Reference
1. Yu, J.,Liu, X.,Guan, L., et al. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing.Int. J. Biol. Macromol. 2021, 168 , 223-232, doi:10.1016/j.ijbiomac.2020.12.040
2. Chang, S.,Guo, Y.,Wu, B., et al. Extracellular expression of alkali tolerant xylanase from Bacillus subtilis Lucky9 in E. coli and application for xylooligosaccharides production from agro-industrial waste. Int. J. Biol. Macromol. 2017, 96 , 249-256, doi:10.1016/j.ijbiomac.2016.11.032
3. Li, J.,Zhao, Y. and Jiang, X. Quantitative analysis of protein in thermosensitive hydroxypropyl chitin for biomedical applications.Anal. Biochem. 2020, 599 , 113745, doi:10.1016/j.ab.2020.113745
4. Compton, S. J. and Jones, C. J. Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem1985, 151 , 369-374, doi:10.1016/0003-2697(85)90190-3
5. Smith, P. K.,Krohn, R. I.,Hermanson, G. T., et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985,150 , 76-85, doi:10.1016/0003-2697(85)90442-7
6. Maehre, H. K.,Dalheim, L.,Edvinsen, G. K., et al. Protein determination-method matters. Foods 2018, 7 (1), 5, doi:10.3390/foods7010005
7. Chen, Y.,Tsao, K.,Acton, S. L., et al. A green BODIPY-based, super-fluorogenic, protein-specific labelling agent. Angew. Chem. Int. Ed. Engl. 2018, 57 (38), 12390-12394, doi:10.1002/anie.201805482
8. Thiel, Z.,Nguyen, J. and Rivera-Fuentes, P. Genetically encoded activators of small molecules for imaging and drug delivery.Angew. Chem. Int. Ed. Engl. 2020, 59 (20), 7669-7677, doi:10.1002/anie.201915521
9. Hatai, J.,Prasad, P. K.,Lahav-Mankovski, N., et al. Assessing changes in the expression levels of cell surface proteins with a turn-on fluorescent molecular probe. Chem. Commun. (Camb.) 2021,57 (15), 1875-1878, doi:10.1039/d0cc07095e
10. Roßmann, K.,Akkaya, K. C.,Poc, P., et al. N-Methyl deuterated rhodamines for protein labelling in sensitive microscopy. Chem. Sci. 2022 , doi:10.1039/d1sc06466e
11. Griffin, B. A.,Adams, S. R. and Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells.Science 1998, 281 (5374), 269-272, doi:10.1126/science.281.5374.269
12. Martin, B. R.,Giepmans, B. N.,Adams, S. R., et al. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol.2005, 23 (10), 1308-1314, doi:10.1038/nbt1136
13. Adams, S. R.,Campbell, R. E.,Gross, L. A., et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. AM. CHEM. SOC.2002, 124 , 6063-6076, doi:10.1021/ja017687n
14. Gaietta, G.,Deerinck, T. J.,Adams, S. R., et al. Multicolor and electron microscopic imaging of connexin trafficking. Science2002, 296 (5567), 503-507, doi:10.1126/science.1068793
15. Zhang, J.,Campbell, R. E.,Ting, A. Y., et al. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol.2002, 3 (12), 906-918, doi:10.1038/nrm976
16. Langhorst, M. F.,Genisyuerek, S. and Stuermer, C. A. Accumulation of FlAsH/Lumio Green in active mitochondria can be reversed by beta-mercaptoethanol for specific staining of tetracysteine-tagged proteins. Histochem. Cell Biol. 2006, 125 (6), 743-747, doi:10.1007/s00418-005-0136-3
17. Strmiskova, M.,Tsao, K. and Keillor, J. W. Rational design of a highly reactive dicysteine peptide tag for fluorogenic protein labelling. Org. Biomol. Chem. 2018, 16 (34), 6332-6340, doi:10.1039/c8ob01417e
18. Chen, Y.,Clouthier, C. M.,Tsao, K., et al. Coumarin-based fluorogenic probes for no-wash protein labeling. Angew. Chem. Int. Ed. Engl. 2014, 53 (50), 13785-13788, doi:10.1002/anie.201408015
19. Chen, X.,Ko, S. K.,Kim, M. J., et al. A thiol-specific fluorescent probe and its application for bioimaging. Chem. Commun. (Camb.)2010, 46 (16), 2751-2753, doi:10.1039/b925453f
20. Ma, K.,Zhao, L.,Yue, Y., et al. Thiol ”Click” Chromene Ring Opening and Subsequent Cascade Nucleophilic Cyclization NIR Fluorescence Imaging Reveal High Levels of Thiol in Drug-Resistant Cells. Anal. Chem.2020, 92 (24), 15936-15942, doi:10.1021/acs.analchem.0c03362
21. Huo, F. J.,Sun, Y. Q.,Su, J., et al. Chromene “lock”, thiol “key”, and Mercury(ii) ion “hand”: a single molecular machine recognition system. Org. Lett. 2010, 12 , 4756-4759, doi:10.1021/ol101771j
22. Xiong, X.,Song, F.,Sun, S., et al. Red-Emissive Fluorescein Derivatives and Detection of Bovine Serum Albumin. Asian J. Org. Chem. 2013, 2 (2), 145-149, doi:10.1002/ajoc.201200109
23. Zheng, S.,Peng, J.,Jiang, L., et al. A rhodol-derived probe for intracellular biothiols imaging and rapid labelling of sulfhydryl-containing proteins. Sens. Actuators, B.2022, 367 , 132148, doi:10.1016/j.snb.2022.132148
24. Guy, J.,Castonguay, R.,Campos-Reales Pineda, N. B., et al. De novo helical peptides as target sequences for a specific, fluorogenic protein labelling strategy. Mol. Biosyst. 2010, 6 (6), 976-987, doi:10.1039/b918205e
25. Silva, M.,Faustino, H.,Coelho, J. A. S., et al. Efficient amino-sulfhydryl stapling on peptides and proteins using bifunctional NHS-activated acrylamides. Angew. Chem. Int. Ed. Engl.2021, 60 (19), 10850-10857, doi:10.1002/anie.202016936
26. Pan, X.,Liang, Z.,Li, J., et al. Active-site-matched fluorescent probes for rapid and direct detection of vicinal-sulfydryl-containing peptides/proteins in living cells. Chem. Eur. J. 2015,21 (5), 2117-2122, doi:10.1002/chem.201405349