cannot tolerate toxicity. TDM promoted safe medication for oncology patients and allowed for a 50% dose reduction, thereby reducing treatment costs. In addition to the direct cause of tumor patients requiring treatment, the complications caused by the tumor also require drug treatment. Under drug interaction, the efficacy will be affected to a certain extent compared with monotherapy. Epilepsy is a common first sign of glioma109. A position paper of International League Against Epilepsy defined when TDM should be applied in the daily practice of seizure management110. In the presence of factors such as persistent seizures, older age, co-morbidity or co-therapy, plasma drug measurements were performed once the desired clinical response had been achieved. Similar calls for TDM of TKIs have been made in systemic cancer111. The largest risk of drug-drug interactions in neuro-oncology was the use of carbamazepine, phenytoin, and phenobarbital. Without dose adjustment, this may lead to a reduction in the efficacy of several chemotherapy drugs, including cyclophosphamide, camptothecin derivatives, taxanes, and topoisomerase inhibitors109. The observation of large variability in drug metabolism underscores the need for TDM to measure drug concentrations in plasma, including anticonvulsants, chemotherapeutics, and targeted agents for the detection of DDI, with the aim of applying appropriate drug regimens.
From clinical TDM, we can find individual differences in blood drug concentration of patients. When standard doses of the drug are given, a significant proportion of patients have no or only partial response, or even an excessive response. Differences in pharmacokinetics and pharmacodynamics contributed to this change. Although a variety of endogenous and exogenous factors can alter drug efficacy, genetic differences in metabolic enzymes, transporters, and targets account for a significant proportion of inter-individual differences in drug disposition and response112. Therefore, combining pharmacogenomics to analyze changes in enzyme activity, drug metabolism, blood drug concentration, toxicity and drug efficacy, the organic combination of the two is the guarantee to guide the individualized medication of clinical drugs. Due to the particularity of intermittent administration of tumor drugs, we may not be able to systematically implement PK/PD-based TDM methods in tumor patients. However, with the continuous development of pharmacodynamic information level and experimental means of new anti-cancer drugs, it is believed that significant progress can be made in this field in the near future.

6 CONCLUSIONS
The clinic outcome of cancer patients treated with antineoplastic drugs depends on many factors including the genetic and epigenetic alterations of tumor cells, the tumor microenvironment, the heterogeneity among cancer patients and the interaction between human body and drugs. In order to improve the efficacy of antitumor drugs, lots of technologies have been exploited to identify effective therapeutic strategies. Genomic testing of specific drug targets, drug-metabolizing enzymes and drug transporters has been endorsed/recommended in several clinical guidelines for certain routine use in clinical practice to guide appropriate therapy.  In addition, identification of tumor antigen with IHC is universally applicated in clinical practice to recognize the features of tumors and guide the utilization of antitumor drugs. Increasing studies revealed that high consistency of drug sensitivity on PDXs/PDOs and cancer patients, indicating that they might be decent models to identify the most effective therapy for each patient. TDM offers visualized data of drug concentration in cancer patients, aiding dose adjustment to improve the curative effect and avoid adverse rection. In conclusion, the development of technologies offers abundant genomic, proteomic, histological and metabolic data of cancer patients, integrating the information and interpretating them are conducive to clinical medication of antitumor drugs for each cancer patient.
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ABSTRACT 

Nowadays, the clinical application of antitumor drugs tends towards precision and individualization. 

Numerous efforts have been put in exploiting technologies to precisely discern the features of 

tumors and discover the possible response of every cancer patient to antitumor drugs at multiple 

dimensions from genes, proteins, tissues to whole organism, including Genomic data, histological 

information, functional drug profiling and drug metabolism of cancer patients can be obtained 

through polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence 

in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, 

patient-derived organoid models and therapeutic drug monitoring. The application of various 

detection technologies in clinical practice has enabled ‘individualized treatment’ to be realized, but 

the ideal accuracy effect has not yet been achieved. More novel technologies or technology 

combinations are needed to predict the correlation between detection information and therapeutic 

effect, and to put forward more accurate and effective therapeutic strategies for every patient. Here, 

we briefly summarize the conventional and state-of-the-art technologies contributing to the clinical 

individualized medication and their application in clinical practice, attempting to seek therapy 

options that may ultimately improve clinical outcomes. 
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1 INTRODUCTION 

Cancer is a heterogeneous disease and the clinical outcomes varied among cancer patients treated with 

antitumor drugs

1,2

. The different sensitivity of individual patient to different antitumor drugs, the 

difference in drug sensitivity of cancer patients with the same histopathological classification to the same 

drug, the different sensitivity of different cell types in tumors and the different drug sensitivity along 

with tumor progression have brought challenges to cancer therapy in clinical practice. Scientists and 

clinicians have made a lot of efforts to achieve the purpose to identify effective therapeutic strategies for 

every cancer patient, and several technologies have been developed and applied in clinical individualized 

