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The electromagnetic scattering problem over a 

wide incident angle can be rapidly solved by 

introducing the compressive sensing theory into 

the method of moments, whose main 

computational complexity is comprised of two 

parts: a few calculations of matrix equations and 

the recovery of original induced currents. To 

further improve the method, a novel construction 

scheme of measurement matrix is proposed in this 

paper. With help of the measurement matrix, one 

can obtain a sparse sensing matrix, and 

consequently the computational cost for recovery 

can be reduced by at least half. The scheme is 

described in detail, the analysis of computational 

complexity and numerical experiments are 

provided to demonstrate the effectiveness. 

Introduction: Method of moments (MoM) possesses the 

advantage of high accuracy in solving the electromagnetic 

(EM) scattering problems [1]. But it will cost a huge 

computational amount when the incident wave is from a 

wide-angle range, since the procedure needs to be 

repeatedly implemented at every angle increment. Recently, 

a fast method based on MoM conjunction with compressive 

sensing (CS) theory for solving the wide-angle EM 

scattering problems has been proposed [2]. In this method, 

a kind of new excitation sources containing abundant 

information of different incident angles is built firstly. Then, 

the induced currents over a wide-angle can be solved by 

means of the sparse transform and the recovery algorithm 

from the measurement results, which are obtained by the 

calculations of traditional MoM with the new sources. The 

computational complexity of the fast method mainly 

consists of two parts: one is the measurement, i.e., a few 

calculations of MoM; the other is to acquire the projections 

of induced currents in sparse domain. 

In order to further improve the fast method, much effort 

has been devoted to the research on these two parts, and 

many effective schemes, such as efficient basis function [3] 

and two-dimensional CS [4], have been devised. In this 

paper, a novel scheme for designing the measurement 

matrix is raised, by which the sensing matrix shows 

remarkable sparsity when the orthogonal basis is selected 

as the sparse transform. Accordingly, the computational 

complexity for acquire the projections can be sharply 

decreased. The principle and the complexity analysis are 

presented, and the effectiveness is validated by numerical 

experiments, in which five typical orthogonal bases [5], 

such as fast Fourier transform (FFT) basis and Hermite 

basis, are taken as the sparse transforms respectively. 

Fast method based on CS: The wide-angle EM scattering 

problem solving by the traditional MoM can be described 

as a matrix equation with multiple right-hand sides  

1 2 1 2 ,n n       = Z I I I V V V                 (1) 

in which, Z is the impedance matrix, V1 to Vn are the 

excitation vectors at n different incident angles, and I1 to In 

represent the n corresponding induced current vectors. 

In the fast method, M new excitation vectors based on CS 

theory are constructed as 
CS

1 1 2 2 ( 1,2, , ),i i i in nc c c i M= + ++ = V V V V   (2) 

where cij is the element in the measurement matrix Ф. In 

CS theory, the measurement matrix must satisfy the 

restricted isometry property (RIP) [6], which ensures the 

accurate reconstruction of original signal. In general, 

Gaussian random matrix is often used as Ф. 

Substituting (2) to (1), one can obtain M current vectors 

under the new excitations by 
CS CS CS CS CS CS

1 2 1 2 .M M
    =    Z I I I V V V           (3) 

Due to the linearity of the problem, 
CS

1
I  to 

CS

M
I  can be 

written as 
CS

1 1 2 2 ( 1,2, , ).i i i in nc c c i M= + ++ = I I I I  (4) 

The M current vectors are regarded as the results of M 

measurements of the original induced current vectors I1 to 

In. If the original induced current vectors have sparse 

representations, (4) can be described as 

   
TT CS CS CS

1 2 1 2 1 2
,

n N M
   =    =     Φ I I I ΦΨ α α α I I I (5) 

in which Ψ is the sparse transform, N is the number of the 

basis functions, and α1 to αN are the projections of each 

column of [I1 I2…In]T in sparse domain. In the wide-angle 

EM scattering problems, FFT basis, Hermite basis or other 

orthogonal bases are often selected as Ψ [5]. 

By utilizing the recovery algorithm (e.g., orthogonal 

matching pursuit (OMP) [7]), the projections are solved by 

   

 
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T
CS CS CS
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ˆ ˆ ˆ ˆ ˆ ˆ=argmin

. . ,

N N L

N Ms t

 

  =  

α α α α α α

Θ α α α I I I

              (6) 

where Θ is the sensing matrix and Θ=ФΨ. Then, the 

original induced current vectors can be reconstructed by 

 
T

1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ .

n N   =   I I I Ψ α α α               (7) 

The computational complexity for solving (6) by OMP 

is O(nKMN), where K is the sparsity of original induced 

current vectors in sparse domain, and the inner products of 

the columns in sensing matrix and the measurement results 

are the dominant computational cost. 
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Proposed scheme: To reduce the complexity of recovery, 

one can make the sensing matrix sparse to decrease the cost 

of inner products. For the purpose, a novel construction 

scheme of measurement matrix is proposed as follows: 

First, by randomly extracting P columns from Ψ, one can 

obtain 1ψ  to Pψ , where ψ represents the column of Ψ. 

Afterwards, to better satisfy RIP, a linear superposition 

of these P vectors is implemented as 

1 11 1 12 2 1 .P Pd d d= + + +ψ ψ ψφ          (8) 

Finally, repeating the above two steps M times and a new 

measurement matrix [φ1 φ2…φM]T is established, in which 

1 1 2 2 ( 1,2, , ).i i i iP Pd d d i M= + + + = ψ ψ ψφ (9) 

Obviously, when an orthogonal basis is taken as Ψ, the 

inner products of φi and the (n－P) columns in Ψ that are 

not extracted in the first step are zero respectively. In other 

words, there are only P non-zero elements in the i-th row 

of Θ. A sparse Θ with MP non-zero elements is obtained 

by using the proposed measurement matrix, and the 

operations of inner products in recovery algorithm are 

significantly accelerated. Accordingly, the computational 

complexity of solution to (6) is decreased to O(ηnKMN), 

where η is the proportion of nonzero elements in Θ and 

η=P/n. Generally, P is much less than n. 

Using the proposed measurement matrix and an 

orthogonal basis as Ф and Ψ respectively, (5) can be 

transformed as 

     

 

T T

1 2 1 2 1 2

T
CS CS CS

1 2 1 2
,

M N N

N M

        

     

=

 = =  

Ψ α α α Ψ Ψ α α α

α α α I I I

φ φ φ S

S

  (10) 

in which, the proposed measurement matrix is expressed as 

the multiplication of a sparse random matrix S and the 

transposed sparse transform. The i-th row of S has P 

random coefficients di1 to diP in the columns corresponding 

to the randomly extracted columns from Ψ in the i-th 

measurement. Other entries in S are all zero. 

 So, (10) can be considered as measuring the sparse 

signals [α1 α2…αN] directly with the sparse random matrix, 

which is proved to satisfy a different form of RIP, so-called 

RIP(p) for p equal (or very close) to 1 [8,9]. Therefore, (6) 

can produce an accurate solution with high probability by 

using the proposed measurement matrix. It is interesting to 

note that, if the random coefficients are all set to 1 in (10), 

the sparse random matrix is simplified to a sparse binary 

matrix (SBM), which consists of only 0 and 1. SBM is often 

applied as the measurement matrix in wireless sensor 

networks, since it is easy to be implemented on hardware 

and has low complexity [10].  

Numerical results: Two numerical experiments with 

perfect electrical conductor (PEC) objects of different 

shape are presented in this section to validate the proposed 

scheme, in which the electric field integral equation (EFIE) 

is established to solve the problems, and OMP is taken as 

the recovery algorithm. For the convenience of comparison, 

we define the recovery error as 

 

 

1 2 1 2
2

1 2 2

ˆ ˆ ˆ
n n

n

  − 
 

 =


I I I I I I

I I I

                     (11) 

A sphere with the radius of 0.1m illuminated by the plane 

waves of 300MHz is considered firstly, who contains 480 

RWG basis functions. The incident waves are set in the xoy 

plane, and the incident angle is divided into 1°,2°, ..., 360°. 

FFT basis is used as the sparse transform. As is shown in 

Figure 1, the similar precision can be achieved at the same 

number (70) of measurements by applying the Gaussian 

random matrix and the proposed measurement matrix 

respectively, while the number of extracting columns P is 

larger than 100. It means that one can get a sensing matrix 

with nonzero elements accounting for 100/360 (η) in the 

best case. Thus, the computational cost for acquiring the 

projections of original induced currents in sparse domain is 

cut by about two-thirds (1－η) by using the proposed 

measurement matrix rather than Gaussian random matrix, 

meanwhile the computational complexity of measurement 

for both is the same. The comparison of the computing time 

for acquiring the projections is presented in Table 1, which 

further proves the high efficiency. 

 

Fig.1 Relationship between the recovery error and the 

number of measurements in the case of FFT basis 

Table 1. Computing time of recovery for sphere. 
Measurement 

matrix 
FFT 

(M=70) 

Hermite 

(M=35) 

Laguerre 

(M=40) 

Gaussian 26.83 s 10.97 s 14.23 s 

Proposed 8.96 s (P=100) 4.59 s (P=120) 6.92 s (P=130) 

To show the universality of the proposed technique for 

orthogonal bases, FFT basis is respectively replaced by 

Hermite and Laguerre basis, and the corresponding results 

are shown in Figure 2 and Figure 3. It is evident that, for 

both Hermite basis and Laguerre basis, much less 

computational complexity for acquiring the projections is 

available with the proposed measurement matrix than with 

Gaussian random matrix under the same condition of 

measurement. The comparisons of the computing time in 

the case of two orthogonal bases are provided in Table 1. 

 
Fig.2 Relationship between the recovery error and the 

number of measurements in the case of Hermite basis 
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Fig.3 Relationship between the recovery error and the 

number of measurements in the case of Laguerre basis 

Then, consider a missile model who contains 1963 RWG 

basis functions, and the second kind of Chebyshev basis 

and Legendre basis are chosen as the sparse transforms 

respectively. Other experimental parameters are the same 

with the previous one. Both Figure 4 and Figure 5 indicate 

that the proposed construction scheme of measurement 

matrix is also validity for the complex shaped objects. 

 

Fig.4 Relationship between the recovery error and the 

number of measurements in the case of the 2nd kind of 

Chebyshev basis. 

 
Fig.5 Relationship between the recovery error and the 

number of measurements in the case of Legendre basis. 

By using the second kind of Chebyshev basis and the 

proposed measurement matrix (M=90, P=100), and setting 

the elements less than 10-14 in the sensing matrix to zero, 

there are only 9000 non-zero elements in the sensing matrix, 

which is consistent with the expected number MP. Hence, 

the solution to (6) with the help of OMP is accelerated, 

which is demonstrated in Table 2. 

Table 2. Computing time of recovery for missile model. 
Measurement 

matrix 
2nd kind of Chebyshev 

(M=90) 

Legendre 

(M=100) 

Gaussian 120.78 s 181.20 s 

Proposed 38.72 s (P=90) 59.91 s (P=110) 

Conclusion: A novel scheme for constructing the 

measurement matrix has been developed. One can get a 

sparse sensing matrix by adopting the proposed 

measurement matrix in the solution to wide-angle EM 

scattering problem based on MoM conjunction with CS. In 

addition, the number of measurements required for both 

Gaussian random matrix and the proposed one is the same. 

Consequently, the computational complexity for acquiring 

the projections by using recovery algorithm can be 

significantly reduced under the condition that the 

computational cost for measurement remains unchanged. 
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