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Abstract

Using the multipoles method, we formulate the problems of diffraction (both surge and
heave) of water waves by a submerged prolate spheroidal body in deep water with an
ice-cover, with the ice-cover being modelled as an elastic plate of very small thickness.
It investigates the linear hydrodynamic diffraction problem by prolate spheroidal body
and obtained the analytical solution for the associated boundary value problem. The
structural model is a spheroidal with its polar axis greater than its equatorial diameter,
subjected to the action of incident wave. The hydrodynamic forces (Surge and heave
exciting forces) are obtained and depicted graphically against the wave number for var-
ious parameters and also the flexural rigidity of the ice-cover to show the effect of the
presence of ice-cover on these quantities. When the flexural rigidity is taken to be zero,
the numerical results for the forces for water with free surface are recovered.

Keywords: Wave diffraction, Prolate spheroid, Spheroidal polar co-ordinate, Surge
and heave exciting forces.

1. Introduction

The hydrodynamics of interaction of water waves, floating and submerged bodies is a
well-known area of work since the last few decades due to its vast application in coastal
engineering. Apparently it started with the exploration of the problems with circular
cylindrical bodies. Water wave problem of fully submerged circular cylinder with single
layer fluid bounded above by a free surface was studied and well established by many
researchers(cf. Dean [1], Ursell [2], Garett [3], Black [4]). Then researchers showed their
interest in spheroidal bodies, though the analytic studies on it is only limited to spheres
from the starting years. Wang [5] applied the method of Havelock [6] to deal with diffrac-
tion and radiation problem of a submerged sphere in deep water. Also Linton [7] examined
the problems on diffraction and radiation by a submerged sphere with free surface in a
finite depth using the method of multipole. Rahman and Iakovlev [8] used the first order
diffraction theory to deal with interaction of water waves with a submerged sphere in the
ocean of finite depth.

Gradually the radius of work has been increased by dealing spheroidal bodies. The
problems involving wave interaction with a spheroid submerged in multilayered or single



layer fluid, with free surface or ice-covered surface is a familiar field of study for both
normal and oblique incidences. Due to scientific activities in cold region and polar ocean
interaction of ocean waves and sea ice is gained attention. In polar ocean it is most of
the time covered by ice. The ice-cover is considered as a thin ice sheet of small thickness
being consist of elements having elastic properties. Various researcher already worked on
this geophysical topic. Fox and Squire [9] inquired the oblique reflection and penetration
of ocean waves into shore fast sea ice. Linton and Chung [10] used the residue calculus
technique to solve the scattering of water waves by the edge of a semi-infinite ice sheet
in a finite depth ocean. Das and Mandal [11] formulated the problem of radiation of
water waves by a submerged sphere in deep as well as in uniform finite depth water with
an ice-cover. By using multipole expansion method Das and Thakur [12] researched on
scattering of water wave in uniform finite depth water by a sphere beneath an ice-cover.
Recently Das and Sahu [13] obtained the hydrodynamic forces by a submerged cylinder
with an ice-covered water. Also marine engineers investigated the wave interaction with
structures having elastic properties, such as Megafloat- a floating airport in Yakosuku Bay,
Japan and super tankers in a sea way (cf. Andrianov and Hermans [14], Hermans ([15],
[16]) and others). Definitely the work of Sir T.H.Havelock ([17], [18], [19]) on the wave
resistance of a spheroid is a concrete direction to the researchers. The author determined
the wave resistance of a submerged spheroid by replacing it with a distribution of sources
and sinks or of doublets, the distribution being the image system for the solid in a uniform
stream. After a few decades Wu and Eatock Taylor [20] investigated the hydrodynamic
problem of submerged spheroid in regular waves based on linearized potential theory.
Many researchers worked on both oblate and prolate spheroidal scattering and radiation
problems by approaching different methods. By using the method to transform Green’s
function into the relevant harmonics Chatjigeorgiou and Miloh [21] calculated the hydro-
dynamics of non-axis symmetric oblate spheroids below a free surface. Chatjigeorgiou
and Miloh [22] formulated free-surface hydrodynamics of a submerged prolate spheroid
in finite water depth based on the method of multipole expansions. Using the method
of multipole expansions constructed by employing Thorne’s [23] formula Chatjigeorgiou
[24] investigated the analytic solution for hydrodynamic diffraction by submerged prolate
spheroids in infinite water by calculating the hydro dynamical forces. In this problem they
transformed the spherical and polar coordinates of multipole potential terms into prolate
spheroidal coordinates using suitable addition theorems. Chatjigeorgiou and Miloh [25]
analyzed the Radiation and oblique diffraction by submerged prolate spheroid in water
of finite depth. Here they used a different method. The problem is solved by using the
ultimate image singularity system of external spheroidal harmonics distributed along the
major axis of the spheroid between its two foci. Using the method of ultimate image sin-
gularities Anastasiou and Chatjigeorgiou [26] employed hydrodynamics of a submerged
oblate spheroid in finite water depth. Instead of an oblate spheroid in this method a disc
is considered. The whole process that has been performed for the spheroid, is performed
for the disc as well. Anastasiou Chatjigeorgiou et. al. [27] worked on Miloh’s image
singularities for oblate spheroids. It is a method developed for the water wave diffraction
and radiation problems. It is based on applying the method of the image singularity
system for the case of spheroid. Though there are many published work on scattering and
radiation by submerged spheroid with free surface, not much work is done for the same



problem with an ice-cover.
Thus the present study is the extension of the work of Chatjigeorgiou [24] on hydro-

dynamics of spheroid by considering the scattering problem by a fully immersed prolate
spheroid in water with an ice-cover under higher order boundary condition in infinite
water depth. A submerged spheroid beneath an ice-covered ocean can also be considered
to be a Work power device in polar oceans and considered as a subsurface storage tank as
well as a fuel bladder in that polar oceans. Using the multipole expansion we calculated
the hydrodynamic forces analytically and numerically. Also depicted the forces graphi-
cally. After replacing the ice-cover condition with the free surface condition it is observed
that the hydrodynamical forces exactly coincides with the forces of Chatjigeorgiou [24]

2. Spheroidal Co-ordinate System

A prolate spheroid is a quadric surface obtained by rotating an ellipse about its major
axis. It is elongated like a rugby ball. Specifically, here the prolate spheroid is submerged
at a distance f (center of the spheroid) below the surface covered in a thin sheet of
ice-cover. Considering the left handed rectangular cartesian co-ordinate system (x, y, z),
placed on the undisturbed surface of ice-cover, xz-plane is the undisturbed surface of the
ice-cover, with y-axis aiming vertically downward. Shifting the center of the spheroid to
(x, y∗, z) by using y = y∗ + f .

The conversion formula from spheroidal to cartesian co-ordinates are (cf. Chatjigeorgiou
[24])

x = c sinh u sin ν cosψ ,



y∗ = c cosh u cos ν ,

z = c sinh u sin ν sinψ ,

where 0 ≤ u <∞, 0 ≤ ν ≤ π and 0 ≤ ψ < 2π. Now the radial distance R is given by

R =
√
x2 + z2 = c sinh u sin ν .

The radial and the vertical co-ordinates from the center of the prolate spheroid are

R = c
√

(1− µ2)(ξ2 − 1) ,

y∗ = cµξ ,

where ξ = cosh u and µ = cos ν. For the case of oblate spheroid substituting ξ by iζ and
c by −ic in R and y∗ such that

R = c
√

(1− µ2)(ξ2 + 1) ,

y∗ = cµζ ,

where ζ = sinh u and µ = cos ν. The transformation from oblate spheroid to cartesian
co-ordinates is

x = c cosh u sin ν cosψ ,

y∗ = c sinh u cos ν ,

z = c cosh u sin ν sinψ ,

with 0 ≤ u <∞, 0 ≤ ν ≤ π and 0 ≤ ψ < 2π and also (R, y∗) become

R = c
√

(1− µ2)(ξ2 + 1) ,

y∗ = cµζ ,

where ζ = sinh u and µ = cos ν. Eventually, on the center of the spheroid, a spherical
co-ordinate system (r, θ, ψ) is described

x = r sin θ cosψ ,

y∗ = r cos θ ,

z = r sin θ sinψ ,

where 0 ≤ r <∞, 0 ≤ θ ≤ π and 0 ≤ ψ < 2π.

3. Mathematical Formulation

In the basis of linear potential flow theory the following assumptions, incompressible,
irrotational flow, and non-viscous fluid is considered. A monochromatic incident wave



with wave frequency ω is assumed. Considering Φ, the velocity potential (in spherical
co-ordinate) φ, the complex potential, the small amplitude fluid motion is

Φ(u, ν, ψ, t) = Re{φ(u, ν, ψ)e−ıωt} . (1)

In the content of linearized water wave theory φ satisfies the laplace equation,

∇2φ = 0 . (2)

The linearized condition at the ice-cover modelled as thin elastic plate is

(D
∂4

∂x4
+ 1− ǫλ0)φy + λ0φ = 0 , (3)

where λ0 = ω2

g
, where g is the acceleration due to gravity. Here D =

Eh3
0

12(1−ν2)ρ1g
is the

flexural rigidity of the ice-cover, where E and ν are respectively Young’s modulus and
Poisson’s ratio of the elastic material of the ice-cover, h0 is the very small thickness of
ice-cover, ǫ = ρ0

ρ1
h0 with ρ0 and ρ1 densities of ice and water respectively and the bottom

boundary condition for y → ∞
~∇φ→ 0 . (4)

Also λ1 is the unique real root of the dispersion equation (Dk4 + 1 − ǫλ0)k − λ0 = 0. It
is assumed that the total velocity potential φ is constructed by the combination of the
incident and the diffraction component which will be denoted by φinc, φD respectively.
The diffraction potential function φD satisfy the radiation condition

lim
R→∞

√
R(

∂

∂R
− iλ1)φD = 0 .

On the surface of the body boundary condition is given by

(
∂φ

∂u
)u=r0 = 0 ,

where r0 is used to denote the boundary of the body in spheroidal co-ordinates. In fact
r0 is given by r0 = tanh−1( b

a
) where a = c cosh r0 and b = c sinh r0, denote respectively

the semi major and semi minor axes of the spheroid.

4. Solution of the problem

The diffraction potential φD can be expressed in term of multipole potential function
and it has the singularity at the center of spheroidal body within the fluid with ice-cover
surface. It can be written as (cf. Chatjigeorgiou [24])

φD(u, ν, ψ) = ωAe−λ1f
∞
∑

n=0

φm
D(u, ν) cosmψ .

The expansion form of φm
D is given by

φm
D = am+2Fm

m φ
m
m +

∞
∑

n=m+1

an+2Fm
n χ

m
n , (5)



where, Fm
n is unknown expansion coefficients and χm

n is the wave free potential having
singularity with ice-cover on water (cf. Dhillon and Mandal [28])

χm
n =

Pm
n (cos θ)

rn+1
+

λ1

n−m

Pm
n−1(cos θ)

rn
+

(−1)n+m

(n−m)!

∫ ∞

0
g1(k)k

ne−kyJm(kR)dk . (6)

Note that Jm is the mth order Bessel function of the first kind, Pm
n is the associated

Legendre function of the first kind with order m, degree n and

g1(k) =
(Dk4 + 1− ǫλ0)k + λ0

D(k4 + k3λ1 + k2λ21 + kλ31 + λ41 + 1− ǫλ1)
.

Also the expansion of φm
n is given in spherical and polar co-ordinates (cf. Das and Mandal

[11])

φm
n (r, θ) =

Pm
n (cos θ)

rn+1
+

(−1)n+m

(n−m)!

∫

⌣
∞

0

(Dk4 + 1− ǫλ0)k + λ0

(Dk4 + 1− ǫλ0)k − λ0
kne−k(y+f)Jm(kR)dk . (7)

Here the first term harmonize to multipole singularity in an infinite medium and is con-
nected with the second term to satisfy the ice-cover condition.

An incident wave potential of amplitude A is described by

φinc = ωAe−λ1y + iλ1ρr0 cosψ = ωA
∞
∑

m=0

φm
inc(u, ν) cosmψ,

where,

φm
inc(R, y) =

1

λ1
e−λ1yεmi

mJm(λ1R) (8)

and εm = 1 for m = 0 , εm = 2 for m ≥ 1.

5. Transformation

The incident wave potential and diffraction potential are in polar co-ordinates. Our
primary object is to transform it into spheroidal Co-ordinate system for the application of
the higher order boundary condition. For that reason taking the result (cf. Chatjigeorgiou
[24])

Jm(kR)e
−ky∗ =

√

π

2kc

∞
∑

s=m

(−1)s−m (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
Is+ 1

2

(kc)Pm
s (µ)Pm

s (ξ) , (9)

where Is+ 1

2

is the modified bessel function of order s+ 1
2
. Replacing y∗ by y− f in (9), it

takes the form

Jm(kR)e
−ky = e−kf

√

π

2kc

∞
∑

s=m

(−1)s−m (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
Is+ 1

2

Pm
s (µ)Pm

s (ξ) , (10)

(10) is used in the transformation of incident wave potential as well as diffraction potential.

Also, in (6), (7) the term Pm

n
(cos θ)

rn+1 is in polar co-ordinate. So as per requirement the next



step is to convert Pm

n
(cos θ)

rn+1 into spheroidal co-ordinate. Starting with the well-known result
(cf. Thorne [23])

Pm
n (cos θ)

rn+1
=

2

π(n−m)!

∫ ∞

0
kn cos(k(y − f)− (n−m)

π

2
)Km(kR)dk, (11)

Km is the mth order of modified bessel function. Using y∗ = y − f , (11) takes the form

Pm
n (cos θ)

rn+1
=
e−i(n−m)π

2

π(n−m)!

∫ ∞

0
kneiky

∗

Km(kR)dk+
ei(n−m)π

2

π(n−m)!

∫ ∞

0
kne−iky∗Km(kR)dk. (12)

To evaluate the integration in (12) using the result for ascending series of bessel function

Y p+n =
∞
∑

s=0

2p+n(p+ n+ 2s)Γ(p+ n+ 2s)

s!
Jp+n+2s(Y ), (13)

where p + n is not a negative integer. If we put y = ick and p = 1
2
in (13) then after

calculation we get

kn =
1

(ic)(n+
1

2
)
k−

1

2

∞
∑

s=0

2n+
1

2

(n+ 2s+ 1
2
)Γ(n + s+ 1

2
)

s!
ei(n+2s+ 1

2
)π
2 In+2s+ 1

2
(ck). (14)

Then

∫ ∞

0
kne±iky∗Km(kR)dk =

1

incn+
1

2

∞
∑

s=0

2n+
1

2

(n+ 2s+ 1
2
)Γ(n+ s+ 1

2
)

s!
ei(n+2s)π

2

×
∫ ∞

0
e±iky∗k−

1

2Km(kR)In+2s+ 1

2

(ck)dk. (15)

Using the identities (cf. Cooke ([29], [30]) )

(
πc

2
)
1

2

∫ ∞

0
e−ky∗k−

1

2Jm(kR)Jn+ 1

2

(ck)dk = P−m
n (µ)qmn (ζ) (16)

and

(
πc

2
)
1

2

∫ ∞

0
e−ky∗k−

1

2Ym(kR)Jn+ 1

2

(ck)dk = −2

π
Q−m

n (µ)qmn (ζ) (17)

where Ym is themth order Bessel function of the second kind and Qm
n , q

m
n are the associate

Legendre function of the second kind with real and complex arguments respectively,

qmn (ζ) = ei(n+1)π
2
−imπQm

n (iζ). (18)

After applying the relations of Hankel and Bessel functions

H1
ν (y) = Jν(y) + iYν(y),

H2
ν (y) = Jν(y)− iYν(y)

(16), (17) take the form,

(
πc

2
)
1

2

∫ ∞

0
e−ky∗k−

1

2H1
m(kR)Jn+ 1

2

(ck)dk = (P−m
n (µ)− 2i

π
Q−m

n (µ))qmn (ζ) (19)



and

(
πc

2
)
1

2

∫ ∞

0
e−ky∗k−

1

2H2
m(kR)Jn+ 1

2

(ck)dk = (P−m
n (µ) +

2i

π
Q−m

n (µ))qmn (ζ) (20)

where H1,2
m are the Hankel functions of order m of first and second kind respectively. In

equation (19), (20) there is Jm instead of Im. Therefore substituting c by ic in (19), it
becomes

(
iπc

2
)
1

2

∫ ∞

0
e−iky∗k−

1

2H1
m(ikR)Jn+ 1

2

(ick)dk = (P−m
n (µ)− 2i

π
Q−m

n (µ))qmn (ζ) (21)

and substituting c by −ic in (20) it becomes

(
−iπc
2

)
1

2

∫ ∞

0
eiky

∗

k−
1

2H2
m(−ikR)Jn+ 1

2

(−ick)dk = (P−m
n (µ) +

2i

π
Q−m

n (µ))qmn (ζ). (22)

Using the identities

H1
m(ikR) =

2

π
(i)−mKm(kR),

H2
m(−ikR) =

2

π
(i)m+1Km(kR),

and
Jν(iy) = iνIν(y)

(21), (22) becomes

√

(
2c

π
)
∫ ∞

0
e−iky∗k−

1

2Km(ikR)In+ 1

2

(ck)dk = e−i(n−m)π
2 (P−m

n (µ)− 2i

π
Q−m

n (µ))qmn (ζ)

and
√

(
2c

π
)
∫ ∞

0
eiky

∗

k−
1

2Km(ikR)In+ 1

2

(ck)dk = ei(n−m)π
2 (P−m

n (µ) +
2i

π
Q−m

n (µ))qmn (ζ).

Combining we get

√

(
2c

π
)
∫ ∞

0
e∓iky∗k−

1

2Km(ikR)In+ 1

2

(ck)dk = e∓i(n−m)π
2 (P−m

n (µ)∓ 2i

π
Q−m

n (µ))qmn (ζ.

(23))
Using n + 2s instead of n and from (23), (14) and (18) we get

Pm
n (cos θ)

rn+1
=

(−1)m(2
c
)n+1

(n−m)!
√
π
ei(n+1)π

2

∞
∑

s=0

(−1)s
(n+ 2s+ 1

2
)Γ(n + s+ 1

2
)

s!
Qm

n+2s(iζ)P
−m
n+2s(µ).

(24)
Here we are applying the identity (cf. Gradshteyn and Ryzhik [31])

P−m
n (x) = (−1)m

Γ(n−m+ 1)

Γ(n+m+ 1)
Pm
n (x)



(24) is expressed in oblate spheroidal co-ordinate system. Replacing c by ic and iζ by ξ,

we get the desired expression of Pm

n
(cos θ)

rn+1 in prolate spheroidal co-ordinate which is

Pm
n (cos θ)

rn+1
=

(−1)m(2
c
)n+1

(n−m)!
√
π

∞
∑

s=m

(−1)sΓ(n+ s−m+ 1
2
)Γ(n + 2s− 3m+ 1)

Γ(n+ 2s−m+ 1)Γ(s−m+ 1)

×(n + 2s− 2m+
1

2
)Pm

n+2s−2m(µ)Q
m
n+2s−2m(ξ). (25)

Applying (10), (25)the terms in φm
m and χm

n in φm
D can be calculated. Now

φm
m =

(−1)m(2
c
)m+1

√
π

∞
∑

s=m

(−1)s
Γ(s+ 1

2
)Γ(2s− 2m+ 1)(2s−m+ 1

2
)

Γ(2s+ 1)Γ(s−m+ 1)
Pm
2s−m(µ)Q

m
2s−m(ξ)

+

√

π

2c

∞
∑

s=m

(−1)s−m (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
J(λ1f,m, s)P

m
s (µ)Pm

s (ξ), (26)

where

J(λ1f,m, s) =
∫

⌣
∞

0

(Dk4 + 1− ǫλ0)k + λ0

(Dk4 + 1− ǫλ0)k − λ0
km− 1

2 e−2kfIs+ 1

2

(kc)dk. (27)

In the second term of the expression of φm
m equation (12) has been used. (26)is the

complete form of φm
m in the spheroidal co-ordinate system. Also the wave free potential

χm
n is

χm
n =

(−1)m(2
c
)n+1

(n−m)!
√
π

∞
∑

s=m

(−1)s
Γ(n+ s−m+ 1

2
)Γ(n+ 2s− 3m+ 1)(n+ 2s− 2m+ 1

2
)

Γ(n+ 2s−m+ 1)Γ(s−m+ 1)

×Pm
n+2s−2m(µ)Q

m
n+2s−2m(ξ)

+
λ1(−1)m(2

c
)n

(n−m)!
√
π

∞
∑

s=m

(−1)s
Γ(n+ s−m− 1

2
)Γ(n+ 2s− 3m)(n+ 2s− 2m− 1

2
)

Γ(n+ 2s−m)Γ(s−m+ 1)

×Pm
n+2s−2m−1(µ)Q

m
n+2s−2m−1(ξ)

+
(−1)m+n

(n−m)!

√

π

2c

∞
∑

s=m

(−1)s−m (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
AnsP

m
s (µ)Pm

s (ξ), (28)

where
Ans =

∫ ∞

0
e−kfkn−

1

2 g1(k)Is+ 1

2

(kc)dk. (29)

The desired expression of diffraction potential is

φm
D = am+2Fm

m {(
2
c
)m+1

√
π

∞
∑

s=m

(−1)s+mΓ(s+ 1
2
)Γ(2s− 2m+ 1)(2s−m+ 1

2
)

Γ(2s+ 1)Γ(s−m+ 1)
Pm
2s−m(µ)

×Qm
2s−m(ξ)

+

√

π

2c

∞
∑

s=m

(−1)s−m (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
J(λ1f,m, s)P

m
s (µ)Pm

s (ξ)}+
∞
∑

n=m+1

an+2Fm
n

×{ (2
c
)n+1

(n−m)!
√
π

∞
∑

s=m

(−1)s+mΓ(n+ s−m+ 1
2
)Γ(n+ 2s− 3m+ 1)(n+ 2s− 2m+ 1

2
)

Γ(n+ 2s−m+ 1)Γ(s−m+ 1)



×Pm
n+2s−2m(µ)Q

m
n+2s−2m(ξ)

+
λ1(

2
c
)n

(n−m)!
√
π

∞
∑

s=m

(−1)s+mΓ(n+ s−m− 1
2
)Γ(n+ 2s− 3m)(n+ 2s− 2m− 1

2
)

Γ(n + 2s−m)Γ(s−m+ 1)

×Pm
n+2s−2m−1(µ)Q

m
n+2s−2m−1(ξ)

+
1

(n−m)!

√

π

2c

∞
∑

s=m

(−1)s+n (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
AnsP

m
s (µ)Pm

s (ξ)}. (30)

Applying (10) in the component of incident wave potential, it becomes,

φm
inc =

1

λ1
e−λ1fεmi

m

√

π

2λ1c

∞
∑

s=m

(−1)s−m (2s+ 1)Γ(s−m+ 1)

Γ(s+m+ 1)
Is+ 1

2

(λ1c)P
m
s (µ)Pm

s (ξ),

(31)
which is the desired expression in spheroidal co-ordinate.

6. Expansion coefficient

To find the solution of the problem unknown coefficient Fm
n in equation (30) is deter-

mined from the surface body boundary condition (∂φ
∂u
)u=r0 = 0 and it transforms to

∂φ̂m
D(u, ϑ)

∂u
= e−λ1f

∂φ̂m
inc(u, ϑ)

∂u
.

It is applied for u = r0 for 0 ≤ ϑ ≤ π. Taking dPm

s
(ξ)

du
= P ′m

s (ξ0) sinh r0 and dQm

s
(ξ)

du
=

Q′m
s (ξ0) sinh r0, where ξ0 = cosh r0. To simplify this the orthogonality relation of associ-

ated Legendre function of the first kind is employed.

∫ 1

−1
Pm
n (µ)Pm

s (µ)dµ = δns
(n +m)!

(n+ 1
2
)(n−m)!

where δns is Kronecker’s delta. After step by step calculations the required system of
equation involving Fm

n takes the form:

Fm
mC

m
ms +

∞
∑

n=m+1

Fm
n C

m
ns = Bm

s . (32)

To find the solution, equation (32) has to be truncated for a finite number of modes M .
Here the indices vary like m = 0, 1, 2, ...,M and n, s = m,m + 1, ......,M . For different
values of m, the elements Cm

ns, C
m
ms and Bm

s frame different complex matrices. When
m = 0 the elements Cm

ns, C
m
ms and Bm

s formulate N × N , N × 1 and N × 1 complex
matrices, where N =M + 1. The expressions of Bm

s , Cm
ms and C

m
ns are

Bm
s = −2(−1)s+m

λ1
ǫmι

m

√

π

2λ1c
Is+ 1

2

(λ1c)P
′m
s (ξ0) sinh r0,

Cm
ms = a{(−1)s+m(2a

c
)m+1

π
1

2

Γ(s+ 1
2
)

Γ(s−m+ 1)
Q′m

2s−m(ξ0) sinh r0



+2(−1)s+mam+1

√

π

2c
J(λ1f,m, s)P

′m
s (ξ0) sinh r0},

Cm
ns = a{(−1)s+m(2a

c
)n+1

(n−m)!π
1

2

Γ(n + s−m+ 1
2
)

Γ(s−m+ 1)
Q′m

n+2s−2m(ξ0) sinh r0+
λ1(

2a
c
)na(−1)s+m

(n−m)!π
1

2

×Γ(n+ s−m− 1
2
)

Γ(s−m+ 1)
Q′m

n+2s−2m−1(ξ0) sinh r0 + 2(−1)n+san+1

√

π

2c
An,sP

′m
s (ξ0) sinh r0}.

7. Linear exciting forces

The exciting forces are obtained by the linear hydrodynamics pressure on the wetted
surface of the body is(cf. Chatjigeorgiou [24])

Fr = −iωρ
∫ ∫

S0

(φinc + φD)nrdS. (33)

where S0 denotes the wetted surface of the spheroid, ρ is the water density, nr(r = x, y, z)
is the normal out of the body surface with

nx =
a sinϑ cosψ

(b2 cos2 ϑ+ a2 sin2 ϑ)
1

2

, (34)

ny =
b cos ϑ

(b2 cos2 ϑ+ a2 sin2 ϑ)
1

2

, (35)

nz =
a sinϑ sinψ

(b2 cos2 ϑ+ a2 sin2 ϑ)
1

2

. (36)

Therefore, the surge and heave exciting forces will be

Fx = −iωρab
∫ 2π

0
{
∫ π

0
(φinc + φD)P

1
1 (µ) sinϑdϑ} cosψdψ, (37)

Fy = −iωρb2
∫ 2π

0
{
∫ π

0
(φinc + φD)P

0
1 (µ) sinϑdϑ}dψ, (38)

where P 1
1 (µ) = − sin ϑ and P 0

1 (µ) = − cos ϑ. The sway force Fz becomes zero.

Fx

4
3
ρπω2a2bAe−λ1f

= i
3

4
{a2F 1

1

∫ π

0
φ̂1
1P

1
1 (µ) sinϑdϑ+

∞
∑

n=2

an+1F 1
n

∫ π

0
χ̂1
nP

1
1 (µ) sinϑdϑ}, (39)

Fy

4
3
ρπω2a2bAe−λ1f

= −i 3b
2a

{aF 0
0

∫ π

0
φ̂0
0P

0
1 (µ) sinϑdϑ+

∞
∑

n=1

an+1F 0
n

∫ π

0
χ̂0
nP

0
1 (µ) sinϑdϑ},

(40)
where
∫ π

0
φ̂1
1P

1
1 (µ) sinϑdϑ = (

2

c
)2
1

2
Q1

1(ξ0) + 2

√

π

2c
J(λ1f, 1, 1)P

1
1 (ξ0) + 2πi

√

π

2c
K0(λ1)

1

2 e−2λ1f

×P 1
1 (ξ0)I 3

2

(λ1c), (41)



∫ π

0
φ̂0
0P

0
1 (µ) sinϑdϑ = −2

√

π

2c
J(λ1f, 0, 1)P

0
1 (ξ0)− 2πi

√

π

2c
K0(λ1)

− 1

2 e−2λ1fP 0
1 (ξ0)I 3

2

(λ1c),

(42)

(where, K0 =
(D(λ1)4+1−ǫλ0)λ1+λ0

5D(λ1)4+1−ǫλ0
)

∫ π

0
χ̂1
nP

1
1 (µ) sinϑdϑ =

(2
c
)n+1

(n− 1)!
√
π

(1
2
+ n)Γ(1

2
+ n)Γn

Γ(n+ 2)
Q1

n(ξ0)
∫ π

0
P 1
n(µ)P

1
1 (µ) sinϑdµ

+
(2
c
)nλ1

(n− 1)!
√
π

(n− 1
2
)Γ(n− 1

2
)

Γ(n + 1)
Q1

n−1(ξ0)
∫ π

0
P 1
n−1(µ)P

1
1 (µ) sinϑdµ

+
2

(n− 1)!

√

π

2c
(−1)n+1An1P

1
1 (ξ0), (43)

and

∫ π

0
χ̂0
nP

0
1 (µ) sinϑdϑ =

(2
c
)n+1

n!
√
π
(
1

2
+ n)Γ(

1

2
+ n)Q0

n(ξ0)
∫ π

0
P 0
n(µ)P

0
1 (µ) sinϑdµ

+
(2
c
)nλ1

n!
√
π
(n− 1

2
)Γ(n− 1

2
)Q0

n−1(ξ0)
∫ π

0
P 0
n−1(µ)P

0
1 (µ) sinϑdµ+

2

n!

√

π

2c
(−1)n+1An1P

0
1 (ξ0).

(44)

8. Numerical results

    Ka
Fig.2:Magnitudes of surge exciting force on prolate spheroid

 (b/a=0.4) with various immersions
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Fig.3:Magnitude of heave exciting force on a prolate spheroid 

(b/a=0.4) for various immersions
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Fig.4:Magnitude of surge exciting force on prolate spheroid

 with fixed immersion f/a=2.0
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Fig.5:Magnitude of heave exciting force on prolate spheroid

 with fixed immersion f/a=2.0
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Fig.6:Magnitudes of surge exciting force on prolate spheroid

 with fixed immersion f/a=3.0
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Fig.7:Magnitudes of heave exciting forces on prolate spheroid

 with  fixed immersions f/a=3.0
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Fig.8:Magnitudes of surge exciting force on prolate 

spheroid with fixed immersion f/a=1.5
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Fig.9:Magnitudes of heave exciting force on prolate spheroid

 with fixed immersion f/a=1.5
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Fig.10:Magnitudes of surge exciting forces on prolate

 spheroid with fixed immersions f/a=3.0
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Fig.11:Magnitudes of heave exciting force on prolate spheroid

 with fixed immersions f/a=3.0
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Fig.12:Magitudes of surge exciting force on prolate

 spheriod (b/a=0.4)with various immersions 
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Fig.13:Magnitudes of heave exciting force on prolate spheriod

(b/a=0.4) with various immersions
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The hydrodynamic forces ( Surge and heave ) are plotted in Fig.2-13 when the prolate
spheroid submerged in water with an ice-cover. In Fig.2 and 3, the different curves
correspond to different values of f

a
e.g. f

a
= 1.5, 2.0, 3.0 with D

a4
= 0 , ǫ

a
= 0 and b

a
= 0.4.

Fig.2 and Fig.3 show the surge exciting force and heave exciting force respectively for
the prolate spheroid. It is observed that forces increase when the spheroid is close to the
ice-cover ( f

a
= 1.5 ) for both the cases. All the curves for both cases first increases with

increasing Ka, then obtained a moderate value and after that decrease with increasing
Ka. Also it is noted that for D

a4
= 0 and ǫ

a
= 0, then the ice-cover becomes a free surface

and for this case the curves in Fig.2 and 3 exactly coincide with the corresponding curves
for a forces exciting on the prolate spheroid submerged in water with free surface ( cf.
figures 4 and 5 in I.K.Chatjigeorgiou [24]). Also it is observed that the surge exciting
forces in Fig.2 is greater than for heave (Fig.3) for low to moderate values of Ka.

Fig.4, 5, 6, 7 depict the exciting forces ( Surge and heave ) plotted against Ka for
different values flexural rigidity D

a4
of the ice-cover, e.g. D

a4
= 0.1, 0.5, 1.5, 2.0 and in all

the cases ǫ
a
is 0.01 and b

a
= 0.4 but f

a
is 2 for Fig.4 and 5 and f

a
is 3 for Fig.6 and 7. Here

it is observed that cases in the figures increase with D
a4

increases for all the cases. But
the curves for surge exciting forces is greater than the exciting forces for heave prolate
spheroid. It is also noted that when spheroid is closed to the ice-cover ( f

a
= 2 ) the



deviation of the forces is somewhat greater than the case of spheroid is deeply submerged
( f

a
= 3 ).

The Fig.8, 9, 10, 11 depict the exciting forces ( both surge and heave ) plotted against
Ka for different values of b

a
, e.g. b

a
= 0.3, 0.4, 0.5, 0.6 and in all the cases D

a4
= 0 and

ǫ
a
= 0.01 but f

a
= 1.5 for figures 8 and 9 and f

a
= 3.0 for figures 10 and 11. It is observed

that in all the cases the forces increase with b
a
increases. These also lead to somewhat

similar results as in the figs.4-7 and display the same characteristics but figures for surge
is greater than that obtained for heave. Fig.12-13 depict the surge and heave exciting
forces respectively. It is observed that when the spheroid is closed to the ice-cover surface
( f

a
= 1.5 ), large amount of forces are generated.

9. Conclusion

The problem of wave diffraction by a prolate spheroid submerged in water beneath
the free surface is extended here when the free surface is replaced by a thin ice-cover
modelled as a thin elastic plate. Numerical results for the exciting forces for surge and
heave spheroid are obtained. The method of multipoles has been shown to be an extremely
powerful method for solving the problem involving submerged spheroid and the numerical
results for exciting force are obtained for different values of various parameters. When
the ice-cover is replaced by a free surface (by making D

a4
= 0, ǫ

a
= 0) curves for exciting

forces exactly coincide with the curves for the case of deep water with free surface.
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