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Abstract

For many species, both local abundance and regional occupancy are highest near the center of
their geographic distributions. One hypothesis for this pattern is that niche suitability declines
with increasing distance from a species geographic center, such that populations near range
margins are characterized by reduced density and increased patchiness. In these smaller edge
populations, genetic drift is more powerful, leading to the loss of genetic diversity. This simple
verbal model has been formalized as the central-marginal hypothesis, which predicts that core
populations should have greater genetic diversity than edge populations. However,
demographic shifts over time can generate a similar pattern. For example, in species with
expanding ranges, populations at the range edge experience serial founder effects, creating a
gradient of declining genetic diversity from the range core to edge. Testing the central-marginal
hypothesis properly thus requires us to consider the confounding role of historical demography.
Here, we account for the role of history in testing the central-marginal hypothesis using a
genomic dataset of 25 species-level taxa of Australian skink lizards (genus: Ctenotus and
Lerista). We found support for the central-marginal hypothesis in 16 of our 25 taxa, of which
eight taxa recovered significant support. Unexpectedly, species with the strongest evidence for
range expansion were the least likely to follow predictions of the central-marginal hypothesis.
The majority of these species had range expansions that originated at the range edge, which
led to lower genetic diversity at the range edge compared to the core, contrary to the

central-marginal hypothesis.
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Introduction

Whether they are big or small, species geographic ranges can be divided into central core
population and edge populations. As predicted by verbal models from macroecology and
population genetics, patterns of population abundance, individual fitness, and genetic diversity
should differ across core and edge populations (Brown, 1984; Sagarin & Gaines, 2002), which
can then contribute to the formation of range limits (Garcia-Ramos & Kirkpatrick, 1997; Gaston,
2003). At the center of their range, species are hypothesized to be optimally adapted for the
habitat, allowing them to maintain large, interconnected populations characterized by high local
abundance (Brown, 1984; Sagarin & Gaines, 2002). Moving away from the center, the habitat
becomes more marginal, leading to decreased reproductive output in populations (Angert, 2006;
Gaston, 2009; Pigott & Huntley, 1981). Populations thus become smaller and patchier. Further,
because these smaller populations are likely more subject to genetic drift and the swamping
effects of gene flow from the range center (Hoffmann & Blows, 1994; Kirkpatrick & Barton,
1997), they are less able to adapt to these local, marginal conditions (Bridle & Vines, 2007;
Lenormand, 2002). Thus, in the range center, where populations are large and connected,
populations will show high levels of genetic diversity and low levels of genetic differentiation
(Eckert, Samis, & Lougheed, 2008; Mayr, 1970). Conversely, small and isolated edge
populations will exhibit low levels of genetic diversity and high levels of genetic differentiation.
These expectations for how population abundance and genetic diversity vary across the range
have been formalized as the abundant-center and central-marginal hypotheses, respectively

(Brown, 1995; Eckert et al., 2008).

Despite their intuitive appeal, both the abundant-center and central-marginal hypotheses have

mixed support in the literature (as reviewed in Dallas, Decker, & Hastings, 2017; Lira-Noriega &


https://paperpile.com/c/nDu0A0/QomY+oODk
https://paperpile.com/c/nDu0A0/1Uir+pm5B
https://paperpile.com/c/nDu0A0/1Uir+pm5B
https://paperpile.com/c/nDu0A0/oODk+QomY
https://paperpile.com/c/nDu0A0/rBWB+GxGq+r4MX
https://paperpile.com/c/nDu0A0/rBWB+GxGq+r4MX
https://paperpile.com/c/nDu0A0/uvYf+inlV
https://paperpile.com/c/nDu0A0/uvYf+inlV
https://paperpile.com/c/nDu0A0/OgjX+fWeB
https://paperpile.com/c/nDu0A0/OgjX+fWeB
https://paperpile.com/c/nDu0A0/GC5Z+w3Rj
https://paperpile.com/c/nDu0A0/GC5Z+MEvU
https://paperpile.com/c/nDu0A0/Xxni+c2bN+8iQP+RVoj

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Manthey, 2014; Pennington, Slatyer, Ruiz-Ramos, Veloz, & Sexton, 2021; Pironon et al., 2017).
This mixed support has a few potential explanations. Some have argued that geographic
definitions of range core versus range edges are irrelevant (Martinez-Meyer, Diaz-Porras,
Peterson, & Yanez-Arenas, 2013). Rather, core versus edge populations should be defined by
how well they reflect the idealized niche conditions for a species (Weber, Stevens, Diniz-Filho, &
Grelle, 2017). Ecological distance might then better predict patterns than geographic distance.
Others have suggested that patterns at range edges might be variable depending on which
edge is considered, particularly when range edges fall across latitudinal and elevational
gradients (Guo, 2012). Further, the complexity of many ranges’ geometries might make it

difficult to define core versus edge populations.

Another possible confounding factor involves demographic history, which can also affect the
distribution of genetic diversity across a range (Hewitt, 1999). One notable example is range
expansions. As a species range expands, individuals disperse out of founding populations and
establish new populations through repeated population bottlenecks (DeGiorgio, Jakobsson, &
Rosenberg, 2009; Excoffier, Foll, & Petit, 2009). These serial founder effects lead to reduced
levels of genetic diversity along the expanding range edge, high structure among populations,
and clines in allele frequency centered on the origin of the expansion (Peter & Slatkin, 2013;
Slatkin & Excoffier, 2012). Thus, both the central-marginal hypothesis and range expansions
should lead to reduced genetic diversity and increased genetic differentiation in edge
populations. These shared predictions can make it difficult to disentangle the effects of historical
versus current demography on patterns of genetic diversity across a species range (Duncan,

Crespi, Mattheus, & Rissler, 2015).
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In this study, we address this challenge by combining inference of historical demography and
estimation of current genetic patterns to test the central-marginal hypothesis across 25
species-level taxa of Australian scincid lizards in the genera Ctenotus and Lerista. These
species are largely co-distributed (Fig. S1) and have likely experienced many of the same
biogeographic dynamics and historical shifts. Further, range limits in Australia generally do not
correspond to hard biogeographic boundaries but seemingly track more subtle features of a
relatively flat and gradually changing physiography (James & Shine, 2000; Pianka, 1972).
Because of the absence of sharp physical barriers or steep environmental gradients, Australian
taxa are somewhat of a "best case" scenario for detecting central-marginal structure. Thus, our
study allows us to test the central-marginal hypothesis across a fairly similar set of taxa in a
similar environment. First, using a final dataset of 457 individuals and an average of 17K loci,
we test the predictions of the central-marginal hypothesis by looking for patterns of declining
genetic variation with respect to distance from range center. Then, we fit demographic models of
population growth and range expansion to our data to determine which historical processes
might be structuring genetic diversity. Finally, given the mixed support for the central-marginal
hypothesis in both our dataset and other datasets, we determine which demographic, intrinsic,
and extrinsic factors — if any — predict whether or not we recover support for the

central-marginal hypothesis.

Methods

Sampling and Genetic Data Collection & Analysis

To determine how genetic diversity varies across geographic ranges, we initially analyzed

genetic data from 923 individuals from 142 nominal species across two species-rich genera of
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Australian scincid lizards: Ctenotus and Lerista. Samples were selected to span the geographic
range of species (Fig. S2); more individuals were sampled from broad-ranging species than

narrow-ranging species (r of sample and range size: 0.78, p-value = 1.29e-28).

Genetic data from these individuals were previously published in (Singhal, Huang, et al., 2018;
Singhal et al., 2017). Full details on data collection and analysis are available in these studies;
we briefly summarize the approach here. We first collected genetic data using double digest
restriction-site associated DNA sequencing (ddRADseq; Peterson, Weber, Kay, Fisher, &
Hoekstra, 2012). Then, we assembled reads using Rainbow v2.04 (Chong, Ruan, & Wu, 2012).
Like many squamate species (Leaché & Fuijita, 2010; Singhal, Hoskin, Couper, Potter, & Moritz,
2018), nominal species in Ctenotus and Lerista often comprise multiple, cryptic lineages (Prates
et al., in press.; Rabosky, Hutchinson, Donnellan, Talaba, & Lovette, 2014; Singhal, Huang, et
al., 2018). Accordingly, we first delimited putative operational taxonomic units (OTUs) across
these genera. For each genera, we first identified homologous loci across all individuals by
using VSEARCH v1.11.1 with a 80% clustering (Rognes, Flouri, Nichols, Quince, & Mahé,
2016). Then, we concatenated homologous loci with <40% missing data and used the
concatenated alignment to infer a phylogeny using RAXML v8.2.0 (Stamatakis, 2014). We
inferred an ultrametric tree from this phylogeny using the penalized likelihood approach
implemented in TreePL with A=0.1 (Smith & O’Meara, 2012). Finally, we delimited OTUs using
GMYC, which is a coalescent-based method that infers where coalescent branching switches
from within-species to between-species patterns. We applied the single-threshold model in
GMYC to this ultrametric tree (Fujisawa & Barraclough, 2013), thus delimiting putative OTUs.
We confirmed OTU identity by determining (1) if the OTU spans a cohesive geographic range,
(2) if OTUs form monophyletic mitochondrial groups, and (3) if patterns of genetic divergence

across geographic space approximated a continuous isolation-by-distance pattern. Of the 151
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resulting OTUs, we only retained OTUs with 210 individuals for further analysis. Our final

dataset consisted of 25 OTUs and an average of 18.3 individuals per OTU (Table S1).

For each OTU, we created a reference genome by selecting homologous loci across all
individuals within that OTU using VSEARCH with a 295% similarity search. We then aligned
reads to the reference genome using bwa v0.7.12 (Li, 2013) and called variant and invariant
sites using samtools v1.2.1 (Li et al., 2009). All resulting variant sets were filtered to only include

sites with 210x coverage and 220 quality.

Using these filtered variant sets, we first determined how the number of sampled loci affects the
stability of genetic diversity estimates. To do so, we subsampled 100, 500, 1000, 2000, 5000,
and 10000 loci, creating five bootstraps per subsample (Holmes & Grundler, in review). For
each variant set, we estimated genetic diversity per individual (r7; Singhal et al., 2017; Tajima,
1983). These bootstrap analyses suggest that a minimum of 1,000 loci are required for stable
estimates of genetic diversity (Fig. S3). Accordingly, we removed all individuals for which we
sampled fewer than 1,000 loci and then calculated genetic diversity. Our estimates of genetic
diversity were measured for an average of 2.6 Mb sites across 17K independent loci per
individual. Thus, although we only sample one individual at most geographic localities, each
individual provides an estimate of deme-level patterns of variation (Nazareno, Bemmels, Dick, &

Lohmann, 2017).

Testing for diversity and distance correlations

Testing the central marginal hypothesis requires estimates of geographic ranges for a species.
For most Australian squamate species, accurate ranges do not exist. Thus, we constructed

species ranges based on occurrence data from museum databases based on an approach
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outlined by (Rabosky et al., 2016). We inferred these ranges in previous studies (Singhal,
Huang, et al., 2018; Singhal et al., 2017); we briefly summarize the approach here. First, using
occurrence data per species, we defined an alpha-hull polygon across all the points. Then,
using 22 environmental variables (19 BioClim variables, an aridity index, elevation, and actual
evapotranspiration; Fick & Hijmans, 2017; Title & Bemmels, 2018), we inferred environmental
niche models (ENM) per species. The geographic range was then defined as the intersection
between the alpha-hull polygon and the ENM. To generate geographic ranges per OTU, species

ranges were then either combined or split, dependent on OTU delimitations.

For each individual in an OTU, we measured their location in the range as a function of both
geographic and bioclimatic estimates of distance. Bioclimatic estimates of distance might serve
as crude proxies for ecological divergence across a species’ range, although they likely neglect
important sources of ecological variation, such as substrate composition and vegetation
structure. For geographic distance, we measured distance from the range centroid, as
estimated (rgeos v0.5-3; Bivand & Rundel, 2017). We additionally measured distance from edge
(geosphere v1.5-10; Hijmans, Williams, Vennes, & Hijmans, 2017) and the ratio of the center
distance to the range radius. For climatic distance, we used two approaches. First, per OTU, we
randomly sampled 1000 points within each range. We then extracted climatic data at each point
across the 19 BioClim variables and summarized these data using a scaled and centered
principal component (PC) analysis. We defined the climatic centroid as the mean value of the
first six PC axes and calculated Euclidean distances of each individual to this centroid
(Lira-Noriega & Manthey, 2014). Second, we used an approach based on identifying the niche
centroid through the R package ntbox v0.6.0 (Osorio-Olvera et al., 2020; Osorio-Olvera,
Yanez-Arenas, Martinez-Meyer, & Peterson, 2020). For each OTU, we randomly sampled 70%

of the occurrence records for use to train the model and retained the remaining 30% to test the
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fit of the model. We extracted climatic data across the 19 BioClim variables for the training
dataset, calculated correlations across variables, and dropped variables with correlations >0.80.
We then fit a niche model to the training dataset, testing whether including the best 2, 3 or 4
climatic variables in the final model fit the data best. This niche model is defined as a minimum
volume ellipsoid; its center was the climatic centroid of the range (Osorio-Olvera et al., 2020).

We then calculated individual distance to the centroid using Mahalanobis distances.

The central-margin hypothesis predicts that genetic diversity should decline with greater
distance from the range center. We tested this prediction by calculating the strength and
significance of the correlation between genetic diversity and each given measure of geographic
and climatic distance using a Spearman’s correlation (Fig. 1). Additionally, we explored the
possible joint effects of genetic and climatic distance on genetic diversity. Per OTU, we built
linear models in which we modeled genetic diversity as a function of both geographic distance
(as measured by distance to range center) and climatic distance (as measured by distance to

PC climatic centroid).

Demographic modeling

Demographic processes — most notably, range and population expansion — can also lead to a
pattern of declining genetic distance across space. To determine if these processes affect
patterns of genetic variation across the range, we conducted two separate analyses. First, we
used dadi v2.1.1 to fit three possible demographic models to the allele frequency spectrum for
each OTU (Gutenkunst, Hernandez, Williamson, & Bustamante, 2009): a neutral model with no
population change and two models of population expansion, one with exponential growth and
one with an instantaneous population change (Fig. S4). Per OTU, we filtered all variant sites to

retain only those sites with >60% complete data across individuals and then inferred the

10
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unfolded allele frequency spectrum by polarizing variants with outgroup sequence. We used the
most closely-related OTU for a given OTU as the outgroup. We then down-projected the allele
frequency spectrum to the median number of chromosomes sampled across all sites. Model
fitting was done across multiple rounds, following an approach implemented by (Portik et al.,
2017). We identified the best fitting model using the likelihood ratio test implemented in dadi.
Second, we tested for range expansion using the R package rangeExpansion (Peter & Slatkin,
2013). As a species expands across the range, new populations will harbor a fraction of the
diversity of the original source population, resulting in a gradient of genetic diversity across the
range (DeGiorgio et al., 2009; Peter & Slatkin, 2013, 2015). Further, variants in these new
populations should be at a higher frequency than in the source populations. The
rangeExpansion approach uses the clines in variant frequency to infer the strength of the range
expansion event and its likely origin. We used the same variant set and outgroup polarization
used for dadi as input files for rangeExpansion. The rangeExpansion approach allows
individuals to be assigned to multiple regions of expansion; here, we assigned all individuals to

the same region.

Comparative analyses

Our test of the central-marginal hypothesis returned mixed results across OTUs (see Results).
Accordingly, we used a multipredictor model-averaging approach (Burnham & Anderson, 2003)
to explore four possible sets of factors (and seven variables in total) that might determine
whether or not an OTU meets the predictions of the central-marginal hypothesis. Here, as a
response variable, we use the correlation between distance to center and genetic diversity.
First, we considered sampling effort, because better sampled species might be more likely to

exhibit stronger patterns. Thus, we included the number of individuals sampled as a factor.

1"
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Similarly, we might have greater power to identify correlations in species with larger geographic
range areas or higher overall genetic diversity. Thus, we included both range size and mean
genetic diversity as variables. Second, how species diverge across geographic distance might
affect the diversity-divergence correlation, with species that exhibit greater isolation over
geographic space showing a stronger correlation. Accordingly, we included estimates of the
slope of isolation-by-distance (previously estimated in Singhal, Huang, et al., 2018). Third, the
different biomes of Australia have experienced dynamic histories that might differentially affect
patterns of genetic diversity. In particular, species endemic to the deserts likely experienced
rapid population growth and range expansion as the deserts expanded in the late Miocene-early
Pliocene (Pepper & Keogh, 2021). We included biome as a factor by determining which biome
the majority of a OTU’s geographic range spanned (Olson et al., 2001). Fourth, we included two
variables from our demographic analyses, given that historical demography leaves an imprint on
genetic diversity. We included the relative change in population size as inferred by dadi and the
strength of the correlation between allele frequency clines and distance as estimated by

rangeExpansion.

Across these seven factors, we created the full set of linear models and fit them to the data
using phylogenetic linear models using nime v3.1 in R (Pinheiro, 2009). To control for
phylogeny, we used an ultrametric tree previously published in (Singhal et al., 2017). We
calculated relative importance of variables by summing the relative Akaike information criteria

weights for all the models in which the variable appeared.
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Data visualization and analysis

All scripts for data visualization and analysis were written in R and Python3 and are available at
https://github.com/singhal/central_marginal. Data visualization used the R packages ggplot2

and cowplot (Wickham, 2016; Wilke, 2016).

Results

Of the 25 OTUs we tested, 16 (or 64%) recovered the expected negative correlation between
distance from range center and genetic diversity. Eight of these correlations (32%) were
significant (Fig. 2A, Table S2). Using estimates of distance from the climatic center, 16 of the 25
OTUs had negative distance-diversity correlations, of which six were significant (Fig. 2B, Table
S2). Unexpectedly, OTU Lerista desertorum showed a significant positive correlation between
geographic distance-diversity and Ctenotus atlas showed a significant positive correlation
between climatic distance-diversity (Table S2). On average, for those species showing a
significant central-marginal pattern, genetic diversity at the range edge was 11% less than at the
core. For comparison, across any given species, minimum and maximum genetic diversity

varied 2.4-fold.

As other studies have shown (Sagarin, Gaines, & Gaylord, 2006; Santini, Pironon, Maiorano, &
Thuiller, 2019; Yancovitch Shalom et al., 2020), how geographic distance and ecological
distance are measured matter. Although alternate measures of geographic and ecological
distance were correlated with our focal distance estimators (r=0.094 - 0.627; Fig. S5), the
proportion of tests recovering a significant correlation in the expected direction varied from 16 -

20% across these alternate measures (Fig. 3, Table S2).
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Models that included both geographic and climatic distance as factors influencing genetic
diversity had adjusted r* values ranging from 0.0 - 0.8 (mean adjusted r*=0.2). For only two

OTUs were both geographic and climatic distance included as significant predictors (Fig. S6).

Demographic analysis found that the two-epoch model best fit all 25 OTUs, in which population
size instantly changed some time in the past (Fig. 4, S4). Current population size was inferred to
be an average of 4.3x greater than ancestral population sizes (Fig. 4A). Fourteen of the 25
OTUs showed significant evidence for range expansion (Fig. 4B). The origins of the range
expansion were generally inferred to be towards the edge of range; on average, the center-edge

distance ratio of origins was 0.81 (Fig. S7).

We tested four sets of demographic, intrinsic, and extrinsic factors that might affect our ability to
recover the central-marginal hypothesis. We found that the strength of the range expansion was
the best predictor of whether or not we recovered the central-marginal hypothesis (relative
importance: 0.86; Fig. 5A). Species with stronger evidence for a range expansion have more
positive diversity-distance correlations and thus more strongly contradict the predictions of the
central marginal hypothesis (Fig. 5B). The best overall model included strength of range

expansion as the sole predictor of diversity-distance correlations and had an adjusted r? = 0.2.

Discussion

For the 25 species-level taxa for which we were able to test the central-marginal hypothesis, we
found the expected negative correlation between genetic diversity and distance from range
center in 16 taxa. This pattern was significant for 8 taxa. Across these 16 taxa, edge populations
only have 11% lower genetic diversity than central populations. Relative to differences in

expected abundance across a range (Brown, 1984), this decline in genetic diversity across the
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range is fairly modest. Only one taxon provided significant evidence against the central-marginal
hypothesis. Thus, our results mirror the patterns identified in other comparative tests of the
central-marginal hypothesis and on the underlying abundant-centre hypothesis (Dallas et al.,
2017; Lira-Noriega & Manthey, 2014; Pennington et al., 2021; Pironon et al., 2017), which find
support for the central marginal hypothesis but with numerous exceptions and significant

unexplained variability.

Explanations for mixed support

All the empirical data collected thus far — including the present study — suggest that the
central-marginal hypothesis is unlikely to hold uniformly across taxa (Eckert et al., 2008;
Lira-Noriega & Manthey, 2014). Given these results, it is perhaps more interesting to identify the
factors determining whether or not the central-marginal hypothesis is recovered in a given
species. First, the central-marginal hypothesis derives from the abundant-center model, which
implicitly assumes that the geographic core of a range is also the ecological core of the range.
In other words, the center of the range is where individuals in a species have the most ideal
conditions and the highest reproductive output (Brown, 1984). However, ecological gradients do
not necessarily follow simple patterns that correspond to a geographic range center (Duncan et
al., 2015; Pironon et al., 2017; Pironon, Villellas, Morris, Doak, & Garcia, 2015; Trumbo et al.,
2016). In such cases, taxa would exhibit a distance-diversity relationship only when distance is
measured in ecological units. For our taxa, geographic and climatic distance were only modestly
correlated (r = 0.1 - 0.43, Fig. S5), which suggests that geographic distance is not necessarily
synonymous with climatic distance. Yet, when testing the central-marginal hypothesis using
climatic distance, we do not see greater support for the hypothesis. Only 6 of 25 taxa follow

predictions and have significantly negative correlations (Fig. 2B). These results suggest that
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failure to recover the central-marginal hypothesis is not due to differences in geographic versus
climatic distance. However, we estimated ecological distance solely using climatic variables,
and many of the taxa included in this study span arid biomes that are relatively climatically
homogenous (James & Shine, 2000). Pianka (1972) suggested that broad-scale aspects of
vegetation structure and substrate are important determinants of geographic range limits in arid
Australian lizards. More nuanced estimates of ecological distance — particularly if they
encompass environmental variables that define range limits — could certainly result in different
patterns. Ultimately, however, the central-marginal hypothesis originates from the
abundant-center hypothesis. Instead of using ecological suitability as a proxy for population
density and a predictor of genetic diversity, directly measuring population density and
abundance itself might be appropriate (c.f. Dixon, Herlihy, & Busch, 2013; Sexton et al., 2016;
Yakimowski & Eckert, 2008). Unfortunately, there are no shortcuts to estimating range-wide
patterns of abundance in Australian desert lizards (Grundler, Singhal, Cowan, & Rabosky,
2019), and obtaining abundance information for even single localities requires considerable time

and resources (Pianka, 2014; Thompson, Withers, Pianka, & Thompson, 2003).

Second, how geographic distance is measured matters (Sagarin et al., 2006; Santini et al.,
2019; Yancovitch Shalom et al., 2020). Depending on range shape, alternate measures of
geographic distance can be markedly different. For example, take our taxa Ctenotus aff.
spaldingi (1), which has a long range that spans from north to south along the full Eastern coast
of Australia (Fig. 1). Our focal estimator of distance was distance from the range centroid. A
population that is due east of the range center could be at the edge of the range and still be
relatively close to the range center, whereas an equidistant population that is due north of the
range center would still be far from the edge range. The less round and more eccentric a range

is, the harder it can be to define an adequate metric for geographic distance. Further,
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geographic ranges shift through time; populations might retain the (non-equilibrium) signature of
historical range movements such that present-day range position may not be reflective of
historical range structure that most influenced present-day genetic variability (Samis & Eckert,
2007). This likely explains why various metrics of geographical distance are only modestly
correlated (r=0.1 - 0.62, Fig. S5) and could partially explain why the outcomes of our test of the
central-marginal hypothesis varies across species (Fig. 2A). Note that our estimate of range
center itself was fairly simplistic; defining range center itself can be fraught (Borregaard &
Rahbek, 2010). That said, most taxa showed qualitatively consistent correlations across

distance metrics (Table S2); significance levels however varied.

Similarly, treating all range edges equivalently can confound tests of the central-marginal
hypothesis (Sagarin et al., 2006), particularly if there are multiple peaks of population
abundance (Dixon et al., 2013) or if ranges span elevational or latitudinal gradients. Factors
structuring range limits often vary across northern versus southern edges and higher versus
lower elevations (Connallon & Sgro, 2018; Freeman & Beehler, 2018; Halbritter, Billeter,
Edwards, & Alexander, 2015), which might then affect patterns of abundance. Further, historical
environmental changes, such as glacial cycles, often act differentially across range edges,
leading to “lagging” and “leading” edges that can further structure genetic diversity (Hampe &
Petit, 2005). If the nature of the central-marginal hypothesis changes depending what range
edge is considered, then collapsing range edges into a single transect could increase noise and
decrease power to identify support for the hypothesis. Thus, ideally, researchers would test the
central-marginal hypothesis across multiple linear transects from the range center to the edge
(Kennedy, Preziosi, Rowntree, & Feller, 2020; Trumbo et al., 2016). This represents a massive

sampling effort and would be simply untenable for many species, including those in our study.
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Third, certain demographic histories can produce patterns that mimic those expected under the
central-marginal hypothesis (Eckert et al., 2008). For species at demographic equilibrium,
limited migration between populations combined with boundary effects at range borders can
result in a gradient of high genetic diversity at the range core and lower diversity at the edges
(Peter & Slatkin, 2013; Wilkins & Wakeley, 2002). In a non-equilibrium scenario, during range
expansions, repeated serial founder events create gradients of allele frequencies and genetic
diversity. If the origin of the expansion occurs near the center of the range, then genetic diversity
will decline from the center to the edges of the range (DeGiorgio et al., 2009; Slatkin & Excoffier,
2012 but see Peter & Slatkin, 2013) which shows this can also occur due to edge effects).
Numerous species across the tree of life show this pattern, presumably due to the effects of
range expansion (DeGiorgio et al., 2009; Pierce et al., 2014; Provan & Maggs, 2012). Most of
our focal taxa are arid distributed (Fig. S1), and in Australia, the arid zone has expanded
dramatically since the Miocene (Pepper & Keogh, 2021). Given this biogeographic history, it is
perhaps unsurprising that all of our taxa showed evidence for population expansion, and 14 of
our 25 taxa showed evidence of range expansions (Fig. 4). However, contrary to what has been
seen in other species, species that experienced range expansion more strongly contradict the
expectations of the central-marginal hypothesis (Fig. 5B). We inferred that most ranges
expanded from the range edge (Fig. S7); thus, we predict to see a declining gradient in genetic
diversity from the range edge rather than the range center. Thus, even though range
expansions can lead to patterns that mimic those expected under the central-marginal
hypothesis, in our study, species that experienced range expansions were the least likely to
show support for the central-marginal hypothesis. Our approach thus shows the promise of
using population genetic inference to disentangle historical and current demography (see also

(Duncan et al., 2015; Moeller, Geber, & Tiffin, 2011; Wei, Sork, Meng, & Jiang, 2016),
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particularly when combined with retrodictions of past geographic range distribution (Pironon et

al., 2015).

Finally, testing the central-marginal hypothesis can be affected by sampling effort (Blackburn,
Gaston, Quinn, & Gregory, 1999). Previous meta-analyses have found mixed effects of
sampling effort on study outcomes (Eckert et al., 2008; Lira-Noriega & Manthey, 2014), but
greater sampling should allow more nuanced tests of the central-marginal hypothesis. For
example, many studies compare patterns of genetic diversity after binning populations as either
core or peripheral populations (Eckert et al., 2008; Yakimowski & Eckert, 2008). Here, because
we collected thousands of loci, we could treat each individual as a population (Nazareno et al.,
2017), and we were thus able to measure distance as a continuous variable. Binning
populations as core versus peripheral results in less granularity and also requires researchers to
arbitrarily define central vs. edge populations. Had we binned populations, only four species
would have supported the central-marginal hypothesis. While sample size did not affect the
likelihood of recovering the central-marginal hypothesis (Fig. 5A), even greater sampling would
allow us to test more complex models for how patterns of genetic diversity change across the
range, like humped or stepwise models (Freeman & Beehler, 2018; Miller, Bermingham, Klicka,

Escalante, & Winker, 2010; Yancovitch Shalom et al., 2020).

Implications and future directions

The abundant-centre and central-marginal hypotheses are compelling because they have clear
implications for range limits and speciation. One hypothesis for why species have range limits is
that boundaries form where species are no longer able to adapt to edge conditions (Hoffmann &
Blows, 1994; Kirkpatrick & Barton, 1997; Polechova, 2018). In a world where ranges are shifting

as a result of climate change, edge populations are perhaps most likely to be extirpated or
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swamped by gene flow (Hampe & Petit, 2005). Further, although edge populations are expected
to have lower levels of genetic diversity overall, they are often genetically and phenotypically
distinct from populations at the range core (Eckert et al., 2008), making their loss of particular
concern for conservation aims. Thus, edge populations both help determine range limits and are
particularly threatened as range limits shift. Here, we find that many species have reduced
genetic diversity at their edges, which supports the idea that edge populations are perhaps less
able to evolve to their local conditions due to a lack of variability (Hoffmann & Blows, 1994).
However, the difference in genetic diversity between central and marginal populations is modest
compared to the variance in genetic diversity seen across the range. Further, we only measured
putatively neutral genetic variation, which may not correlate with genetic variation underpinning
key adaptive traits (Pauls, Nowak, Balint, & Pfenninger, 2013; Teixeira & Huber, 2021). To better
explore the links between the central-marginal hypothesis and range limits, we should ideally
sample quantitative trait loci and the traits themselves (c.f. Clark et al., 2021; Kennedy et al.,

2020; Pennington et al., 2021; Pujol & Pannell, 2008).

In verbal models of species formation, peripheral populations are often seen as engines of new
species (Brown, 1957; Levin, 1970; Mayr, 1970). Peripheral populations are thought to be
subject to different biogeographical and ecological conditions from the core populations, simply
because of their geographical location. Thus, they might be more likely to split to form isolates
that then evolve into new species (Bush, 1975). The central-marginal hypothesis predicts that
peripheral populations should show greater levels of genetic divergence than core populations
(Dixon et al., 2013), which could further spur species formation at the edges. We cannot
robustly test these predictions because of sparse sampling, although we find some evidence

that genetic divergence is greater between core-edge and edge-edge populations than
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420 core-core populations (Fig. S8). With denser sampling, we would be better able to explore how

421 the patterns of the central-marginal hypothesis connect to speciation.
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Figure 1: The relationship between genetic diversity and distance from range center for three
exemplar OTUs that showed a significant negative correlation (Ctenotus aff. spaldingi 1), a
significant negative correlation (C. aff. inornatus 1), and a non-significant negative correlation
(C. aff. taeniatus). Our species delimitation approach occasionally splits and lumps nominal
species; here, nominal species C. taeniatus and C. euclae have been lumped into the OTU C.
aff. taeniatus. Shaded areas on maps indicate OTU geographic range and point colors vary
based on genetic diversity. Drawing of C. aff. spaldingi 1 courtesy of M. Grundler (re-used with
permission from the University of Chicago Press).
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Figure 2: Spearman rank correlations (p) between genetic diversity and (A) geographic
distance, as measured by the distance to range center and (B) climatic distance, as measured
by the distance to the principal component (PC) climatic centroid of the range (n = 25 OTUs).
Fill color indicates significance of correlation (p < 0.05). As expected under the central-marginal
hypothesis, most correlations are negative though not all are significant.
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Figure 3: Spearman rank correlations (p) between genetic diversity and alternate measures of
distance: (A) geographic distance, as measured by the distance to range edge, (B) geographic
distance, as measured by the ratio of center distance to range radius, and (C) distance from
climatic centroid of range, as defined by the minimum volume ellipsoid (MVE). For the
relationship shown in (A), we would predict to recover positive correlations under the
central-marginal hypothesis; for the relationships shown in (B) and (C), we would predict
negative. Fill color indicates significance of correlation (p < 0.05). Although the majority of
datasets follow expectations, patterns vary across alternative metrics of distance.
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Figure 4: Demographic inference for OTUs included in this study. (A) Ratio of current effective
population size (N,) to ancestral N, as inferred using dadi. All 25 OTUs best fit the two-epoch
model, in which populations expanded instantly in the past (see Fig. S3). (B) For the 14 OTUs
that showed significant evidence for range expansion, we plot the strength of the range
expansion, as measured by the correlation between allele frequency clines and geographic
distance from the expansion origin.
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Figure 5: (A) Model fitting for seven variables that span four possible explanations for whether
or not we recover support for the central-marginal hypothesis in a given taxon: (1) potential
power-related factors: range size, number of individuals sampled, and mean genetic diversity for
the OTU, (2) intrinsic factors: isolation-by-distance (IBD) slope, (3) extrinsic factors: biome, and
(4) demographic factors: strength of range expansion, population size change. Shown are the
relative importance of each variable and the sign of its coefficient. Range expansion was the
best predictor of all tested variables. (B) Species that show stronger evidence for range
expansion are more likely to exhibit a positive correlation between center distance and genetic
diversity, opposite to predictions from the central-marginal hypothesis.
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