REFERENCES
Barker, K. et al. (2015) ‘New insights into New World
biogeography: An integrated view from the phylogeny of blackbirds,
cardinals, sparrows, tanagers, warblers, and allies’, Auk ,
132(2), pp. 333–348. doi:10.1642/AUK-14-110.1.
Francisco Henao Diaz, L. et al. (2019) ‘Macroevolutionary
diversification rates show time dependency’, Proceedings of the
National Academy of Sciences of the United States of America , 116(15),
pp. 7403–7408. doi:10.1073/pnas.1818058116.
Harmon, L.J. et al. (2008) ‘GEIGER: investigating evolutionary
radiations’, Bioinformatics , 24(1), pp. 129–131.
doi:10.1093/BIOINFORMATICS/BTM538.
Harris, C.R. et al. (2020) ‘Array programming with NumPy’, Nature . Nature Publishing Group, pp. 357–362.
doi:10.1038/s41586-020-2649-2.
Hedges, S.B., Dudley, J. and Kumar, S. (2006) ‘TimeTree: A public
knowledge-base of divergence times among organisms’, Bioinformatics , 22(23), pp. 2971–2972.
doi:10.1093/bioinformatics/btl505.
Jetz, W. et al. (2012) ‘The global diversity of birds in space
and time’, Nature , 491(7424), pp. 444–448.
doi:10.1038/nature11631.
Kumar, S. et al. (2017) ‘TimeTree: A Resource for Timelines,
Timetrees, and Divergence Times’, Molecular Biology and
Evolution , 34(7), pp. 1812–1819. doi:10.1093/MOLBEV/MSX116.
Kumar, S. et al. (2018) ‘MEGA X: Molecular evolutionary genetics
analysis across computing platforms’, Molecular Biology and
Evolution , 35(6), pp. 1547–1549. doi:10.1093/molbev/msy096.
Kumar, S. and Hedges, S.B. (2011) ‘Timetree2: Species divergence times
on the iPhone’, Bioinformatics , 27(14), pp. 2023–2024.
doi:10.1093/bioinformatics/btr315.
Kumar, S. and Hedges, S.B. (2016) ‘Advances in time estimation methods
for molecular data’, Molecular Biology and Evolution , 33(4), pp.
863–869. doi:10.1093/molbev/msw026.
Magallón, S. and Sanderson, M.J. (2001) ‘Absolute diversification rates
in angiosperm clades’, Evolution , 55(9), pp. 1762–1780.
doi:10.1111/j.0014-3820.2001.tb00826.x.
McKinney, W. (2010) ‘Data Structures for Statistical Computing in
Python’, in Proceedings of the 9th Python in Science Conference ,
pp. 56–61. doi:10.25080/majora-92bf1922-00a.
Mello, B. (2018) ‘Estimating timetrees with MEGA and the timetree
resource’, Molecular Biology and Evolution , 35(9), pp.
2334–2342. doi:10.1093/molbev/msy133.
Müller, R.D. et al. (2018) ‘GPlates: Building a Virtual Earth
Through Deep Time’, Geochemistry, Geophysics, Geosystems , 19(7),
pp. 2243–2261. doi:10.1029/2018GC007584.
Nyakatura, K. and Bininda-Emonds, O.R.P. (2012) ‘Updating the
evolutionary history of Carnivora (Mammalia): A new species-level
supertree complete with divergence time estimates’, BMC Biology ,
10. doi:10.1186/1741-7007-10-12.
Prum, R.O. et al. (2015) ‘A comprehensive phylogeny of birds
(Aves) using targeted next-generation DNA sequencing’, Nature ,
526(7574), pp. 569–573. doi:10.1038/nature15697.
R Core Team (2020) ‘R: A Language and Environment for Statisitical
Computing’. Vienna: R Foundation for Statistical Computing. Available
at: https://www.r-project.org/.
Rambaut, A. (2017) ‘FigTree-version 1.4.3, a graphical viewer of
phylogenetic trees’. Computer program distributed by the author.
Available at: http://tree.bio.ed.ac.uk/software/figtree.
Rannala, B. and Yang, Z. (2003) ‘Bayes estimation of species divergence
times and ancestral population sizes using DNA sequences from multiple
loci’, Genetics , 164(4), pp. 1645–1656.
doi:10.1093/genetics/164.4.1645.
Sangster, G. (2014) ‘The application of species criteria in avian
taxonomy and its implications for the debate over species concepts’,Biological Reviews , 89(1), pp. 199–214. doi:10.1111/BRV.12051.
Scholl, J.P. and Wiens, J.J. (2016) ‘Diversification rates and species
richness across the Tree of Life’, Proceedings of the Royal
Society B: Biological Sciences , 283(1838). doi:10.1098/RSPB.2016.1334.
Scotese, C.R. (2016) ‘PALEOMAP PaleoAtlas for GPlates and the PaleoData
Plotter Program’. PALEOMAP Project. Available at:
http://www.earthbyte.org/paleomap-‐%0Apaleoatlas-‐for-‐gplates/.
Springer, M.S., Murphy, W.J. and Roca, A.L. (2018) ‘Appropriate fossil
calibrations and tree constraints uphold the Mesozoic divergence of
solenodons from other extant mammals’, Molecular Phylogenetics and
Evolution , 121, pp. 158–165. doi:10.1016/j.ympev.2018.01.007.
Tamura, K. et al. (2012) ‘Estimating divergence times in large
molecular phylogenies’, Proceedings of the National Academy of
Sciences of the United States of America , 109(47), pp. 19333–19338.
doi:10.1073/pnas.1213199109.
Tucker, D.B. et al. (2017) ‘Genomic timetree and historical
biogeography of Caribbean island ameiva lizards (Pholidoscelis:
Teiidae)’, Ecology and Evolution , 7(17), pp. 7080–7090.
doi:10.1002/ece3.3157.
Wagner, C.E. (2018) ‘Improbable Big Birds Darwin’s finches prove a
mechanism for the rapid formation of new species’, Science .
American Association for the Advancement of Science, pp. 157–159.
doi:10.1126/science.aar4796.
Yang, Z. and Yoder, A.D. (2003) ‘Comparison of Likelihood and Bayesian
Methods for Estimating Divergence Times Using Multiple Gene Loci and
Calibration Points, with Application to a Radiation of Cute-Looking
Mouse Lemur Species’, Systematic Biology , 52(5), pp. 705–716.
doi:10.1080/10635150390235557.